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  Abstract—We present a novel general-purpose compression method for 

tomographic images, termed 3D adaptive sparse representation based 

compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for 

the compression of ophthalmic 3D optical coherence tomography (OCT) images. 

The 3D-ASRC algorithm exploits correlations among adjacent OCT images to 

improve compression performance, yet is sensitive to preserving their differences. 

Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the 

quality of the compressed images are often better than the raw images they are 

based on. Experiments on clinical-grade retinal OCT images demonstrate the 

superiority of the proposed 3D-ASRC over other well-known compression 

methods.  
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I.  INTRODUCTION 

Optical coherence tomography (OCT) is a non-invasive, 3D volumetric imaging 

modality which has been widely used for many medical imaging applications [1], 

especially in the field of diagnostic ophthalmology [1, 2]. To improve clinical analysis, 

ophthalmologists often need large field-of-view and high spatial resolution OCT 

images. However, storage and transmission of such high spatial and temporal 

resolution OCT data consumes a vast amount of memory and communication 

bandwidth, which exceeds the limits of current clinical data archiving systems, and 

creates a heavy burden for remote consultation and diagnosis. For example, video 

recording of a relatively short 20 minute retinal peeling procedure using the first 

generation 20,000 A-scans/second microscope-integrated spectral domain (SD) OCT 

system [3], which has a 40MB/second bitstream, requires over 40 GB of memory 

storage. Recent advances in OCT hardware design, especially in swept source (SS) 

OCT technology, has increased the image acquisition speed to hundreds of thousands 

[4] or even millions of A-scans [5] per second. The newest generation of SSOCT 

systems, which enables video-rate 3D visualization of biological data, produces an 

avalanche of data at a rate of over 2G Bytes/second, escalating the information 

storage and transfer problem [6]. Therefore, development of efficient image 

compression strategies is the key to managing such large amounts of data. 

  Most modern compression methods are based on transform coding, which first 

projects the input image into another domain and then encodes the transformed 

coefficients. Perhaps the most well-known compression method is the joint 



photographic experts group (JPEG) [7], which adopts the discrete cosine transform 

(DCT) [8]. JPEG compression scheme is simple, but does not perform well at low bit 

rates. A more recent popular compression method, JPEG 2000, is based on the 

discrete wavelet transform (DWT) [9], which can better compress natural images [10]. 

Very recently, Mousavi et al. compared the performance of the JPEG and JPEG 2000 

compression methods for OCT images [11]. However, the JPEG and JPEG 2000 are 

only designed for 2-D single-band images and do not take advantage of the 

correlations among neighboring slices in a typical 3D OCT volume. For 3D video or 

medical images, several other DWT based compression methods are proposed [12-17]. 

These methods utilize motion compensation [14] or volume of interest coding [15, 16] 

to exploit the relations among the slices in the 3D volume.  

  The DCT and DWT transforms utilized in the above methods are built on fixed 

mathematical models [18]. While these fixed models are suitable for general purpose 

compression applications, they have limited adaptability to specific classes of images 

such as retinal OCT volumes and thus result in suboptimal compression. Alternatively, 

inspired by the sparse coding mechanism of the mammalian vision system [19], 

sparse representation with a learned dictionary has been demonstrated to be a very 

powerful tool for many image processing and computer vision applications [20-28]. In 

[29-32], sparse representation has been utilized for compressing single-band 2D 

images, outperforming DCT/DWT techniques. These methods first decompose the 

input signal as a linear combination of a few atoms from an over-complete dictionary 

consisting of basis functions. Such a dictionary is learned from a large number of 



training samples and thus can be more adaptive for representing the input signal. The 

positions and values of the obtained sparse coefficients are then encoded for storage 

and transmission. Note that as in DCT/DWT based compression methods, there is no 

need to transfer the dictionary, as it can be stored offline on sender/receiver sites.  

  In this paper, we strive to further improve the performance of current sparse 

representation based methodologies for compressing OCT images. In common 3D 

OCT volumes, nearby slices have very similar content. Thus, methodologies that 

apply the above sparse representation-based compression methods to each slice 

independently are suboptimal as they do not exploit correlations of nearby slices. To 

utilize the high correlations while still considering the differences in nearby slices, we 

propose the 3D adaptive sparse representation based compression (3D-ASRC) method. 

The 3D-ASRC method adaptively obtains the sparse coefficients required to represent 

a volumetric scan and encodes the positions and values of the non-zero coefficients.  

  The remainder of this paper is organized as follows. Section II briefly reviews the 

sparse representation based compression for 2D images. In Section III, we introduce 

the proposed 3D-ASRC method for the compression of 3D OCT images. Section IV 

presents the experimental results on clinical data. Conclusions and suggestions for 

future works are given in Section V.  

