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Abstract—Optical coherence tomography (OCT) has revo-
lutionized diagnosis and prognosis of ophthalmic diseases by
visualization and measurement of retinal layers. To speed up
quantitative analysis of disease biomarkers, an increasing number
of automatic segmentation algorithms have been proposed to
estimate the boundary locations of retinal layers. While the
performance of these algorithms has significantly improved in
recent years, a critical question to ask is how far we are from
a theoretical limit to OCT segmentation performance. In this
paper, we present the Cramèr-Rao lower bounds (CRLBs) for the
problem of OCT layer segmentation. In deriving the CRLBs, we
address the important problem of defining statistical models that
best represent the intensity distribution in each layer of the retina.
Additionally, we calculate the bounds under an optimal affine
bias, reflecting the use of prior knowledge in many segmentation
algorithms. Experiments using in vivo images of human retina
from a commercial spectral domain OCT system are presented,
showing potential for improvement of automated segmentation
accuracy. Our general mathematical model can be easily adapted
for virtually any OCT system. Further, the statistical models of
signal and noise developed in this paper can be utilized for future
improvements to OCT image denoising, reconstruction, and many
other applications.

I. INTRODUCTION

Optical coherence tomography (OCT) is a photonic imaging
technology developed in the early 1990s for 3-dimensional
imaging of reflectance [1]. OCT can be viewed as an optical
analogue to ultrasound, in that it rejects multiple-scattered
photons based on their arrival time. This is accomplished using
an interferometer and either a broadband or wavelength-swept
light source. OCT acquires a depth profile of reflectance, or A-
scan, at a single location and then laterally samples the region
of interest to produce a cross-sectional or volumetric image.
A-scans in a single plane are frequently grouped together
into 2-D images known as B-scans. Modern clinical OCT
systems acquire the entire A-scan simultaneously using a
technique called Fourier Domain OCT (FD-OCT). FD-OCT
can be performed either in the spectral domain (SD) using
a broadband source and a spectrometer, or using a spectrally
swept source (SS). OCT has been adapted for a variety of
applications including diagnosis and prognosis of cancer [2],
[3], cardiovascular diseases [4], [5], and neurodegenerative
diseases [6], [7].

The highest-impact application of OCT is the diagnosis of
ophthalmic diseases, including age-related macular degenera-
tion (AMD) [8], [9], diabetes [10]–[12], and glaucoma [13],
[14]. A critical task for retinal diagnostics is segmentation

of the retina into its anatomical layers, which correspond to
different functional regions. An OCT image of the retina with
expert manual segmentation is shown in Figure 1.

Fig. 1. Manually segmented 2-D OCT image (B-scan) of the retina, centered
on the fovea. The layers shown are the vitreous, the nerve fiber layer (NFL),
the ganglion cell layer (GCL) and inner plexiform layer (IPL) complex, the
inner nuclear layer (INL), the outer plexiform layer (OPL), the outer nuclear
layer (ONL) and photoreceptor inner segment (IS), the photoreceptor outer
segment (OS), the retinal pigment epithelium (RPE), and the choroid.

Manual segmentation of large OCT datasets requires signifi-
cant time and attention from expert graders. Therefore, several
techniques have been developed to automatically segment
the layers of retinal OCT images. These include boundary
tracking/dynamic programming (Djikstra’s algorithm) tech-
niques [15]–[17], pixel classification [18], active contours
[19], [20], graph search [8], [21], kernel regression [10], and
deep learning [22], [23]. These segmentation algorithms are
benchmarked against expert manual graders, the current gold
standard. While the performance of these algorithms has been
significantly improved in the recent years, a critical question
has not yet been addressed: “how far is OCT segmentation
performance from its theoretical limit?” The answer to this
question justifies further investment of time and financial
resources to gain further segmentation accuracy.

A popular tool for determining the theoretically achievable
accuracy of an estimator is the Cramèr-Rao Lower Bound
(CRLB). The CRLB has been extensively used to quantify the
performance limits of image processing tools such as image
denoising [24], registration [25], particle displacement [26],
frequency estimation [27], digital super-resolution [28], signal-
to-noise ratio (SNR) estimation [29], stellar photometry [30],
ballistic photon based object detection in scattering media
[31], and spectral peak estimation [32]. The CRLB has also
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been used previously to evaluate the performance of several
segmentation methods [33]–[36]. Two of these methods are of
particular interest for the segmentation of retinal OCT images:
determining the location of changes in a steplike signal [35]
and the more general problem of 2D image segmentation [36].

The work of [35] provides a useful point of reference,
because the layer boundaries in an OCT A-scan can be
modeled as steplike changes. However, this method does not
perfectly match the problem at hand, because the shape of
a steplike change in OCT comes from the convolution of
a step function with a system-specific point spread function
(PSF), usually modeled as a Gaussian [37]. This convolution
yields an error function-shaped curve, whereas [35] uses a
logistic curve. Moreover, [35] assumes an un ed estimator,
which does not reflect a priori models utilized in many modern
image segmentation algorithms. The work of [36] provides
an excellent general framework for fuzzy segmentation of
2D images and introduces an optimal affine bias model to
determine the CRLB for biased operators. However, as we
discuss below, the layered structure of the retina lends itself
better to non-fuzzy segmentation.

An additional critical shortcoming that precludes direct
application of the studies in [35] and [36] to OCT images
is their simplistic modeling of noise as uniform additive white
Gaussian (UAWG). While UAWG is a reasonable model for
some consumer electronic imaging applications, this is not an
accurate model of noise in OCT images. This is because at
least two processes, detection noise and speckle, affect OCT
images.

