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Abstract

Salient object detection (SOD) is viewed as a pixel-wise saliency modeling task

by traditional deep learning-based methods. A limitation of current SOD mod-

els is insufficient utilization of inter-pixel information, which usually results in

imperfect segmentation near edge regions and low spatial coherence. As we

demonstrate, using a saliency mask as the only label is suboptimal. To ad-

dress this limitation, we propose a connectivity-based approach called bilateral

connectivity network (BiconNet), which uses connectivity masks together with

saliency masks as labels for effective modeling of inter-pixel relationships and

object saliency. Moreover, we propose a bilateral voting module to enhance the

output connectivity map, and a novel edge feature enhancement method that

efficiently utilizes edge-specific features. Through comprehensive experiments

on five benchmark datasets, we demonstrate that our proposed method can

be plugged into any existing state-of-the-art saliency-based SOD framework to

improve its performance with negligible parameter increase.
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1. Introduction

As a fundamental task in computer vision, salient object detection (SOD)

plays an essential role in image scene understanding [1] and has been applied to

different tasks, such as weakly supervised semantic segmentation [2, 3], visual

tracking [4], scene analysis [5, 6], video processing [7] and medical image analysis5

[8]. Convolutional neural networks (CNNs) have greatly promoted the develop-

ment of SOD due to their capacity to extract multi-level semantic information.

Most current CNN-based SOD models [9, 10] view the problem as a pixel-level

saliency classification task; i.e., their only goal is to assign a saliency score to

individual pixels. Despite promising results, these models are limited by insuf-10

ficient utilization of edge information, and insufficient attention to inter-pixel

relationships. These problems together can result in blurred edges or low spa-

tial coherence (i.e., have inconsistent saliency predictions for neighboring pixels

that share similar spatial features), as Fig. 1.

Figure 1: An example of insufficient modeling of pixel-wise relationship and structural in-

formation. MINet [11] results in both blurred edges (green box) and spatial inconsistency

problems (red box). However, our model (MiNet + BiconNet) results in sharper edges and

uniformly highlighted predictions near the boundaries.

The edge problem has been alleviated somewhat by adding edge informa-15

tion into networks using extra supervision flows [12, 13, 14], but there is still

room for impactful improvement. First, edge features represent only a small

fraction of the image; using an extra path for edge supervision is still likely to

provide insufficient information while generating redundant non-structural fea-

tures [11]. Second, the extra flows result in extra computational cost, making20

these methods less efficient.
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The problem of low spatial coherence due to insufficient attention to inter-

pixel relationships has been addressed by using post-processing methods such

as conditional random fields (CRF) to refine the output prediction [9, 15, 16].

However, these methods usually result in low processing speed. Some studies [12,25

17] proposed that spatial coherence can be enhanced by adding complementary

edge information. Other studies [11, 18] have suggested that the incoherence

is caused by scale variation of multi-level features, and have proposed using

multi-scale fusion to alleviate the problem.

Another approach to solve these problems is to remodel SOD with new infor-30

mative labels. Traditional salient masks used as training labels treat all pixels

inside a salient object equally and independently; as a result, they lack infor-

mation about inter-pixel relationships and fundamentally make edges hard to

detect. Therefore, using saliency masks as the only training label is a subopti-

mal choice. In the label decoupling framework (LDF) for SOD [19], traditional35

salient masks were decoupled into a location-aware detailed map and body map,

which were used as auxiliary labels for training. However, these new labels re-

quired specifically designed extra supervision flows and were not proved to be

compatible with other existing models. Another group [20] introduced the con-

nectivity mask—a multi-channel mask exhibiting connectivity of each pixel with40

its neighboring pixels—as the CNN label. Although the connectivity mask is an

inter-pixel relation-aware label, this method completely replaces saliency predic-

tion with pixel connectivity modeling, and therefore does not effectively utilize

the original saliency information. In addition, the method ignores the inherent

properties of this new label, making the results less promising. We propose that45

the design and effective utilization of an informative label which is compatible

with any existing method can efficiently improve the performance of existing

models.

Inspired by this concept, we developed a novel connectivity-based SOD

framework called the Bilateral Connectivity Network (BiconNet) as shown in50

Fig. 2. BiconNet consists of four parts: a connectivity-based SOD backbone,

a bilateral voting (BV) module, a region-guided channel aggregation (RCA)
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module, and a bilateral connectivity (Bicon) loss function. To model inter-pixel

relationships, we first replace the backbone’s label with a connectivity mask.

Then, to enhance the spatial coherence between neighboring pixels, we use a55

BV module to obtain a more representative connectivity map called the Bicon

map. After this step, we generate two single-channel saliency maps, with edge

information emphasized, via an RCA module. Finally, we propose the Bicon

loss function to further emphasize edge features and spatial consistency for final

salient object detection.60

Figure 2: The overview of BiconNet, which contains a backbone, an 8-channel connectivity

fully connected layer, a BV module, and an RCA module. Note that we can directly get

edge information from the ground truth connectivity map and use it for highlighting the

edge-specific features in the RCA module.