II. BACKGROUND: SPARSE REPRESENTATION BASED 2D IMAGE COMPRESSION 

  Given a 2D image of size N×M, most sparse representation based compression 

methods [29-32] preprocess the input image by breaking it into ϒnon-overlapping 

patches , 1,2,..., ,n m

i i×∈ = ϒX ℝ and .n N m M< <  Here, i  indexes a particular patch 



with respect to the lateral and axial position of its center in a 2D image. The gray level 

content is further normalized by subtracting the mean of iX  from each patch. We 

denote the vector representation of each resulting patch as 1q

i

×∈x ℝ ( q n m= × ), 

obtained by lexicographic ordering. The sparse representation model suggests that 

each patch 
ix  can be approximated as a weighted linear combination of a few basic 

elements called atoms, chosen from a basis function dictionary ( ,q z×∈D ℝ )q z< . 

This dictionary consists of z atoms { }
1

z

j j=
d , 

 ,i i=x Dα                             (1) 

where 
1z

i

×∈α ℝ  is the sparse coefficients vector [33]. The sparse vector iα  can be 

obtained by solving the following optimization problem, 

2

0 2
ˆ arg min subject to ,

i

i i i i ε= − ≤
α

α α x Dα               (2) 

where 
0iα  stands for the 0ℓ -norm, that counts the number of non-zero coefficients 

in the iα . ( )2
q Cε σ=  is the error tolerance, q  is the dimension of the test patch, 

C is a constant, and σ  is the standard deviation of noise in the input patch 
ix  that 

can be estimated by the technique described in [34]. In (2), there are two fundamental 

considerations: 1) how to design the dictionary D to best represent 
ix ; 2) how to 

optimize (2) to obtain the sparse coefficient vector iα . 

  To address the first problem, machine learning algorithms such as the K-SVD [35] 

and recursive least squares dictionary learning algorithm (RLS-DLA) [31] are widely 

utilized to design the dictionary D from a large number of training images with 

relevant content [29-32]. To address the second problem, which is nondeterministic 

polynomial-time hard (NP-hard) [36], previous methods often utilize the orthogonal 



matching pursuit (OMP) algorithm [37] to obtain an approximate solution [29-32]. 

The OMP algorithm aims to select one atom that can best describe 
ix  per iteration 

based on the correlations between the atoms in D and the projection residual 
ir , 

where i i i= −r x Dα . Specifically, we first assume that the initial atoms set J is an 

empty set φ  and the residual i i=r x . Then, the OMP algorithm is implemented 

iteratively in the following steps:  

1) Compute the correlation 1z×∈E ℝ  between residual and dictionary atoms: 

.T

i=E D r                             (3) 

2) Select a new atom ĵ  based on E : 

ˆ max , 1,..., .jj j z= =E                      (4)    

3) Merge the newly selected atom ĵ  with the previously selected atom set J : 

ˆ.j=J J∪                             (5) 

4) Update the sparse coefficient iα  by projecting 
ix  on J

D  according to： 

( ) 1

ˆ ,T T

i i

−
= J J Jα D D D x                        (6) 

where J
D  denotes the sub-dictionary constructed using the selected atoms in J .  

5) If 
2

2i i ε− ≤x Dα , stop the procedure and output the final sparse coefficient ˆ
iα . 

Otherwise, return to the step 1) for the next iteration.  

  The OMP algorithm ensures that iα  is very sparse 
0i zα ≪ which means that 

only a very small number of coefficients in iα  are nonzero. Then, the compression 

of each patch ix  can be achieved by preserving the positions and values of the 

nonzero coefficients in iα  and the mean of ix .  

III. 3D-ASRC FRAMEWORK FOR VOLUMETRIC OCT COMPRESSION  



  OCT utilizes the flying-spot scanning technique to laterally sample the target (e.g. 

retina), which can create a 3D volume (of size N×M×Z). To compress the 3D OCT 

volume, one simple way is to adopt 2D based sparse compression methods [29-32] to 

handle each slice (B-scan) independently. However, the 2D scheme cannot exploit the 

high correlations among nearby slices. Note that in common clinical scanning 

protocols, neighboring OCT slices possess very similar content in many regions, as 

can be observed in Fig. 1(b). However, those same nearby slices can also exhibit 

localized differences (see the areas labeled with the red rectangles in Fig. 1(b)).  

 

 

Fig. 1. Widely used clinical OCT scan patterns densely sample the field-of-view, so as 

to not miss small abnormalities, and thus result in highly correlated neighboring 

B-scans. (a) Summed-voxel projection [38] en face SDOCT image of a 

non-neovascular age-related macular degeneration (AMD) patient from the 

Age-Related Eye Disease Study 2 (AREDS2) Ancillary SDOCT (A2A SDOCT) [39]. 