The detection noise results from many sources and has a
lower limit determined by shot noise (i.e. bandlimited quantum
noise). In FD-OCT, the detection noise can be approximated
as an additive circular complex Gaussian produced by the de-
tection process [37]. Speckle is an artifact of coherent imaging
processes; it is deterministic based on the interaction of light
with subvoxel features and is best modeled as multiplicative
noise [38]. Henceforth in this paper, we will refer to the value
of the observed signal (including noise) as intensity, in keeping
with standard image processing terminology. This intensity is
linearly proportional, but not equivalent, to the optical intensity
of the backscattered light.

Various probability density functions (PDFs) of the intensity
have been proposed to model speckle in OCT. The negative
exponential distribution [39]–[42] and the gamma distribution
[43]–[45] are among the more popular models. More recently,
the negative exponential distribution and the K distribution
have been compared for modeling OCT intensity in micro-
sphere phantoms and skin [46], [47]. However, there has not
been a full, comparative accounting of all the suggested distri-
butions on a commercially available OCT system, especially
for in vivo human retinal OCT images.

Multiple manuscripts in the literature have now specifically
used noise distributions for OCT denoising [41], [42]. Both
Ralston et al. [41] and Yin et al. [42] derive OCT denoising
methods by modeling the noise as Gaussian in the log domain.
However, the Gaussian distribution has not been empirically
and statistically validated in the retina. Indeed, we will show
below that it is possible to reject the Gaussian distribution with

statistical significance. Therefore, we hope to provide superior
and validated noise distributions both to calculate the CRLB
and so that other techniques may be improved.

Notably, none of these studies take into account the effect of
detection noise. Moreover, as the cellular composition varies
between different retinal layers, a single distribution might not
efficiently model the speckle pattern in each layer.

We note that a recent paper has attempted to statistically
model noise in retinal OCT images with Normal-Laplace
PDF, which is shown to have a lower chi-square error than
Gaussian [48]. However, neither distribution is a good fit to
their experimental data, as is evident in Fig. 4 of [48]. The
denoising technique described in [48] is an example of the
applications which we hope will benefit from using empirically
validated noise distributions.

The novelty of our paper is as follows: 1) we developed
physically derived and empirically validated layer-specific
statistical models of the intensity in retinal OCT images; 2)
using these models, we calculated the unbiased and biased
CRLB for estimating the layer boundary locations in retinal
OCT images. The impact of our paper goes beyond ophthalmic
OCT applications as our proposed approach is general and
can be adopted for modeling many other speckle dominated
imaging scenarios.

The rest of the paper is organized as follows: Section II
describes our calculation of the unbiased CRLB for OCT A-
Scans and the biased CRLB for OCT B-scans. Section III
describes our use of clinical OCT images to construct em-
pirical statistical models of intensity. The results of both
the modeling and the CRLB calculations are described in
Section IV. Finally, in Section V, we discuss the results in
context of the previous literature.

II. BOUNDARY SEGMENTATION CRLB FOR LAYERED
STRUCTURES

Given a noisy signal g[k;h] dependent on a parameter
vector h and position k, the CRLB states that the covariance
of an unbiased estimator of h is bounded by:

Cov
[
ĥ
]
≥ J−1, (1)

where J is the Fisher information matrix. The elements of J
are given by

Jij =
∑
k

E

[
−∂

2 ln(p(g[k;h], k))

∂hi ∂hj

]
, (2)

where E[] is the expected value operator, p(g[k;h], k) is the
probability of observing the intensity g[k;h] at position k and
hi and hj are the ith and jth elements of h [49].

A. Calculation of Unbiased CRLB at Layer Boundaries in
Single A-scan

In this section, we define our signal model for OCT A-scans.
Then, based on that signal model, we derive a expression
for the unbiased CRLB of a single-layer boundary position
estimate. Taking into account both additive detection noise



0278-0062 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2017.2772963, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XXX, NO. XXX, SEPTEMBER 2017 3

wadd[k;h] and speckle wsp[k;h], the observed intensity of an
OCT A-scan can be modeled as

g[k;h] = s[k;h]wsp[k;h] + wadd[k;h]

= s0

(
|PSF(k/fs)| ⊗R

(
k

2fs
;h

))
wsp[k;h]+

wadd[k;h], (3)

where s[k;h] is the noiseless intensity at depth pixel number k,
fs is the axial spatial sampling frequency such that the optical
depth is k/fs, s0 is a constant factor related to the system
configuration, PSF(k/fs) is the OCT axial PSF, R(k/fs;h)
is the depth reflectivity profile of the sample, and ⊗ is the
convolution operator [37].

Each g[k;h] is a random variable with PDF p(g[k;h])
determined by s[k;h] and the PDFs of the additive and
multiplicative noise processes. We rewrite this noise as purely
additive to enhance mathematical tractability. This is accom-
plished by expressing g[k;h] as a fixed mean intensity ḡ[k;h]
plus a random noise variable w[k;h] with a zero expected
value (ZEV) PDF q(w[k;h]) = p(w[k;h] + ḡ[k;h], k).