BiconNet exhibits three advantages: First, by changing the CNN’s in-

termediate goal to predicting pixel-wise connectivity, inter-pixel relation mod-

eling has become one of the network’s tasks. Thus, BiconNet can focus more

attention on inter-pixel relationships. Second, based on the inherent property

of connectivity masks, edge regions can be located directly from ground truth,65

which are then emphasized in the final output for network training via the

RCA module. Compared to other edge-based methods [12, 21], this is a more

efficient way to aggregate edge features. Third and most importantly, since Bi-

conNet changes only the output layer of the backbones and all other modules

(BV and RCA) are trained after it, BiconNet can be built on any saliency-based70

SOD framework without changing the framework’s original design (e.g., internal
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structure and loss functions), and will improve its performance.

In summary, there are three main contributions of this work:

• We propose a connectivity-based SOD framework called BiconNet to ex-

plicitly model pixel connectivity, enhance edge modeling, and preserve75

spatial coherence of salient regions. BiconNet can be easily plugged into

any existing SOD model with neglectable parameter increases.

• We propose an efficient, connectivity-based edge feature extraction method

that can directly emphasize the edge-specific information from the net-

work output. We also introduce a new loss function, Bicon loss, to further80

enhance the utilization of the edge features and preserve the spatial con-

sistency of the output.

• We build BiconNets with backbones of seven state-of-the-art SOD mod-

els. By comparing these BiconNets with the corresponding baselines, we

show that our model outperforms the latter models on five widely used85

benchmarks using different evaluation metrics.

2. Related Work

Earlier SOD methods [22, 23, 24] mostly utilized hand-crafted features to

detect salient regions. These methods cannot effectively capture high-level se-

mantic information from data, and are ineffective when dealing with complex90

scenes in images. CNN-based models have recently become the main choice

for SOD due to their multi-level feature extraction ability. However, in ear-

lier CNN-based SOD models [9, 25], erroneous predictions were usually made

near the salient edges, and low spatial coherence occurred in the middle of the

salient region or near the edges. There are three ways to solve these problems:95

multi-scale feature aggregation models, edge-enhanced models, and problem re-

modeling methods.
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2.1. Multi-scale Feature Aggregation Models

One reason for the problems described above is that detailed features can be

diluted as the CNN becomes deeper. To utilize saliency features more efficiently,100

one solution is to aggregate multi-scale information. Hou et al. [9] demon-

strated that using short connections between different layers helped aggregate

multi-scale features. Chen et al. [26] proposed a model that can aggregate

low-level detailed features, high-level semantic features, and global context fea-

tures to learn the relationship between different salient regions. Qin et al. [10]105

proposed a nested network that uses Residual U-blocks to extracted multi-scale

features. Li et al. [27] extracted saliency features from three different scales of

the images and aggregated them for final detection. Pang et al. [11] extracted

effective multi-scale features from two interaction modules and preserved the

spatial consistency of intra-class units. Although effective, these methods usu-110

ally require extra computational power for the frequent feature aggregations

between different layers.

2.2. Edge-enhanced Models

To preserve edge information, edge-enhanced models intentionally generate

extra edge features for training. Zhao et al. [12] built another supervision115

flow for the edge features, which were fused with the salient features at the

final stages of their network. Liu et al. [21] extracted the edge features from

another edge detection dataset and used these for joint training with saliency

detection. Qin et al. [28] added a refinement module after their encoder-decoder

structure to refine the boundary details. Zhang et al. [29] proposed a boundary120

localization module to extract structural information. Wu et al. [13] exploited

the logical interrelation between the edge map and saliency map and proposed

a bidirectional framework to refine both tasks. Zhou et al. [14] proposed an

approach that interactively fuse edge features and saliency features. These

models show the effectiveness of adding edge features for saliency detection, but125

they usually generate redundant features and are computationally expensive
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since they add extra supervision flows for the edge path. In our work, the edge

information is used in a more efficient way, as shown in Fig. 3.

Figure 3: Different edge-based models: (a) edge cue models [12, 21]; (b) interactive edge

models [13, 14]; (c) BiconNet. Both (a) and (b) need to include at least one extra flow branch

for the edge features. In contrast, BiconNet can directly receive the edge location from the

connectivity ground truth and then emphasize the edge-specific information in the output via

a simple RCA module.

2.3. Problem Remodeling Methods

Compared to the above models which focus on the internal structure of the130

network, an efficient way to solve the SOD problem is to rethink the task and

remodel it using more informative labels. Wei et al. [19] decoupled the ground

truth label into a body map and a detail map according to the location of object

edges and used three supervision flows for training. However, the authors did

not demonstrate a general way to utilize these labels in an existing framework.135

In addition, although these labels worked well in detecting the salient edges,

they were not inter-pixel relation-aware. Kampffmeyer et al. [20] replaced the

saliency labels with connectivity masks and illustrated improvements achieved

by this change. This approach, called ConnNet, remodeled the problem of SOD

by converting the saliency prediction task into several sub-tasks of foreground140

connectivity prediction. However, this method did not fully utilize the infor-

mation of the connectivity mask. In addition, the method is incompatible with
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many saliency evaluation metrics as it does not predict a single-channel saliency

probability map. We propose a method to overcome these problems, described

in the next sections.145

3. Proposed Method

3.1. Framework Overview

Our framework, BiconNet, consists of four parts: a connectivity-based SOD

backbone, a BV module, an RCA module, and a Bicon loss function. For the

backbone, we can use any existing saliency-based SOD framework. An overview150

of our method is shown in Fig. 2.