(b) Three B-scans acquired from adjacent positions. The red rectangular regions are 

zoomed in to better demonstrate the differences between these neighboring scans. 

 



  Therefore, we propose the 3D-ASRC algorithm for the compression of 3D OCT 

images, which can utilize the high correlations while still considering the differences 

of nearby slices. The proposed 3D-ASRC method is composed of three main parts: a) 

3D adaptive sparse representation; b) 3D adaptive encoding; c) decoding and 

reconstruction, which will be described in the following subsections. The outline of 

the proposed 3D-ASRC algorithm is illustrated in Fig. 2. 

 

Fig.2. Outline of the proposed 3D-ASRC algorithm. 

A. 3D Adaptive Sparse Representation 

  We divide a volume of OCT B-scans into several groups, each with T nearby slices 

according to the similarities among them [40]. Similar to the 2D sparse compression 

schemes [29-32], each slice in an OCT volume is partitioned into many 

non-overlapping patches and the mean of each patch is subtracted from them. We 

define nearby patches as a set of patches centered around the patch 
1

ix  from slices in 



the same group as { }
1

T
t

i t=
x , where t  denotes a particular B-scan in that group. 

Similar to the 2D case, the parameter i  in { }
1

T
t

i t=
x  indexes patches that are centered 

at the same lateral and axial positions in each of the T azimuthally distanced 2D 

nearby slices. By rewriting equation (2), the sparse coefficient vectors { }
1

T
t

i t=
α  of the 

nearby patches { }
1

T
t

i t=
x  can be obtained from optimizing: 

  { }
{ }

2

0 21
1 1,...,

ˆ arg min subject to
t
i

T
T

t t t t

i i i it
t t T

ε
=

= ∈

= − ≤∑ ∑
α

α α x Dα           (7) 

To solve (7), we propose an offline structural dictionary learning strategy from a 

training dataset and an online 3D adaptive sparse decomposition algorithm for 

obtaining the sparse coefficients vectors. As described in [41], solving (7) has the 

denoising effect, which is based on the sparsity based denoising scheme. Specifically, 

such a sparsity scheme assumes that the dictionary D  is pre-learned from a set of 

images (or patches) with negligible noise content. Then, while the true signal (e.g. 

containing only anatomically relevant information) can be accurately represented by a 

very low number of combinations of the atoms selected from the dictionary, the noise 

cannot be represented with a limited number of dictionary atoms. Then, if the sparse 

coefficients ˆ t
iα  (corresponding to the selected dictionary atoms) for an input noisy 

patch 
t

ix  are obtained, we can reconstruct the corresponding noiseless patch estimate 

ˆ t
ix  by multiplying dictionary D with the sparse coefficients ˆ t

iα . 

1) Structural Dictionary Construction  

  We learn the appropriate overcomplete dictionary of basis functions from a set of 

high-quality training data. Since raw OCT images are often very noisy [42], to attain 

high signal-to-noise (SNR) images, we capture, register, and average repeated 



low-SNR B-scans from spatially very close positions [23]. Note that unlike test data, 

which is captured in clinical settings, training data is only captured once from 

volunteers and can utilize lengthier (albeit limited by the ANSI standard for maximum 

permissible exposure to a light beam) scan patterns than the faster clinical scan 

protocols. Also, dictionary construction is an offline (one-time) process and does not 

add to the computational cost of compressing clinical images. 

  The conventional K-SVD algorithm [35] learns one universal dictionary from a 

large number of training patches. Typical clinical OCT images may contain many 

complex structures (e.g. retinal OCT scans show different layers and pathologies such 

as cysts [43]) and thus one universal dictionary D  might not be optimal for 

representing these varied structures. Therefore, following our previous works in [20, 

21], we learn H sets of structural sub-dictionaries { }structural , 1,...,q n

h h H×∈ =D ℝ , each 

designed to represent one specific type of structure. This is achieved by first adopting 

the k-means approach to divide the training patches into H  clusters. For each cluster 

h , one sub-dictionary 
structural

hD  is learned by the K-SVD algorithm [35] and one 

centroid q

h ∈c ℝ  patch is also obtained by the k-means approach.  

  2) 3D Adaptive Sparse Decomposition 

  Our sparse compression algorithm is designed to exploit similarities in neighboring 

slices of clinical OCT scans, as illustrated in Fig. 1(b). To achieve this, in the first step 

we search for the structural sub-dictionary that is most suitable to represent each test 

patch ( t

ix ). We use the Euclidian distance between the patch and the sub-dictionary 

centroid hc  for selecting the appropriate sub-dictionary 
structural

ˆt
ih

D :  



 
2

2

ˆ arg min , 1,..., , and 1,..., .
t
i

t t

i h i
h

h t T h H= − = =c x            (8) 

  In the second step, we find the set of sparse coefficients corresponding to such 

sub-dictionaries to best represent a set of nearby patches{ }
1

T
t

i t=
x . Indeed, it would have 

been optimal if we could utilize a single sub-dictionary for each set of nearby patches. 