To apply the CRLB to OCT segmentation, we first consider
a model dependent only on a single parameter, the position
of the ith layer boundary zi. We model the noiseless signal
in a single A-scan near the ith boundary as a Heaviside step
function H(x) at position zi convolved with a Gaussian OCT
PSF [37]:

si[k; zi] = A log10

[(
Ii + (Ii+1 − Ii)H

(
k

fs
− zi

))
⊗

1√
2πσPSF

exp

(
− (k/fs)

2

2σ2
PSF

)]
(4)

= A log10

1

2

[
Ii

(
1 + erfc

(
k/fs − zi√

2σPSF

))]
+

A log10

1

2

[
Ii+1

(
erf

(
k/fs − zi√

2σPSF

))]
, (5)

where A is a system-dependent scaling factor, Ii and Ii+1

are the average intensities of the layers above and below the
boundary, σPSF is the standard deviation of the axial PSF,
erf() is the error function, and erfc() is the complementary
error function. Additionally, because most OCT images are
viewed in the log domain to enhance the visibility of dimmer
layers [50], we carry out these calculations in the log domain.

We make two physically and anatomically rational assump-
tions about noise in retinal layers. First, we note that the
cellular and sub-cellular structures in each layer differ in shape
and size. Thus, each layer has unique speckle characteristics
and the noise is not stationary for the whole image. Moreover,
because of optical blurring, the noise smoothly transitions from
one layer’s noise PDF to the other. Therefore, we treat the
noise PDF near the ith layer boundary wi[k; zi] as

wi[k; zi] = ni[k]
1

2

(
1 + erfc

(
k/fs − zi√

2σPSF

))
+

ni+1[k]
1

2

(
erf

(
k/fs − zi√

2σPSF

))
, (6)

where ni and ni+1 are the noise in layer i and i + 1,
respectively, and each ni is drawn from a ZEV PDF qi(ni).

The observed signal near the ith layer boundary gi[k; zi] is
therefore:

gi[k; zi] = A log10

[
Ii +

Ii+1 − Ii
2

erf

(
k/fs − zi√

2σPSF

)]
+

ni[k]
1

2

(
1 + erf

(
k/fs − zi√

2σPSF

))
+

ni+1[k]
1

2

(
erfc

(
k/fs − zi√

2σPSF

))
. (7)

The PDF of gi[k; zi] is then:

p(gi[k; zi]) =
1

2

(
1 + erf

(
k/fs − zi√

2σPSF

))
qi(g[k]− s[k; zi])+

1

2
erfc

(
k/fs − zi√

2σPSF

)
qi+1(g[k]− s[k; zi]). (8)

To calculate the CRLB, we use the scalar version of Eq. (2)
for a single variable h [49]:

Jh =
∑
k

E

[(
∂ ln(p(gi[k]))

∂h

)2
]
. (9)

We then calculate the Fisher Information for each layer
boundary:

Jzi =
∑
k

E

[(
∂ ln(p(gi[k], k))

∂zi

)2
]

=
∑
k

∫ ∞
wi[k]=−∞

1

p(gi[k], k)2

[
e−(k/fs−zi)

2/σ2
PSF

√
2πσPSF

(−qi(wi[k]) + qi+1(wi[k]))

1

2

∂si[k; zi]

∂zi

([
1 + erf

(
k/fs − zi√

2σPSF

)]
q′i(wi[k])−

erfc

(
k/fs − zi√

2σPSF

)
q′i+1(wi[k])

)]2
dwi, (10)

where q′i(ni) = ∂
∂ni

qi(ni). For many non-Gaussian noise
distributions, the above integral cannot be evaluated analyt-
ically. In such cases, we numerically calculated the integral in
Mathematica.

B. Biased CRLBs for Segmentation of B-scans

Most OCT layer segmentation algorithms achieve improved
performance by utilizing a priori information and thus are
categorized as biased estimators. These include the popular
assumption that the layer boundaries are smooth, which can
be exploited by analyzing a whole B-scan rather than an
individual A-scan [15], [16], [51]. Biased estimators can lead
to improved performance, defined as reduced mean square
error (MSE) [52]. Thus, to further broaden the applicability
of our bounds, we extend our CRLB findings to the case of
biased estimators.

Our approach follows Peng and Varshney’s [36] use of an
optimal affine bias model to determine the CRLB for a biased
fuzzy segmentation estimator. The optimal affine bias CRLB
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puts a bound on the covariance of a biased estimate ĥ of a
parameter vector h. If the bias ψψψ = E[ĥ] − h is affine, i.e.
ψψψ = Kh + u, then it can be shown that the covariance of ĥ
is bounded by [36]

Cov
[
ĥ
]
≥ CRLBBiased =

J−1 − J−1(J−1 + Cov [h])−1J−1. (11)

We justify the use of an affine bias model for a whole B-scan in
Appendix A. When segmenting a whole B-scan, the parameter
vector h contains all eight layer boundary locations in each
constitutent A-scan. Consequently, the diagonal elements of
J−1 are the unbiased CRLBs for each layer boundary, repeated
for every A-scan. The diagonal of CRLBBiased gives the
lower bound on the variance of the layer boundary positions
across the B-scan. We average the bound across the B-
scan for each boundary to obtain an average bound for a
biased estimator, which is a useful comparison to the position-
independent bound for an unbiased estimator.

We estimate Cov [h] using the same set of expert segmented
B-scans used for generating the empirical distributions (see
Section III-A ). We use a statistical bootstrapping technique
as per Peng and Varshney [36] to generate more accurate
estimates of the covariance. Starting with 100 B-scans as
sample data, we picked 100 B-scans with replacement and
calculated the covariance of the boundary locations between
the B-scans. We repeated this procedure 100 times and aver-
aged the covariance matrices from each set of generated data
to give an accurate estimate of the true covariance matrix of
boundary positions in B-scans.