3.2. Connectivity Vector/Mask

Given an existing SOD backbone, our first step is to replace its single-channel

saliency map output with an 8-channel connectivity map by changing its fully

connected layers and to replace its label with the connectivity mask. In the155

next step, we will introduce connectivity vectors and masks/maps.

A connectivity [30] vector of a pixel is a multi-entry binary vector used to in-

dicate whether the pixel is connected to its neighboring pixels. In the 8-neighbor

system, given a pixel at coordinates (x, y), we use an 8-entry connectivity vector

to represent the unidirectional connectivity with its neighbors in the square area160

of [x ± 1, y ± 1] with every entry representing one specific direction. Given a

binary saliency mask GS with size H ×W , by deriving the connectivity vector

for every pixel in GS , we obtain an 8-channel mask GC with size H ×W × 8

called the connectivity mask (Fig. 4). The ith channel of GC (GCi) represents

if the original pixels on GS are connected with their neighboring pixels at the165

ith directions (e.g., upper left if i = 1 using row-major order). In this work, as

in [20], We define connectedness only for the adjacent salient pixels. For better

understanding, we call the discrete ground truths as connectivity masks GC and

the network’s continuous outputs C as connectivity maps.

We show that learning a connectivity mask GC provides three main advan-170

tages over a binary segmentation mask GS . First, compared to GS where every
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Figure 4: Visualization of converting a saliency mask to a connectivity mask. The dashed

box on GS shows the 8-neighbor region of the selected pixel. GS will be boundary-mirrored

if needed. Every channel of GC represents pixel connectivity at a certain direction.

entry only indicates the saliency of the current pixel, GC focuses more on the

mutual relationship between its pixels. Second, GC itself contains more struc-

tural information (such as edges) than GS . Specifically, in GC , the elements

of the connectivity vector for an edge pixel are always a mixture of zeros and175

ones, whereas internal foreground pixels have all-ones connectivity vectors and

background pixels have all-zeros connectivity vectors (Fig. 5). We call this

property the turbidity of the edge connectivity vectors. Thus, given a ground

truth connectivity vector of a pixel, we can always determine whether it is an

edge pixel simply by checking the zero and one distribution of the vector. As180

shown in future sections, this property is important as it provides an efficient

way to utilize edge information. Third, besides showing the connectivity of

saliency pixels, every entry of GC also reflects the connection direction. Thus,

GC is a structure- and inter-pixel relationship-aware label.

3.3. Bilateral Voting Module185

For every two neighboring pixels in GS , there is a unique element pair in GC

representing the unidirectional connectivity between them. We call such a pair

in GC a connectivity pair. To be specific, consider a pair of neighboring pixels on
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Figure 5: The turbidity property for edge pixels. M, N, and E represent pixels in the back-

ground (M), inside the salient region (N), and at the edge (E). Only pixel E has a mixture

of zeros and ones in its connectivity vector, whereas M and N have all-zeros and all-ones

connectivity vectors, respectively.

GS : M at location (x, y) and N at (x+a, y+b) a, b ∈ {0,±1}. We can obtain the

unidirectional connectivity from M to N from the value of GCj(x, y), where GCj190

is the channel that represents the relative direction from N to M. For example,

if N is located lower-right of M, then j = 8 (row-major order). Similarly, the

connectivity from N to M can be found at GC(9−j)(x+a, y+b) = GC1(x+1, y+1).

We call the two elements GCj(x, y) and GC(9−j)(x+a, y+b) a connectivity pair

of M and N. The same concept is also defined for the output connectivity map C,195

where every two neighboring pixels in the salient map have a unique connectivity

pair in C representing the probability of the unidirectional connection. Fig. 6

shows an example of this case when a = b = 1.

The concepts of saliency and connectedness are closely related and mutually

convertible: If two pixels are connected, they are salient. Two pixels of GS are200

considered as connected (salient) if and only if both elements of its connectivity

pair agree with this connection, i.e., if and only if GCj(x, y) = GC(9−j)(x +

a, y + b) = 1. We call this the discrete bilateral connectivity agreement, which

reveals the bidirectional property of pixel connections and shows the importance

of mutual impacts between neighboring pixels.205

From this agreement, we know theoretically that the two elements from a

connectivity pair should have the same connection probability to each other.
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However, in practice, connectivity pairs of the network’s continuous outputs

(i.e., the connectivity maps C) rarely satisfy this agreement. These disagree-

ments result in spatial inconsistencies. To model the neighboring dependency210

and preserve the spatial consistency, we propose a novel connectivity-enhancement

module called bilateral voting (BV) module.

Figure 6: Illustration of how connectivity pair is defined and how a Bicon map is generated

via bilateral voting (BV) when a = 1 and b = 1. In the predicted Conn map (middle) the two

entries C1(2, 2) and C8(1, 1) represent two predicted unidirectional connectivity probabilities

of the highlighted neighboring pixels at (1, 1) and (2, 2) in the saliency map (left). After the

BV module, the generated Bicon map is the bidirectional representation of the connectivity

for pixels in the saliency map.

Given a connectivity map output C, the goal of the BV module is to generate

another connectivity map that satisfies the bilateral connectivity agreement.