However, such an approach results in low-quality reconstruction of poorly correlated 

nearby patches in the receiver side. This is because the nearby slices might still have 

large localized differences (see the areas labeled with the red rectangles in Fig. 1(b)) 

and so one sub-dictionary designed for one kind of structure cannot effectively 

account for these differences. To address this issue, we utilize index { }
1

ˆ
T

t

i
t

h
=

to define 

two classes of nearby patches: “similar” and “different”. In a similar set of patches (

{ }sim, 1

T
t

i t=
x ), all patches correspond to the same sub-dictionary, while in a different set 

of patches { }dif , 1

T
t

i t=
x , each patch may correspond to different sub-dictionaries.  

  The “similar” nearby patches are highly compressible as they can be jointly 

represented by the same atoms from the commonly selected sub-dictionary
structural

ˆcom
ih

D . 

This is achieved by invoking the row-sparsity condition [44] in the sparse coefficients 

matrix 
1

sim, sim, sim,,..., T

i i i
 =  A α α : 

{ }sim,

2
structural

ˆsim, sim, sim, sim,ˆ row,0 2
1,...,

ˆ argmin subject to ,com
i

i

t t

i i i ih
t T

ε
∈

= − ≤∑
A

A A x D α       (9) 

where 
row,0
i  stands for the joint sparse norm [44, 45], which is used to select a 

small number of most representative non-zero rows in sim,iA . We utilize a variant of 

the OMP algorithm called simultaneous OMP (SOMP) [44] to solve this problem. In 

sim,
ˆ

iA , while the values of the nonzero coefficients in different sparse vectors 



1

sim, sim,,...,
T

i iα α  might be different, their positions are the same, a property which we 

will exploit in the next subsection for enhanced compression.  

  A simple trick that can help us further reduce the total number of nonzero 

coefficients needed to represent a similar set of patches is to estimate the variance of 

the sparse vectors { }sim, 1
ˆ

T
t

i t=
α . If the variance of the sparse vectors in a set is below a 

threshold, we denote this set as “very similar” and then fuse the corresponding sparse 

vectors into one vector vs,iα . Otherwise, we denote them as “not very similar” 

{ }nvs, 1

T
t

i t=
α and keep all the coefficients: 

{ } { }( )
{ } { } { }( )

s, sim, sim,1 1

nvs, sim, sim,1 1 1

mean , if variance

,

, if variance

T T
t t

v i i it t

T T T
t t t

i i it t t

b

b

ε

ε

= =

= = =

 = ≤

 = >


α α α

α α α

i

i

        (10) 

where b is a constant and the mean is the operation to compute the mean of the 

{ }vs, 1

T
t

i t=
α . 

  The “different” nearby patches { }dif , 1

T
t

i t=
x are independently decomposed on the 

sub-dictionaries 
structral

ˆt
ih

D  that can best fit each of them, which amounts to the 

problem:  

{ }
{ }dif

2
structural

ˆdif , dif , dif , dif ,01 2
1 1,...,

ˆ arg min subject to .t
t i

T
T

t t t t

i i i iht
t t T

ε
=

= ∈

= − ≤∑ ∑
α

α α x D α     (11) 

We solve this problem by applying the OMP algorithm [37] separately on each patch. 

Note that the positions and values of the nonzero coefficients in { }dif, 1
ˆ

T
t

i t=
α  might be 

varied for reflecting the differences among the nearby patches{ }dif , 1

T
t

i t=
x . The proposed 

3D sparse representation algorithm is summarized in Fig. 3. 

3D Adaptive Sparse Representation 

Input: Offline: 1
,...,

U
x x training patches extracted from the less noisy training images; 

Online: 1,..., T

i ix x  nearby patches extracted from the position i of the nearby slices. 



A) Offline Structural Dictionary Construction:  

1: Cluster the training patches 1
,...,

U
x x  into H groups using the k-means approach. 

2: For each cluster, compute one centroid hc  and learn one structural sub-dictionary structural

hD .  

B) Online 3D Adaptive Sparse Decomposition:  

1: Select the fitted sub-dictionaries 
structural

ˆt
ih

D  for the nearby patches 1,..., T

i ix x  in Eq. (8).  

2: Based on the selected sub-dictionaries, divide the nearby patches into two groups: Similar and 

Different. 