III. EMPIRICAL MODEL OF OCT INTENSITY

In this section, we describe our method to construct an
empirical, layer-specific model of the signal and noise in
retinal OCT images. First, we discuss the acquisition and
segmentation of the data. Then, we discuss the data processing
performed to generate accurate representations of intensity
across the entire population. Next, we discuss the different
distributions and parameter selection process for modeling the
retinal layers. Finally, we discuss how to choose the best model
and estimate the mean intensity and ZEV noise PDF for each
layer. The steps of this process are shown in Figure 2.

A. Collection and Processing of OCT Data

While our technique to obtain layer-specific intensity mod-
els is general, for this study we utilized an SD-OCT system
from Bioptigen Inc. (Research Triangle Park, NC). We chose
this system because it is commercially available, performs
minimal image processing, and offers ready access to raw data.

We acquired volumetric scans (6.7 x 6.7 mm) from 10
normal adult subjects under an IRB approved protocol. The
Bioptigen SD-OCT system had a Gaussian axial PSF with a
full-width at half-maximum (FWHM) resolution of 4.6 µm
(in tissue), an axial pixel sample spacing of 3.23 µm, and a
total axial depth range of 3.3 mm. The illumination from the
SD-OCT had a central wavelength of 830 nm with a FWHM
bandwidth of 50 nm. The volumetric scans had lateral and

azimuthal pixel sampling spacings of 6.7 µm and 67 µm
(1000 A-scans scans per B-scan, 100 B-scans per volume),
respectively [15]. Each B-scan was cropped laterally to the
central 800 A-scans, for a final image size of 800 x 1024. The
intensity of each voxel in the volume was represented by a
16-bit integer normalized from 0 to 255.

A grader semi-automatically segmented 10 evenly spaced
B-scans from each subject by using DOCTRAP software [9].
In some layers, blood vessels and specular reflections led to
intensity distortions above and below the vessel. Therefore, a
separate grader manually removed A-scans containing large
vessels or specular reflections. We excluded these A-scans
from the subsequent analysis. An example of an excluded
vessel is shown in the green box of Figure 3.

Additionally, particularly bright images can yield autocor-
relation artifacts in OCT images [37]. The result of this is a
ghost image of the retina with a prominent peak corresponding
to the autocorrelation between the NFL and the RPE, at a
depth determined by the difference between the RPE and NFL
depths. Manual examination of the OCT images indicated that
the autocorrelation artifact only occupies the top 0.55 mm
of the 3.3 mm-deep scan. In most OCT images, the OCT
photographer attempts to ensure that the NFL does not overlap
with the autocorrelation artifact. Therefore, to represent the
typical OCT image, we ignored any pixels in the top 0.55
mm of the B-scans. An example of an autocorrelation artifact
is shown in the red box of Figure 3.

B. Normalization of B-scans

Differences in beam placement, ocular or corneal clarity, or
other factors may change the recorded intensity from the layers
of the retina by a constant multiplicative factor between B-
scans from a single subject, as well as between subjects. Addi-
tionally, different amounts of absorption or scattering in OCT
images can lead to a secondary, layer-specific multiplicative
factor. In the log domain, this appears as a constant increase
or decrease of all pixel intensities in a particular B-scan or
layer, as illustrated schematically in Figure 4.

To compensate for this imaging artifact, we calculated the
average intensity of each layer across all B-scans. We then
added a constant value to the same layer region of each
B-scan so that its average intensity value is equal to the
global average intensity for that layer. As shown in Figure 4,
this procedure results in a different gray-scale range for
each post-normalization layer. Therefore, when considering
the combined intensity histograms of multiple layers (see Sec-
tion III-C), we ignored post-normalization gray-scale values
that were not within the range of all other layers.

C. Generation of OCT Intensity Histograms

For each B-scan, we utilized the segmented retinal layer
boundaries to isolate individual layers. First, we isolated each
layer, defined as all pixels at or between the segmented bound-
aries. Then, to minimize the effect of possible segmentation
errors, we excluded pixels in a 3 pixel-wide region next to the
borders, as shown in Figure 5. Noting that the choroid lower
boundary is not visible in all B-scans, we set it at 13 pixels
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Fig. 2. Schematic indicating the process by which we construct empirical, layer-specific intensity models.

Fig. 3. Raw OCT B-scan showing a retinal ghost/autocorrelation artifact (red
box) and intensity distortions from blood vessels (green box).

Fig. 4. Schematic diagram of B-scan intensity normalization and range
exclusion. The diagram shows the histograms of two layers before and
after normalization (top and bottom, respectively). Before normalization,
the histograms have the same shape and range but are separated; after
normalization, the histograms overlap but the ranges have shifted. The range
used in analysis is the intersection of all ranges, denoted in black; the ranges
excluded from analysis are denoted in grey.

below the RPE/choroid segmentation line. Since the vitreous
has no upper boundary, we represented it as the region 10 to
20 pixels above the vitreous/NFL segmentation line.

We then created a histogram from the intensity values for
each layer in each B-scan with one gray-scale value wide
bins. Finally, we added the histograms for each layer from

Fig. 5. Diagram of the boundaries used for each layer. The data for each layer
is taken from between the lines with colors corresponding to that layer in the
legend. These lines are calculated from segmentation lines with an offset to
account for possible segmentation inaccuracies.

all B-scans across all subjects to produce global layer-specific
histograms.