To do so, we first extract all of the connectivity pairs. Then, we multiply the215

two elements in every connectivity pair and assign the resulting value to both

elements, yielding a new connectivity map C̃. This process is shown in Fig. 6

and is formulated as:

C̃j(x, y) = C̃9−j(x + a, y + b)

= Cj(x, y)× C9−j(x + a, y + b),
(1)

where the subscript j means the jth channel, a, b ∈ {0,±1}. The logic behind

the formula is that we can get the bidirectional pixel connection probability by220

multiplying every two elements of a connectivity pair, as each represents a uni-

directional connectivity probability relative to the other. Since this continuous
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process is similar to making the discrete bilateral agreement, we call it bilateral

voting. We name the new map C̃ the bilateral connectivity map (Bicon map),

and the original output C the Conn map. In the later sections, we will show225

that the BV module is important both at the training and inference phases.

3.4. Region-guided Channel Aggregation

After BV module, we obtain an enhanced 8-channel map C̃ with every chan-

nel representing the bidirectional probability of pixel connection at a specific

direction. In the previous sections, we pointed out that pixel connectivity is the230

sufficient and necessary condition of pixel saliency for neighboring pixels. There-

fore, the overall probability of a pixel being connected with its neighbors reflects

its saliency. To obtain a single-channel map representing saliency, we propose a

region-guided channel aggregation (RCA) module to summarize the directional

connectivity information in the eight channels of C̃ into a single-channel output235

S̃ using a function f . The generic form is written as:

S̃(x, y) = f{C̃i(x, y)}8i=1 , (2)

where f is an adaptive aggregating operation that varies with location (x, y), S̃

represents the aggregated overall probability of current pixel being salient. This

process can also be interpreted as applying a function f over every predicted

connectivity vector in C̃ to obtain an overall connection probability for the240

corresponding pixel. Here we define two types of f :

Global aggregation. A simple way to aggregate the values from different

directions into a single value is to average them. By doing this, we will obtain a

single-channel map with every pixel representing the average connection proba-

bility to its neighbors. In this case, f is the averaging operation for all locations.245

We call the resultant map the global map, denoted as S̃global:

S̃global(x, y) = Mean{C̃i(x, y)}8i=1 . (3)

Edge-guided aggregation. As mentioned, the edge pixels are the only

pixels that have zero-one ground truth connectivity vectors. This property
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yields two advantages. First, we can generate ground truth edge masks by sim-

ply searching the location of zero-one vectors in connectivity masks. Based on250

these ground truth edge masks, we can locate and decouple the edge regions and

non-edge regions from the output. Second, we can encourage the network to

learn this special data representation based on prior knowledge about the tur-

bidity of edge vectors. Due to the imbalance between edge pixels and non-edge

pixels, the network intends to make uniform predictions among all directions;255

i.e., predicting connectivity vectors as all ones or all zeros. An edge pixel, since

it is part of the salient region, is more likely to be predicted as an internal fore-

ground pixel with an all-ones connectivity vector. This is the main reason for

blurring edges: it is difficult for networks to learn to discriminate edge pixels

from other salient pixels. To emphasize the difference between these two types260

of pixels, we want the networks to pay extra attention to the likely misclassified

direction of a predicted edge connectivity vector; i.e., directions that are in fact

not connected to the current edge pixel. As for non-edge pixels, since they have

all-ones or all-zeros ground truth connectivity vectors, we want the network to

uniformly focus on all directions. To this end, we designed a region-adaptive265

aggregation method for these two regions:

S̃decouple(x, y) =

1−min{C̃i(x, y)}8i=1 (x, y) ∈ Pedge,

Mean{C̃i(x, y)}8i=1 (x, y) /∈ Pedge,

(4)

where S̃decouple is called the edge-decoupled map and Pedge is the set of edge

pixels. For the edge part, we emphasized the most likely disconnected directions

by finding the minimum values of the predicted connectivity vectors. This design

is highly correlated with the loss function, which is discussed in the next section.270

So far, we have generated two single-channel maps: the global map S̃global

and the edge-decoupled map S̃decouple as shown in Fig. 2. S̃decouple is used for

learning the edge-specific information; S̃global is a more robust representation of

salient objects and will be used as the final saliency prediction during inference.
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3.5. Bicon Loss275

Our loss function is defined as:

Lbicon = Ldecouple + Lcon const + Lopt . (5)

We call this hybrid loss the Bicon loss Lbicon, where Ldecouple is the edge-

decoupled loss, Lcon const is the connectivity consistency loss, and Lopt is the

optional loss. We define the loss terms in the following sections.

Edge-decoupled loss. Binary cross entropy (BCE) [31] is one of the most280

widely used loss functions, and is defined as:

Lbce(S,G) = −
∑
(x,y)

[G(x, y) log(S(x, y)) + (1−G(x, y)) log(1− S(x, y))], (6)

where G(x, y) ∈ {0, 1} is the ground truth label of pixel (x, y) and S(x, y) is

the prediction. BCE loss is a pixel-wise loss function that considers each pixel

equally; thus, it does not consider inter-pixel relationships when the traditional

saliency maps are used as the loss input [11, 32, 28]. We propose that this prob-285

lem can be alleviated with use of a more informative and spatial relation-aware

input. To this end, we used S̃decouple as the input of BCE. Although BCE is still

calculating the loss independently for every unit, single units carry information

about their intrinsic saliency scores and the region-based connectivity. Based

on Eq. 4, this loss is formulated as:290

Ldecouple = Lbce(S̃decouple, GS)

=

Lbce(1−min{C̃i(x, y)}8i=1, GS(x, y)) (x, y) ∈ Pedge,

Lbce(mean{C̃i(x, y)}8i=1, GS(x, y)) (x, y) /∈ Pedge,

(7)

where GS(x, y) ∈ {0, 1} is the saliency ground truth of pixel (x, y), indicating

whether the pixel is salient. Specifically, we can derive the edge part as:

Lbce(1−min{C̃i(x, y)}8i=1, GS(x, y))

= Lbce(1−min{C̃i(x, y)}8i=1, 1)

= Lbce(min{C̃i(x, y)}8i=1, 0) .