3: If nearby patches are similar, obtain their sparse vectors { }sim, 1
ˆ

T
t

i t=
α  by jointly decomposing 

nearby patches on the same atoms from the commonly selected sub-dictionary in Eq. (9). 

4: Further divide the sparse vectors { }sim, 1
ˆ

T
t

i t=
α into two groups: very similar s,v iα  and not very 

similar { }nvs, 1
ˆ

T
t

i t=
α  in Eq. (10).  

5: If nearby patches are different, obtain their sparse vectors { }dif , 1
ˆ

T
t

i t=
α  by separately 

decomposing nearby patches on different sub-dictionaries in Eq. (11). 

Output: { }dif , 1
ˆ

T
t

i t=
α  if the nearby patches are different; { }nvs, 1

ˆ
T

t

i t=
α  if the nearby slices are not 

very similar; s,v iα  if the nearby patches are very similar. 

Fig. 3. 3D adaptive sparse representation algorithm.  

B. 3D Adaptive Encoding 

  To encode the positions and values of the nonzero coefficients representing a set of 

nearby patches, we first quantize the sparse vectors using a uniform quantizer [31]. 

Then, we utilize an adaptive strategy to preserve the positions and values of the 

nonzero coefficients as follows: 

1) For the “very similar” nearby patches, both the positions and values of the 

nonzero coefficients are the same and these sparse vectors are already fused 

into one vector s,v iα . Thus, only one sequence is required to store the position 

information and one sequence is used to preserve the value information, as 

shown in Fig. 4(a). 

2) For the “not very similar” nearby patches, the positions of the nonzero 

coefficients in { }nvs, 1

T
t

i t=
α are the same while their values are different. Thus, 

only one sequence is needed to store the position information while another T 



sequences are employed to preserve the value information, as shown in Fig. 4 

(b).  

3) For the “different” nearby patches the positions and values of the nonzero 

coefficients in { }dif, 1
ˆ

T
t

i t=
α  are different. Thus, the position information is 

preserved using T different sequences, while the value information is stored 

with other T different sequences, as shown in Fig. 4 (c). 

 

We label the three classes (“Very similar”, “Not very similar”, and “Different”) of 

nearby slices as 0, 1, and 2, respectively. These class types are stored in one sequence. 

In addition, the means { }
1

T
t

i t
m

=
 of nearby patches { }

1

T
t

i t=
x  are quantized and put into 

T different sequences. Furthermore, indexes { }
1

T
t

i t
h

=
of the selected sub-dictionaries 

for nearby patches are stored with another T sequences. Finally, we apply Huffman 

coding [46] on the above sequences to create a one bit stream.  

 

Fig. 4. 3D adaptive encoding for the three classes of the nearby sparse vectors (a) 

Very similar; (b) Not very similar; (c) Different. Note that the color blocks in the 



sparse vectors denote the nonzero coefficients. Different colors represent different 

values.  

C. Decoding and Image Reconstruction 

  At the decoding site, given the compressed bit stream, we first extract the mean

{ }
1

T
t

i t
m

=
, sparse vectors { }

1

T
t

i t=
α , and indexes { }

1

T
t

i t
h

=
of the selected sub-dictionaries 

for each set of nearby patches. Then, a set of nearby patches { }
1

T
t

i t=
x  are 

reconstructed by a simple linear operation,  

structural , 1,..., .t
i

t t t

i i ih
m t T= + =x D α                   (12) 

Subsequently, each patch ˆ st

ix  (where st denotes a specific patch) is further enhanced 

by weighted averaging of the nearby patches: 
,

1

ˆ ˆs s

T
t t t t

i i i

t

w
=

= ∑x x , where 
, st t

iw [20] is 

estimated as:  

( )2

2,

ˆ ˆexp
.

Norm

s

s

tt

i i
t t

i

h
w

− −
=

x x

                    (13) 

In (13), Norm is defined as ( )2

2
1

ˆ ˆexp s

T
tt

i i

t

h
=

− −∑ x x  and h is a predefined scalar. 

Finally, we recover each B-scan by combining its reconstructed patches in a 

raster-scan order.  

IV. EXPERIMENTAL RESULTS 

  To validate the effectiveness of the proposed 3D-ASRC algorithm, we compared its 

performance with those of four well-known compression approaches: JPEG 2000, 

MPEG-4, SPIHT [47], K-SVD [29], and three variants of the proposed algorithm: 

SRC-Dif, 2D-ASRC, 3D-ASRC-WA. We emulated the JPEG 2000 method with 

“imwrite” function in the Matlab 2012a [48] and the MPEG-4 method with the 



“export” function in QuickTime Player Pro 7.0 software [49]. We implemented the 

SPIHT method with the Matlab code downloaded from [50]. For the K-SVD method, 

we first learn only one dictionary from a large number of training patches off-line and 

then use this dictionary for the compression as detailed in [29]. For the SRC-Dif 

method, we utilize the “different-patch” based sparse representation and encoding 

scheme for compression. Note that, in final reconstruction stage, the 3D weighted 

averaging technique utilized in the proposed 3D-ASRC method is also applied to the 

SRC-Dif method. For the 2D-ASRC method, instead of using the temporal nearby 

patches among the nearby slices, we denoted a number of spatial nearby patches 

within one slice as the nearby patches. Then, we utilized the adaptive sparse 

representation algorithm for the compression of the spatial nearby patches. For the 

3D-ASRC-WA method, we do not use the 3D weighted averaging technique for the 

final reconstruction, compared to the 3D-ASRC method.  