D. Mathematical Modeling of Intensity Histograms

We considered three categories of mathematical models
to represent the probability distribution of the intensity his-
tograms: distributions based on theoretical models of speckle
and additive noise in OCT images, mixture models based on
the theoretical distributions, and Gaussian related distributions.

1) Theoretical Models: In this section, based on first
principles, we derive progressively more complex models of
noise. In Section IV, we will experimentally evaluate the
practical suitability of these complex models versus their more
simplistic counter parts for representing OCT signal intensity.

First, we consider the speckle in OCT images. Although in
principle speckle is a deterministic process, it is best modeled
using stochastic tools because it is the result of the coherent
addition of myriad sub-voxel scatterers. The intensity of a
single, fully-developed speckle pattern Isp has a negative
exponential distribution [38]:

pNegExp(Isp|σS) =
1

σS
exp

(
−Isp
σS

)
, (12)

where σS is the expected value of the distribution. If the
layer varies such that σS is distributed according to a Gamma
distribution with shape parameter α and expected value µ, the
intensity for the whole layer will have a special form of the
K distribution [47] with PDF:

pSpec−K(Isp|α, µ) =

2

Γ(α)
I
α−1
2

sp

(
α

µ

)α+1
2

Kα−1(2
√
Ispα/µ), (13)
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where Kα(x) is the modified Bessel function of the second
kind with order α. The presence of different polarizations,
frequencies, and scatter angles can lead to multiple uncorre-
lated speckle realizations being added incoherently in the OCT
images. We note that if m uncorrelated speckle patterns are
present, the PDF is a full K distribution with PDF:

pK(Isp|α, µ,m) =

2

Γ(α)Γ(m)
I
α+m−2

2
sp

(
αm

µ

)α+m
2

Kα−m(2
√
Ispmα/µ). (14)

Second, we account for the additive noise. The additive
noise takes the form of a complex Gaussian added to a
deterministic phasor with intensity Isp [37]. The PDF of the
signal’s intensity is therefore a modified Rice distribution:

pModRice(I;σR, Isp) =

1

σR
exp

(
−I + Isp

σR

)
I0

(
2
√
I Isp

σR

)
, (15)

where σR is a scale parameter and I0(x) is the modified
Bessel function of the first kind with order zero [37]. Because
we model Isp as a random variable, the PDF of the total
intensity I will be a compound distribution between the
modified Rice distribution pModRice(I|σR, Isp) and the PDF
of the multiplicative speckle noise psp(Isp):

p(I) =

∫ ∞
Isp=0

pModRice(I|σR, Isp)psp(Isp) dIsp. (16)

If psp(Isp) is a negative exponential distribution, p(I) is
also a negative exponential distribution with scale parameter
σC = σS + σR. If psp(Isp) is a K distribution (either the
special case or full K distribution), the compound distribution
integral cannot be evaluated analytically and must be examined
with numerical methods as described in Section III-E. Due to
computational complexity the only compound method that we
could feasibly evaluate was the special K-Rice compound.

2) Mixture Models: In addition to the purely theoretical
distributions, we considered the biologically plausible case
that there are two well-defined populations of voxel intensities
within a layer (e.g. two dominant types of cellular substruc-
tures). To account for these cases, we used a mixture of two
negative exponential distributions with PDF:

p(I|B, σS1, σS2) =

B pNegExp(I|σS1) + (1−B) pNegExp(I|σS2), (17)

where B is the proportionality constant. Similarly, the PDF
for a mixture of two special-case K distributions is:

p(I|B,α1, α2, µ1, µ2) =

B pSpec−K(I|α1, µ1) + (1−B) pSpec−K(I|α2, µ2), (18)

and finally, the PDF for a mixture of two full K distributions
is:

p(I|B,α1, α2, µ1, µ2,m1,m2) =

B pK(I|α1, µ1,m1) + (1−B) pK(I|α2, µ2,m2). (19)

3) Gaussian-Related Models: We also considered two mod-
els related to the Gaussian noise because of its explicit or
implicit prevalence in the OCT literature. First of these models
is the lognormal distribution, used in papers that assume the
log domain OCT images are corrupted by Gaussian noise [53],
[54]. The PDF of the lognormal distribution is:

pLN (I|σ, µ) =
1

I
√

2πσ
exp

(
− (ln I − µ)2

2σ2

)
, (20)

where µ is the location parameter and σ is the scale parameter.
Second, we considered multiplicative Gaussian noise, which

assumes a truncated Gaussian distribution in the linear, rather
than log, domain. Note that the multiplicative noise cannot
take negative values and therefore the Gaussian distribution
must be truncated at 0. The resulting normalized PDF is:

pTG(I|σ, µ) =

1(
1− Φ

(
−µσ
))√

2πσ
exp

(
− (I − µ)2

2σ2

)
, (21)

where µ is the location parameter, σ is the scale parameter,
and Φ(z) is the cumulative distribution function (CDF) of the
standard normal distribution.