(8)
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For the edge pixels, our goal is to make the network learn the sparse rep-

resentation of the turbid edge vectors. As discussed previously, the edge pixels

are most likely to be predicted as internal salient pixels that have all ones in295

their connectivity vectors. Thus, a feasible way to learn the turbidity is to force

the minimum value of the edge connectivity vector to be zero; i.e., we want the

network to only focus on the disconnected direction for edge pixels. For the

non-edge pixels, since they all have all-zeros or all-ones connectivity vectors,

our goal is to make the average value across channels to be close to their labels.300

Namely, we want the network to put uniform weights on all directions.

Connectivity consistency loss. The connectivity consistency loss is the

weighted sum of BCE losses applied to both the original Conn map (C) and the

Bicon map (C̃). It is defined as:

Lcon const = ω1Lconmap + ω2Lbimap

= ω1Lbce(C, GC) + ω2Lbce(C̃, GC),
(9)

where GC is the corresponding ground truth 8-channel connectivity mask with305

every element GCi(x, y) ∈ {0, 1}, specifying whether a pixel at location (x, y)

is connected to its c = 8 neighboring pixels. ω1 and ω2 are weighting factors.

The first term, Lconmap, is designed for preserving spatial consistency. For

the second term, Lbimap, since the bidirectional connection probability in C̃ is

exponentially correlated with the original unidirectional probability, it usually310

generates larger loss on hard pixels [18], such as edge pixels, while generating a

smaller loss on easy pixels. The exception is background pixels, where a small

loss will be generated no matter what background is. Therefore, there is a trade-

off between edge enhancement and background dilution in this loss term. To

effectively utilize Lbimap, we assign it a lower weight. For all of our experiments,315

we set ω1 = 0.8, ω2 = 0.2 unless otherwise noted.

Optional loss. As mentioned above, the BV and RCA modules together

with the Bicon loss can be inserted into any existing saliency-based backbone

to form the BiconNet architecture. Some existing studies [28, 11] have pro-

posed specific loss functions with their network architectures. To maintain the320
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integrity of these backbones, we apply the same loss function in these papers as

our third term:

Lopt = Lorig(S̃global, GS), (10)

where Lorig(·) is the loss function defined in the original backbone’s paper,

S̃global is the global map. Note that Lopt is an optional loss term and will be

applied according to the selection of backbones.325

3.6. Inference

To obtain the single-channel saliency probability map in the inference stage

of BiconNet, we first pass the output Conn map C through the BV module

to get the Bicon map C̃. Then, we aggregate the channels with the averaging

operation to get the global map S̃global. Finally, we use S̃global as the predicted330

saliency map, as shown in Fig. 2.

4. Experiments

4.1. Datasets and Evaluation Metrics

We evaluated our model on five frequently used SOD benchmark datasets:

HKU-IS [27] with 4,447 images, DUTS [33] with 10,553 images for training335

(DUTS-TR) and 5,019 for testing (DUTS-TE), ECSSD [34] with 1,000 images,

PASCAL-S [35] with 850 images, and DUT-OMRON [36] with 5,168 images.

For the evaluation metrics, we adopted the mean absolute error (MAE) [37],

F-measure (Fβ) [38], and E-measure (Em) [39]. For the F-measure, we used

the mean F-measure, Fave, which is generated by thresholding the prediction340

map using an adaptive value equal to twice the mean of the prediction and is

correlated with spatial consistency of the prediction [40].

4.2. Experiment Setup and Implementation Details

Model Setup. We adopted seven state-of-the-art models as both baselines

and backbones to form the BiconNets: PoolNet [21], CPD-R [40], EGNet [12],345

F3Net [18] ,GCPANet [26], ITSD [14], MINet [11]. We replaced all of their
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saliency prediction layers with 8-channel fully-connected layers, followed by our

BV and RCA modules. We used Bicon Loss as the loss function for all models.

For the models with deep supervision mechanisms such as [12, 26], we replaced

all of the fully-connected layers with our connectivity layer followed by BV and350

RCA. For the extra edge supervision flows in [12, 14], we only replaced their

edge labels with our connectivity-based edge labels generated by zero-one vector

searching as discussed in Section 3.4 for consistency.

Implementation Details. We used the released official codes of the back-

bones for training both the baselines and the BiconNets. For baselines, we355

trained all of them from scratch, strictly following the instructions on their web-

sites and the hyperparameter setting in their original papers. For the BiconNets,

we used the same data pre-processing tricks as the corresponding baselines. For

the hyperparameters, we only changed the starting learning rate (about 40% of

the baselines’) and the batch size for our BiconNets, as in Table 1. The rest360

of hyperparameters were the same as the baselines’. We implemented all our

experiments in Pytorch 1.4.0 [41] using an NVIDIA RTX 2080Ti GPU. The

code is available at: https://github.com/Zyun-Y/BiconNets.