A. Data Sets 

  In our experiments, we first used volumetric scans of human retinas from 26 

different subjects with and without non-neovascular AMD, imaged by an 840-nm 

wavelength SDOCT system from Bioptigen, Inc. (Durham, NC, USA) with an axial 

resolution of ~4.5 µm per pixel in tissue. This dataset is part of the A2A SDOCT 

clinical trial [39], which was already utilized in our previous works for denoising and 

interpolation of SDOCT images [20, 23], and is freely available online1. Each patient 

was imaged twice. The first scan was a 6.6×6.6 mm2 volume with 100 B-scans and 

                                                        
1Data sets were downloaded at:  

http://people.duke.edu/~sf59/Fang_TMI_2013.htm. 



1000 A-scans including the fovea. The second scan was centered at the fovea with 40 

azimuthally repeated B-scans each with 1000 A-scans spanning 6.6 mm. Since these 

SDOCT images were very noisy, we first registered the second set of B-scans with the 

StackReg image registration plug-in [51] in ImageJ and then averaged them to create 

a less noisy image of the fovea. The averaged image for each dataset was then used as 

the reference image to compute quantitative metrics of image quality. From these 26 

datasets, we randomly selected 16 subjects to test the performance of the proposed 

method while the remaining datasets from the other 10 subjects were used to train the 

dictionary and set algorithmic parameters. The subjects and the related datasets used 

in the dictionary training phase were strictly separated from those used in the testing 

phase. Following the work in [20], we chose to train our images based on the B-scans 

from the foveal area, since they contain more diverse structures as compared to more 

peripheral scans. In the 16 human datasets, the average percentage of patches labeled 

as “similar” in the proposed 3D-ASRC method is 83.4%. 

  In addition, we also performed our experiments on a mouse dataset acquired by a 

different SDOCT system, (Bioptigen Envisu R2200), with ~ 2μm axial resolution in 

tissue. The acquired volume was centered at the optic nerve with 100 B-scans and 

1000 A-scans. For compressing the mouse dataset, we used the same algorithmic 

parameters and dictionaries learned from the human retina, to demonstrate the 

robustness of this algorithm for compressing images from different imaging scenarios. 

In the mouse dataset, the percentage of the patches labeled as “similar” in the 

proposed 3D-ASRC method is 81.2%.  



  For both mouse and human data, each A-scan included 1024 pixels. In most retinal 

SDOCT images, the relevant anatomical information is only present in a fraction of 

the imaged space. Thus, we cropped all A-scans to 360 pixels for human data and to 

370 pixels for mouse data, which corresponded to the most relevant anatomic data. 

All images shown in Figs. 5-8 are of size 360×1000 while images in Fig. 9, 10 are of 

size 370×1000. All quantitative comparisons for both the human and mouse data are 

based on slightly larger cropped images of size 450× 1000, to exclude the smooth 

dark areas below the choroid or in the vitreous. 

B. Algorithm Parameters 

  Based on our experiments on training data, we empirically selected the parameters 

for the proposed 3D-ASRC algorithm. Since most of the meaningful structures (e.g., 

different layers) in retinal OCT images are horizontally oriented, we chose the patch 

size in each slice to be a rectangle of size 6×12 pixels (height×width). The number 

of nearby slices T was set to 5 (corresponding to ~300 microns azimuthal distance). In 

retinal imaging, slices from farther distances may have significant differences and 

thus adding them might actually reduce compression efficiency. In the dictionary 

training stage, the value of cluster H was chosen to be 10. In each cluster, the size of 

the trained dictionary was set to 72×500. Using a larger cluster number and 

dictionary size might enhance the effectiveness of the compression, but also result in 

the higher computational cost. The parameter b in (10) was set to 0.001. The above 

parameters were kept unchanged for all the test images to demonstrate the robustness 

of the algorithm to these empirically selected parameters. To control the compression 



ratio in different experiments, we tuned the parameter C in the error tolerance ε  of 

(9) and (11) (e.g. the larger the value of C, the higher the compression ratio). 