E. Signal Modeling and Parameter Estimation

Because OCT images are commonly viewed in the log
domain to enhance visibility of the dimmer layers [50], we
transform each of the above distributions to the log domain.
The log domain intensity of a pixel with intensity I is
IL = A log10(I), where A is a deterministic scaling factor
determined by the OCT system’s software. Therefore, the log
domain PDF, given linear domain PDF P (I), is given by the
chain rule:

pL(IL) = p
(

10IL/A
)
× d 10IL/A

dIL
. (22)

For all distributions except the Rice-K compound, we de-
termined the best parameter values by fitting the log domain
distributions to the data based on a weighted nonlinear least
squares criterion. We used a two-step procedure for parameter
estimation. In the first step, we gave the data at bin k with
count number M [k] weight 1/M [k], as per [55]. The fit of the
jth distribution to the ith layer’s data with these weights was
aij [k], our initial estimate. This estimate might be affected
by the over-emphasis of the bins with fewer counts [56].
Therefore, following [56], we refit the distribution giving the
data at bin k weight 1/aij [k]. The fit of the jth distribution
to the ith layer’s data with these new weights was bij [k], our
second and final estimate.

We calculated the goodness of fit for each model using
Pearson’s χ2 test, which provides a quantitative p-value. First,
we calculated the test statistic:

χ2
ij =

∑
k,bij [k]≥1

(bij [k]−M [k])2

max(bij [k], 1)
. (23)

We then calculated a p-value from the χ2
ij value:

pij =

∫ χ2
ij

x=0

χ2(x,Nbins − dj − 1)dx, (24)
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where χ2(x, ν) is the PDF of the χ2 distribution with ν
degrees of freedom (DOF) at value x, Nbins is the number
of bins where bij [k] ≥ 1 and the gray-scale ranges of all B-
scans overlap, and dj is the number of parameters in the jth
distribution.

The Rice-special K compound distribution cannot be evalu-
ated analytically and thus we numerically calculated the PDF
at every point in a 200 x 200 x 200 grid in parameter space, for
parameters α, µ, and σR. For every Rice-special K PDF/layer
combination, we then calculated a χ2 test statistic as above.
For each layer, we examined the 100 PDFs with the lowest χ2s
and calculated the mean τ and range ρ of the corresponding
parameters. We then performed a refined search for each layer
on a 100 x 100 x 100 point grid, where each parameter spanned
the range τ ± max(ρ, τ × 0.02)/2. Again, we calculated the
χ2 test statistics. We considered the distribution with minimum
χ2 to be the best Rice-special K compound distribution for a
given layer.

To determine the best distribution to use for each layer, we
calculated the Aikake Information Criterion (AIC) value for
each distribution/layer combination. The AIC value is given
by

AIC = 2 ∗ d− 2 ∗ L, (25)

where L is the log-likelihood value of the data given the dis-
tribution and d is the number of parameters of the distribution
[57]. In this case, we approximated each the counts in each
bin as an independent Poisson process and calculated the log-
likelihood L of the model f [k] on the data M [k] as:

L(M [k]|f [k]) =
∑
k

log

(
f [k]M [k] exp(−f [k])

M [k]!

)
. (26)

For each layer, we chose the model with the lowest AIC
value. This is the most parsimonious model, i.e. the model
that describes the data best without overfitting [57]. We then
used the chosen intensity distribution p̂i(I) to calculate an
expected value,

Ii =

∫ ∞
I=−∞

I p̂i(I) dI, (27)

and a ZEV noise distribution,

qi(w) = p̂i(w + Ii). (28)

IV. RESULTS

A. Empirical Model

We used the AIC model selection process as discussed
in Section III-E to attain the most parsimonious distribution
representing each retinal layer intensity. The AIC values are
shown in Table I. The summary of resulting AIC-chosen inten-
sity distributions and parameters for each layer are shown in
Table II. Among the nine models considered for representing
retinal layers, three K-family models were found to be most
suitable for our data: the full K mixture model for the vitreous,
GCL-IPL, INL, OPL, ONL-IS, and OS; the special case K
mixture model for the NFL, and Choroid; and the special case

K model for RPE. Each of the chosen models has a χ2 p-
value of at least 0.34, indicating that these models should
not be rejected on the basis of goodness of fit. The intensity
distributions of each layer from our experimental data are
plotted along with the best theoretical models in Figure 6.
For each layer based on the corresponding best model, we
calculated the average intensity Ii and ZEV noise distributions
qi(n) shown in Figure 7.

Fig. 6. Experimental PDFs (black dots) compared to the proposed best
theoretical model PDFs (red line) for each layer. The data for the experimental
PDFs comes from intensity-normalized data.

Fig. 7. Expected value (left) and ZEV additive noise PDFs (right) derived
from the chosen intensity distributions for each of the nine retinal layers.

B. CRLBs for Layer Boundary Locations

Following the methodology of Section II, we calculated
unbiased and biased CRLBs for each of the eight retinal
boundary positions. The unbiased

√
CRLB estimator for the

boundary location in a single A-scan is shown by the hatched
bars of Figure 8.

We compared the unbiased
√

CRLBs to the optical
axial resolution of the Bioptigen OCT system, defined as
the standard deviation of the axial PSF. We also tested
the performance of a state-of-the-art deep learning based
OCT layer segmentation algorithm [23] and the publicly
available OCTExplorer software (downloaded at: https:
//www.iibi.uiowa.edu/content/iowa-reference-algorithms-
human-and-murine-oct-retinal-layer-analysis-and-display)
[58]–[60], on this dataset and compared their results with
the manually corrected segmentations. The layer-specific
RMS error values for the Deep Learning and OCTExplorer,
respectively, are as follows: Vitreous/NFL: 2.41 µm and 3.39
µm; NFL/GCL-IPL: 7.16 µm and 6.47 µm; GCL-IPL/INL:

https://www.iibi.uiowa.edu/content/iowa-reference-algorithms-human-and-murine-oct-retinal-layer-analysis-and-display
https://www.iibi.uiowa.edu/content/iowa-reference-algorithms-human-and-murine-oct-retinal-layer-analysis-and-display
https://www.iibi.uiowa.edu/content/iowa-reference-algorithms-human-and-murine-oct-retinal-layer-analysis-and-display
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5.21 µm and 5.38 µm; INL/OPL: 5.05 µm and 5.29 µm;
OPL/ONL-IS: 4.36 µm and 7.86 µm; ONL-IS/OS: 2.46 µm
and 2.93 µm; OS/RPE: 3.23 µm and 4.92 µm; RPE/Choroid:
4.96 µm and 4.45 µm.