Table 1: The starting learning rate and batch size of BiconNet with different backbones.

Backbone PoolNet CPD-R EGNet F3Net GCPANet ITSD MINet

Start Lr 2e−4 3.5e−5 2e−5 0.0018 0.01 0.005 0.0018

Batch Size 10 10 10 16 16 8 32

4.3. Comparison with State-of-the-art Methods

Quantitative Comparison. To compare our method and the baselines,365

we list all experiments and their results in Table 2. As the results show, the

absolute majority of our results (98/105) show better or the same performance

compared to the corresponding baselines. Our method also achieved most of

the best overall results (14/15) (marked with †). The results also indicate that

our model can make a uniform prediction on the salient regions and preserve370

spatial consistency of the input more effectively than the baseline.
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Table 2: Quantitative evaluation. seven methods were tested among five benchmark datasets.

The mean F-measure (Fave), mean absolute error (MAE), and E-measure (Em) were used to

evaluate the results. ↑ indicates that higher is better. We highlight the better result between

every baseline and its BiconNet in red. We denote the best result of a column with a †

superscript, the second best one with a ∗ superscript.

Model
HKU-IS DUT-TE DUT-OMRON PASCAL-S ECSSD

Fave ↑MAE↓ Em ↑ Fave ↑MAE↓ Em ↑ Fave ↑MAE↓ Em ↑ Fave ↑MAE↓ Em ↑ Fave ↑MAE ↓ Em ↑

PoolNet19 [21] 0.885 0.038 0.941 0.787 0.047 0.876 0.728 0.061 0.851 0.787 0.085 0.833 0.904 0.045 0.919

PoolNet + Bicon 0.909 0.034 0.950 0.826 0.042 0.902 0.759 0.057 0.866 0.812 0.072 0.853 0.916 0.040 0.925

CPD-R19 [40] 0.888 0.034 0.946 0.788 0.044 0.886 0.737 0.056 0.863 0.783 0.071 0.848 0.892 0.038 0.925

CPD-R + Bicon 0.905 0.034 0.952 0.806 0.044 0.895 0.750 0.056 0.867 0.794 0.069 0.857 0.898 0.039 0.925

EGNet19 [12] 0.900 0.031 0.952 0.804 0.038 0.894 0.750 0.053 0.867 0.794 0.073 0.847 0.905 0.037 0.927

EGNet + Bicon 0.917 0.031 0.954 0.842∗ 0.037∗ 0.912∗ 0.770 0.050† 0.868 0.821 0.067 0.863∗ 0.922 0.037 0.930†

F3Net20 [18] 0.914 0.031 0.953 0.828 0.039 0.896 0.749 0.055 0.853 0.830 0.062 0.857 0.924 0.037 0.926

F3Net + Bicon 0.915 0.029 0.954 0.835 0.038 0.899 0.765 0.051∗ 0.863 0.830 0.062∗ 0.855 0.927 0.034† 0.929∗

GCPANet20 [26] 0.896 0.032 0.950 0.812 0.038 0.892 0.743 0.056 0.856 0.812 0.063∗ 0.845 0.913 0.035 0.924

GCPANet + Bicon0.918∗ 0.032 0.954 0.834 0.040 0.901 0.762 0.055 0.863 0.838∗ 0.061† 0.858 0.929∗ 0.036 0.929∗

ITSD20 [14] 0.900 0.030 0.952 0.806 0.041 0.891 0.752 0.058 0.862 0.800 0.067 0.850 0.903 0.034† 0.925

ITSD + Bicon 0.908 0.029 0.952 0.838 0.038 0.905 0.774∗ 0.053 0.874∗ 0.831 0.064 0.857 0.920 0.035∗ 0.926

MINet20 [11] 0.916 0.026† 0.956∗ 0.838 0.035† 0.903 0.762 0.053 0.870 0.830 0.064 0.858 0.926 0.035∗ 0.924

MINet + Bicon 0.923† 0.028∗ 0.957† 0.856† 0.035† 0.915† 0.778† 0.051∗ 0.875† 0.846† 0.061† 0.868† 0.933† 0.036 0.929∗

Qualitative Evaluation. Representative examples of our qualitative anal-

yses are shown in Fig. 7. Compared to baselines, our model can predict sharper

boundaries and uniformly highlight salient regions in various challenging sce-

narios, including small objects (rows 4 and 7), complex background (rows 1, 3,375

9 and 10) and foreground (rows 2 and 11), multiple objects (rows 5, 8 and 10),

and interfering objects in the background (row 13).

4.4. Ablation Study

In this section, we study the effectiveness of different components of our

model. The experiments in this section were trained on the DUT-TR dataset380

and tested on DUT-OMRON and HKU-IS. For a fair comparison, all experi-

ments use GCPANet [26] as backbone. The overall ablation study results are

listed in Table 3.
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Figure 7: Visual comparisons of different models.

Connectivity modeling. We explore the role of the connectivity prediction

strategy using two experiments. First, we used the original GCPANet as our385

baseline, denoted as Base (Exp. 1). Then, we replaced its output layers with

8-channel connectivity prediction layers and used connectivity masks instead of

the saliency masks as our ground truth. We denote this connectivity version of

the baseline as Conn. For the loss function, we used the multi-channel BCE

loss Lconmap for the output Conn map C. This second experiment, denoted390

as Exp. 2 in Table 3, is very similar with ConnNet proposed in [20]. We

used channel averaging at testing to get the single-channel saliency maps for

evaluation. As seen in Table 3, the results did not improve compared to Exp.