Naturally, as the information content of different images varies, to achieve the exact 

same compression ratio the parameter C should be slightly changed for different 

datasets. For the test datasets in our experiments, the mean and standard deviation of 

parameter C for the compression ratios=[10, 15, 20, 25, 30, 35, 40] were [1.00, 1.07, 

1.12, 1.15, 1.17, 1.19, 1.21], and [0.053, 0.054, 0.052, 0.055, 0.055, 0.057, 0.059 ], 

respectively. The parameters for the JPEG 2000 and MPEG-4 were set to the default 

values in the Matlab [48] and QuickTime Player Pro 7.0 software [49], respectively. 

For the K-SVD algorithm, the patch size was set to 6×12 and the trained dictionary 

was of size 72×500, which were similar to what was used for our 3D-ASRC method. 

For the 2D-ASRC method, the number of spatial nearby patches was selected to 9 and 

the other parameters were set to the same values as in our 3D-ASRC method.  

C. Quantitative Metrics 

  We adopted the peak signal-to-noise-ratio (PSNR) and feature similarity index 

measure (FSIM) [52] to evaluate the performances of the compression methods. The 

PSNR and FSIM calculations require a high-quality reference image. Since our 

experiments are based on real data (not simulation), we used the registered and 

averaged images obtained from the azimuthally repeated scans as the reference image. 

We registered the reference image and reconstructed images using the StackReg 

technique [51] to significantly reduce the motion between them.  

D. Experiments on Human Retinal SDOCT Images 



  We tested the JPEG 2000, MPEG-4, SPIHT [47], K-SVD [29], SRC-Dif, 

2D-ASRC, 3D-ASRC-WA, and 3D-ASRC methods on seven different compression 

ratios ranging from 10 to 40. Figs. 5-7 show qualitative comparisons of reconstructed 

results from the tested methods using the compression ratios of 10, 25, and 40, 

respectively. Since boundaries between retinal layers and drusen contain meaningful 

anatomic and pathologic information [53], we magnified one boundary area and one 

dursen area in each figure. As can be observed in Fig. 5, results from JPEG 2000, 

K-SVD, and MPEG-4 methods appear very noisy with indistinct boundaries for many 

important structural details (see the zoomed boundary areas of both the dataset 1 and 

2). The SPIHT method greatly suppresses noise, but increases blur and introduces 

visible artifacts (see the zoomed drusen and boundary areas of both the dataset 1 and 

2). Compared to the above methods, the proposed 2D-SDL, SRC-Dif, 2D-ASRC, 

3D-ASRC-WA methods deliver comparatively better structural details, but still shows 

some noise artifacts. By contrast, the proposed 3D-ASRC method achieves noticeably 

improved noise suppression, and preserves meaningful anatomical structures, even at 

very high compression rates, as illustrated in Fig. 6 and Fig. 7.  

  The proposed 3D-ASRC method has improved performance over the SRC-Dif 

method mainly because the joint sparse solution (for equation (9)) utilized in the 

proposed 3D-ASRC method can exploit correlations among nearby patches that are 

similar, and is more robust to noise interferences. Specifically, the key for the sparse 

solution is the selection of optimal dictionary atoms for the representation of input 

patches, which can be negatively affected by heavy noise. The SRC-Dif method is 



more prone to noise artifacts because each patch separately selects its suitable atom 

without consideration of possible correlations among nearby patches. In contrast, the 

proposed 3D-ASRC method exploits correlations among nearby patches, as the 

nearby patches can jointly select their common atoms. Jointly exploiting correlations 

among similar patches to select the atoms is similar to the idea of the majority voting 

method [54]. That is, if the decisions of several patches are jointly considered, the 

final decision is usually more robust to external disturbances and thus the jointly 

selected atom is expected to be better than each of the separately selected atoms. 

Therefore, the reconstructed visual results of the proposed 3D-ASRC method present 

less noise and artifacts than those of the SRC-Dif method. This observation is in line 

with other recent works [23, 55, 56] that have also demonstrated that exploiting 

correlations among similar patches can achieve better representation and thus leads to 

improved performance in other image restoration applications. In addition, in cases of 

high compression ratios (e.g. 40), some meaningful structures in the visual results of 

the SRC-Dif method are more blurred than those of the 3D-ASRC method (see the 

zoomed drusen and layer boundary areas of Dataset 2 in Fig. 7). The improved image 

quality for such high compression ratio conditions is mainly due to efficient reduction 

of storage for sparse coefficients in the proposed 3D adaptive representation and 

encoding scheme. Thus, compared with the SRC-Dif method, under the same 

compression ratio, the proposed 3D-ASRC method can use more sparse coefficients 

(corresponding to meaningful dictionary atoms) to better reconstruct the structures in 

the original OCT image. 