The biased
√

CRLB minimum covariance matrix for the 8
boundary positions at 800 A-scan positions in each B-scan is
shown in Figure 9, and the position-dependent

√
CRLBs are

shown in Figure 10. For the sake of comparison, we also show
the biased

√
CRLBs averaged across the 800 A-scans in each

B-scan as the solid bars Figure 8.

V. DISCUSSION

The empirical K distribution family based models of the
intensity in each layer of the retina derived in this work are
logical extensions to existing knowledge about the structure of
the eye and the nature of speckle and detection noise. Note that
the the special K distribution used was previously suggested
for modeling OCT intensity [47]. However, we showed that the
special K distribution used by [47] is only the best model for
one out of the nine layers studied in this work. The other layers
all conformed better to two other K distribution mixtures,
indicating that the complex nature of retinal tissue cannot be
fully described with a single distribution. Additionally, six of
the layers conformed best to the non-special K distribution
mixture, which has two more parameters than the special K
distribution mixture. This may indicate additional complexity
in the layer structure or inter-subject variance.

Although R2 is popular for evaluating goodness of fit [46],
[47], it is not quantitatively meaningful for nonlinear models
such as these [61]. Therefore, we used the χ2 goodness of

Fig. 8. CRLBs for the locations of layer boundaries in the unbiased single
A-scan case (hatched) and laterally averaged biased single B-scan case (solid).
For the sake of comparison, the dashed horizontal line indicates the accuracy
of automatic retinal layer segmentation algorithms for normal subjects. The
optical resolution of the OCT system is indicated by the dotted line.

fit metric and its corresponding p-value, which gives a true
quantitative metric for goodness of fit.

The results of the unbiased CRLB are intuitive
√

CRLBs.
The bounds are on the order of microns; the higher-contrast
layers (for example, Vitreous/NFL) have bounds lower than
the resolution of the system (as defined by the FWHM of the
PSF), and the lower-contrast layers have bounds of less than
two times the resolution.

The biased
√

CRLBs follow the same trend but were
markedly smaller. The smallest averaged biased bound, at 0.06

TABLE I
TABLE INDICATING AIC VALUES OF EACH DISTRIBUTION/LAYER COMBINATION. A SMALLER AIC VALUE INDICATES A MORE PARSIMONIOUS MODEL.

Layer Neg. Exp. Neg. Exp. Mix. Spec. K Spec. K Mix. K K Mix Gaussian Lognormal Rice-K

Equation Reference 12 17 13 18 14 19 20 21 16

Vitreous 2152 1669 1807 1579 1798 1578 68423 5148 1875
NFL 16315 2061 1856 1844 1858 1848 45295 28505 11420
GCL-IPL 31621 3230 3900 1972 3484 1964 91303 39925 9109
INL 5894 1805 2246 1634 2148 1634 43465 9808 2966
OPL 4164 1662 1663 1532 1625 1531 17457 5857 1885
ONL-IS 21416 2726 4871 1908 4405 1889 82173 43559 9470
OS 62798 2749 3790 1692 3429 1685 7149 24294 5508
RPE 1801 1453 1453 1458 1452 1459 9164 3980 1675
Choroid 5898 1679 1683 1603 1653 1607 18631 8322 3338

TABLE II
PER-LAYER DISTRIBUTIONS AND PARAMETERS FOR THE EMPIRICAL MODEL. EACH DISTRIBUTION WAS CHOSEN BY AN AIC SELECTION PROCESS. THE

HIGH χ2 P-VALUES INDICATE THAT THE FITS SHOULD NOT BE REJECTED.

Layer Distribution Name B µ1 µ2 α1 α2 m1 m2 χ2 p-Value

Vitreous Spec. K Mix. 0.999215 96.58 509.9 50 31.66 – – 0.9945
NFL Spec. K Mix. 0.86722 5974.7 4004.1 3.149 49.998 – – 0.68358
GCL-IPL Full K Mix. 0.062305 1676.5 677.32 1.8277 8.3798 1.8313 1.0009 0.6193
INL Spec. K Mix. 0.9296 300 564.85 22.254 2.7856 – – 0.97519
OPL Full K Mix 0.12893 809.09 615.85 1.3218 9.3597 1.3283 1.0317 0.67172
ONL-IS Full K Mix. 0.87569 193.9 228.85 14.084 1.0442 1.0855 1.0425 0.81396
OS Full K Mix. 0.66416 9887.9 3328.1 1.0645 1.9204 1.0704 1.7793 0.6062
RPE Full K – 11747 – 6.7792 – 1.014 – 0.77231
Choroid Spec. K Mix. 0.70409 1613.8 2854.7 9.6091 5.799 – – 0.68537
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Fig. 9. Position-dependent lower bounds on the covariance of each layer’s
location. The axes are arranged so that the first 800 pixels correspond to the
Vitreous/NFL boundary at positions 1–800, the second 800 pixels correspond
to the NFL/GCL-IPL boundary at positions 1–800, and so on.