1, which follows our key hypothesis that completely replacing saliency modeling

with connectivity modeling is not sufficient for modeling the saliency region.395

Bilateral voting mechanism. Next, we studied the proposed BV module,
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Table 3: Ablation study on HKU-IS and DUT-OMRON datasets.

Exp
Model HKU-IS DUT-OMRON

Base Conn Lconmap BV Lglobal bce
Ldecouple

(RCA)
Lcon const Fave ↑ MAE↓ Em ↑ Fave ↑ MAE↓ Em ↑

1
√

0.896 0.032 0.950 0.743 0.056 0.856

2
√ √

0.899 0.033 0.949 0.738 0.058 0.854

3
√ √ √ √

0.911 0.031 0.951 0.750 0.057 0.853

4
√ √ √ √

0.916 0.033 0.951 0.760 0.057 0.860

5
√ √ √ √

0.918 0.032 0.954 0.762 0.055 0.863

which is important both at training and testing phases. The BV module helps

the training in two ways: first, it provides an enhanced connectivity map C̃ for

the RCA module; second, in the connectivity consistency loss term, it generates

the input for Lbimap, which is a position-aware loss. To simplify the experiment400

and avoid interference, we tested only the first part in this subsection. Based on

Conn, we first conducted the bilateral voting on the output Conn map C and

got the Bicon map C̃. Then, we computed the global map S̃global by averaging

among channels of C̃. For the loss term, we calculated the BCE loss on both the

global map (Lglobal bce) and the Conn map (Lconmap). This process is shown405

as Exp. 3 of Table 3. As seen, inclusion of the BV module improved the Fave,

indicating that the BV module can enhance the spatial consistency of the output

predictions.

To test the effectiveness of the BV module at the testing phase, based on

Exp. 3, we tested the output both with and without the BV module. As seen410

in Table 4 and in Fig. 8, all three metrics have been improved after we applied

the BV module to the testing phase.

Table 4: Different testing methods based on Exp. 3.

Test Method
HKU-IS DUT-OMRON

Fave ↑ MAE↓ Em ↑ Fave ↑ MAE↓ Em ↑

Without BV 0.889 0.033 0.945 0.732 0.061 0.849

With BV 0.911 0.031 0.951 0.750 0.057 0.853
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Figure 8: Visualization of outputs at different stages of BiconNet. As representative examples,

for the Conn map C and Bicon map C̃, we show only the first channel. The predicted Bicon

map has much higher spatial coherence than the Conn map.

The edge decoupling mechanism. In this subsection, we study the pro-

posed edge decoupling mechanism, which is the key innovation of the RCA

module. Based on Exp. 3, we computed the edge-decoupled map S̃decouple from415

Bicon map C̃ via the RCA module and replaced the loss with Ldecouple and

Lconmap, respectively. This experiment is denoted as Exp. 4 in Table 3. As

seen, the Fave and Em values increased. This result shows that the RCA module

effectively utilized the extracted edge features.

The connectivity consistency loss. To test the effectiveness of the con-420

nectivity consistency loss, we replaced Lconmap with 0.8×Lconmap+0.2×Lbimap;

i.e., the Lcon const in Exp. 4. Thus, the total loss function for this experiment

is Lcon const +Ldecouple. For this complete BiconNet model with backbone GC-

PANet (Exp. 5 in Table 3), all three metrics improved, which demonstrates the

ability of the connectivity consistency loss to improve the results.425

Additionally, to illustrate the different effects of Lconmap and Lbimap in

Lcon const, we conducted another set of experiments based on Exp. 5, using

different weights for these two terms. The results are shown in Fig. 9, where

10 experiments are plotted with ω2 as the x-axis (ω1 = 1 − ω2). When we in-

troduced Lbimap and gradually increased its weight ω2 (from left to right), we430

observed that Fave and Em increased while MAE decreased at the beginning

(ω2 ≤ 0.2). Then, when Lbimap had a larger weight, the overall performance

decreased. The best performance was achieved at ω1 = 0.8, ω2 = 0.2. This

result is consistent with our assumption that there is a tradeoff between edge
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enhancement and background dilution when using Lbimap. We also visualized435

the two loss terms Lbimap and Lconmap in Fig. 10 to further demonstrate this

idea.

Figure 9: Training the network with different ω1 and ω2 on the (a) HKU-IS and (b) DUT-

OMRON datasets. The x-axis represents the value for ω2 (ω1 = 1−ω2). The best performance

was achieved at ω2 = 0.2 (dashed red line).

Figure 10: Comparison between Lbimap and Lconmap. Lbimap can generate much larger

loss on hard pixels such as the edges of different objects while generating smaller loss on

background pixels.