Fig. 10. Position-dependent
√
CRLBs for a biased estimator of each layer

boundary’s location at each A-scan of a B-scan.

µm, was far below subcellular resolution. The largest biased
averaged bound, at 0.14 µm, was still quite small and over an
order of magnitude below the resolution of the system. This
can be attributed to the smoothness of the retinal surfaces;
the retina’s shape is so highly correlated that many A-scans
effectively act as independent measurements for adjacent A-
scans. The averaged biased bounds are also more than order
of magnitude smaller than the the accuracy of the published
segmentation techniques as per Section IV-B. This indicates
that there is potential to improve the performance of retinal
layer segmentation algorithms.

An exciting novel development in retinal layer segmentation
is the utilization of deep learning based algorithms [22], [23].
While it is hard to model the prior learned in these black-box
algorithms, smoothness discussed in this paper is expected to
be their major component. Note that no deep learning paper to
date has provided a significantly more accurate segmentation
of normal tissue than classic segmentation techniques. The
utility of deep learning methods has been mainly on improving
the performance of diseased eyes in segmenting hard to
segment features, at an accuracy similar to normal tissue. Of
course, the method for CRLB estimation presented in this

paper is general and the prior utilized in this work can be
easily replaced by alternate priors, including those learned via
deep learning. Future studies on this topic are warranted to
better characterize the limits on segmentation accuracy of deep
learning techniques.

The position-dependent biased bounds are space variant.
The bounds are larger at the edges of the image due to
two sources. First, OCT images are blurrier at the edges,
leading to increased variance in manual segmentation [62].
Second, fewer A-scans surround each individual A-scan in the
image boundaries and thus negatively affecting the utility of
smoothness prior.

We constructed the covariance data for our biased CRLBs
from the manual segmentation of expert graders. Although
manual segmentation is the gold standard, it is not perfect due
to the noise and limited resolution of OCT images. The results
of the biased CRLB must therefore be regarded as the lower
bound of algorithmic segmentation against this particular set
of human graders, not against the true anatomical structure
of the retina. Indeed, it is practically impossible to discuss
the theoretical bounds on all different OCT machines, retinal
diseases, or alternative manual segmentation results in one
paper. However, since the proposed methodology is general,
one can attain bounds for different imaging scenarios by
simply replacing the test dataset.

Noting that in diseased eyes layer boundary delineation is
often less clear than the normal tissue, we expect that the
lower bounds derived here for normal tissue to be valid for
some (but not all) diseased tissues. To achieve tighter (and
less optimistic) bounds, we are also pursuing the modeling
and segmentation bounds of non-healthy retinas. This requires
new datasets and segmentations, but with those segmentations
completed, diseased tissue of the retina can be effectively
modeled with the approach outlined in this manuscript. To ease
adaptation of the proposed method to diseased eyes, we have
released the source code of our paper so that the readers can in-
corporate our findings with alternative datasets. We have made
the open-source code for our paper freely available online at
http://people.duke.edu/∼sf59/Dubose TMI 2018.htm to allow
other researchers to test and modify the algorithm for their
specific applications and dataset.

In conclusion, we present retina layer-specific statistical
intensity models of the OCT images and biased and unbiased
CRLBs for segmentation of those layers. The intensity in
the OCT images was best modeled by the K distribution
family. For our dataset, the unbiased

√
CRLBs were on the

order of microns, and the biased
√

CRLBs were on the
order of hundreds of microns. These results suggest that there
may be room to improve the accuracy of OCT segmentation
techniques. In our future work, we will extend our work to
include diseased retina, other OCT imaging systems and 3-D
segmentation algorithms.

APPENDIX A
JUSTIFICATION OF THE AFFINE BIAS MODEL

As stated in Section II-B, we used an affine model to
approximate the bias introduced by segmentation algorithms.

http://people.duke.edu/~sf59/Dubose_TMI_2018.htm
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In this appendix, we justify the optimum affine bias model for
layer segmentation and demonstrate empirically how it accu-
rately reflects the bias of most layer segmentation algorithms
towards a smooth layer boundary.

Each B-scan is composed of A-scans of the form g[k] =
s[k] + w[k], where s[k] is the true signal value and w[k] is a
noise value. If we consider each boundary separately as in
[15], a signal model for a single boundary in a single A-
scan is a Heaviside step function at true boundary locations z
convolved with a Gaussian as per Section II. The derivative
of this signal is a Gaussian centered at the boundary location.
A reasonable unbiased estimator for the boundary locations
ẑ in the A-scan can thus be expressed as the centroid of the
derivative of the A-scan:

ẑ = CDg[k], (29)

where C is a centroiding matrix and D is the derivative matrix.
Given several adjacent A-scans, we can produce a biased
estimate ẑ′ by a weighted averaging with the estimates of N
adjacent A-scans

ẑ′ = Wẑ, (30)

where W is a weighting matrix that might take into account,
for example, distance and radiometric similarity of the noisy
A-scans. The expected value of the estimate ẑ′ is

E[ẑ′] = E [Wẑ] = E [WCDg[k]] = E [WCD(s[k] + w[k])]

= E [WCDs[k]] + E [WCDw[k]]

= Wz + E [WCDw[k]] . (31)

The bias is then

ψψψ = E[ẑ′]− z = Wz + E [WCDw[k]]− z

= (W − I)z + E [WCDw[k]] , (32)

which conforms to the bias model ψψψ = Kh + u.
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