4.5. Model Size and Testing Speed

We list the model size and testing speed of our method in Table 5. To

make fair comparisons, we reported the frame per second (FPS) processing440

speed with images of size 320 × 320 pixels for all listed models. Since we only
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changed the output fully-connected (FC) layers of the backbones, the increase in

the parameters and testing time is directly related to the number of FC layers

in the backbones. Thus, for those models with deep supervision mechanisms

(multiple FC layers, such as GCPANet and EGNet), the increase is more than445

those using shallow supervisions. However, even for the deep supervised models,

the increase of model size is still insignificant and the computational cost of our

BiconNet is nearly identical to those of the baselines. Therefore, our method

is efficient and can improve existing frameworks with neglectable increase in

computational cost.450

Table 5: Comparison of model size and testing speed between BiconNet and the corresponding

baselines.

PoolNet CPD-R GCPANet F3Net EGNet ITSD MINet

Base Bicon Base Bicon Base Bicon Base Bicon Base Bicon Base Bicon Base Bicon

Number of

Parameters(M)
68.26 68.24 47.85 47.85 111.69 111.85 25.54 25.56 67.06 67.12 26.47 26.47 115.69 115.69

Testing Speed

(FPS)
49 49 55 53 38 34 64 63 60 53 47 44 45 43

4.6. Compatibility Analysis

In section 4.3, we showed that BiconNet is compatible with existing SOD

frameworks in their entirety. Here, we investigate the compatibility of BiconNet

with individual modules that have a similar function (i.e., enhancement of spatial

coherence and edge modeling), such as inter-pixel consistency/edge-aware loss455

functions and CRF.

4.6.1. With Pixel Relationship/Edge-Aware Loss Functions

As illustrative examples to show the compatibility of BiconNet with the

state-of-the-art loss functions, we considered two loss functions here: the Con-

sistency enhanced Loss (CEL) [11] (which can enhance the inter-pixel relation-460

ship) and Adaptive ConTour (ACT) [14] (which can improve the edge model-

ing). In each case, we compared the baselines and BiconNets with and without

the loss functions (Table 6). Again, the networks that included the BiconNet
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outperformed the baselines. We also note that the performance of ITSD didn’t

significantly improve when added with ACT, while the combination of ACT and465

BiconNet had a more pronounced positive impact on performance.

4.6.2. With CRF

CRF is a widely used post-processing method that can enhance the inter-

pixel relationship of the prediction and has been applied in SOD [15, 9, 16].

Using GCPANet as our baseline, we added a fully connected CRF at the end470

of both GCPANet and GCPANet + Bicon for testing (Table 7). The results of

GCPANet + CRF show that Fave and MAE both improved while Em decreased

compared to GCPANet.Similar results were observed in GCPANet + Bicon +

CRF. Nonetheless, GCPANet + Bicon + CRF outperformed GCPANet + CRF,

suggesting that BiconNet is compatible with CRF.475

When added to any model, CRF usually significantly increases the compu-

tational cost. However, the results show that our model (GCPANet + Bicon)

can achieve comparable results with GCPANet + CRF (the 2nd and 3rd rows

in Table 7) without significantly compromising speed.

Table 6: Compatibility analysis with different loss functions.

Model
DUT-TE DUT-OMRON

Fave ↑ MAE↓ Em ↑ Fave ↑ MAE↓ Em ↑

ITSD w/o ACT 0.805 0.041 0.898 0.750 0.059 0.862

+Bicon 0.830 0.041 0.902 0.763 0.059 0.865

ITSD w/ ACT 0.806 0.041 0.891 0.752 0.058 0.862

+Bicon 0.838 0.038 0.905 0.774 0.053 0.874

MINet w/o CEL 0.801 0.036 0.901 0.749 0.053 0.868

+Bicon 0.846 0.037 0.910 0.766 0.053 0.870

MINet w/ CEL 0.838 0.035 0.903 0.762 0.053 0.870

+Bicon 0.856 0.035 0.915 0.778 0.051 0.875
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Table 7: Compatibility and testing speed analysis with CRF.

Model
DUT-TE DUT-OMRON

Fave ↑ MAE↓ Em ↑ Fave ↑ MAE↓ Em ↑

GCPANet 0.896 0.032 0.950 0.743 0.056 0.856

GCPANet + Bicon 0.918 0.032 0.954 0.762 0.055 0.863

GCPANet + CRF 0.920 0.029 0.947 0.763 0.053 0.840

GCPANet + CRF + Bicon 0.928 0.029 0.950 0.775 0.051 0.856

5. Conclusion480

In this study, we examined the spatial inconsistency and blurred edge issues

of general salient object detection methods. To overcome these problems, we

proposed a connectivity-based approach called BiconNet. We first showed that

the connectivity mask is a more structure- and inter-pixel relation-aware label

than a single-channel saliency mask. To utilize this informative label, we pro-485

posed a BV module to enhance the spatial consistency of the output and an RCA

module to extract the edge features. Then, we trained the model with a novel

Bicon loss. Extensive experiments demonstrated the advantages of our method

over state-of-the-art algorithms. Finally, we demonstrated the efficiency of our

model as it can improve existing SOD frameworks with a neglectable increase490

in computational cost.

Although this work demonstrated significant advances in the field of SOD,

there are still properties of the connectivity mask worth exploiting in future

work. For example, a weakness of our approach is that we only considered the

inter-class connectivity for the single-class segmentation problem. When deal-495

ing with the multi-class segmentation task, our method is expected to further

benefit from modeling the intra-class relationship between connectivity masks.

We envision that our connectivity-based approach to the image segmentation

problem can be adopted by us and others in a wide range of applications, includ-

ing semantic segmentation, instance segmentation, and segmentation of medical500
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images.
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