   Fig. 8 illustrates visual comparisons of reconstructed images of the MPEG-4 and 

the proposed 3D-ASRC methods under seven different compression ratios. As can be 

observed, the proposed 3D-ASRC method can generally preserve retinal layer 

structures and boundaries for different compression ratios. In contrast, under low 

compression ratios (e.g. 10 and 15), the results using the MPEG-4 method appear very 

noisy, while some meaningful structures are over-smoothed for higher compression 

ratios (e.g. from 25 to 40).   

   Quantitative comparisons (PSNR and FSIM) of all the test methods at different 

compression ratios are reported in Tables I. Note that we can only compute the PSNR 

and FSIM for the one noiseless image (from the fovea) in each dataset. As can be seen 

in Table I, the proposed 3D-ASRC method consistently delivered better PSNR and 

FSIM results than the other methods. At higher compression rates, the PSNR and 

FSIM results of all the methods generally first improved and then became stable, or 

even decreased. This is because input images are noisy and the inherent smoothing of 

the compression methods reduces the noise level and thus improves PSNR. 

  Also, we report the average (over 16 human retinal datasets) running time of the 

proposed 3D-ASRC algorithm and the compared approaches for the compression and 

reconstruction of one human retinal image on Table II. All the programs are executed 

on a laptop computer with an Intel (R) Core i7-3720 CPU 2.60 GHz and 8 GB of 

RAM. Note that the sparsity based methods SRC-Dif, 3D-ASRC-WA, 2D-ASRC, and 

3D-ASRC algorithms were coded in MATLAB, which is not optimized for speed. If 

more efficient coding coupled with a general purpose graphics processing unit (GPU) 



were adopted, the running time of these sparsity based methods are expected to be 

reduced significantly. 

E. Experiments on Mouse Retinal SDOCT Images 

  Fig. 9 shows qualitative and quantitative comparisons of results from the mouse 

dataset reconstructed by JPEG 2000, MPEG-4, SPIHT [47], SRC-Dif, 3D-ASRC-WA 

and 3D-ASRC methods using the compression ratios of 10 and 25, respectively. In 

this experiment, we used the same sparse dictionary as in our human experiments. 

Note that the SDOCT imaging system for acquiring the mouse images had a different 

axial resolution and used a different spectrometer compared to the one used for the 

acquisition of human images. Therefore, using the dictionary learned from human 

data would be sub-optimal to represent mouse data. Despite this fact, the proposed 

3D-ASRC method generally delivered better results than the compared methods. The 

main reason why the dictionary trained on human datasets can be used to accurately 

represent mouse data is due to the small patch size. Specifically, instead of 

representing large structures (e.g. optical nerve head in the mouse data) on the test 

image as a whole, the sparse representation seeks the best-matched atoms from a large 

dictionary to represent small regions of the large structures. Although the large 

structures from the mouse data do not exist in the human dictionary, each small region 

in the large structures can be accurately represented by a set of similar atoms in the 

human dictionary and thus these small regions can be combined to accurately reflect 

the large structures. 



  To test the effect of different patch sizes on performance of the 3D-ASRC method 

on mouse data, we vary the patch sizes from 3×6 to 20×30. The qualitative results of 

the 3D-ASRC method using different patch sizes with compression ratio=25 are 

illustrated in Fig. 10. As can be observed, when the patch sizes are very small (e.g. 

3×6 and 4×8), the optical nerve head area exhibits obvious block artifacts. This is due 

to the fact that under comparatively high compression ratios, patch sizes that are too 

small will lead to an insufficient number of sparse coefficients (corresponding to 

dictionary atoms) for representing these small patches. As the patch size increases, the 

block artifacts start to disappear and the reconstructed results will appear smoother. 

However, when the patch sizes are very large (e.g. from 12×24 to 20×30), some 

meaningful structures (e.g. drusen and layers in the zoomed areas) become blurred. 

This is because structures within the large patches of the mouse image might not find 

the corresponding matched atoms in the human dictionary and thus may not be well 

represented. 

 



 

Fig. 5. Reconstructed results using JPEG 2000, MPEG-4, SPIHT [47], K-SVD [29], SRC-Dif, 

2D-ASRC, 3D-ASRC-WA and 3D-ASRC methods with compression ratio=10 on two human retinal 

datasets.  



 

Fig. 6. Reconstructed results using JPEG 2000, MPEG-4, SPIHT [47], K-SVD [29], SRC-Dif, 

2D-ASRC, 3D-ASRC-WA and 3D-ASRC methods with compression ratio=25 on two human retinal 

datasets.  



 

Fig. 7. Reconstructed results using JPEG 2000, MPEG-4, SPIHT [47], K-SVD [29], SRC-Dif, 

2D-ASRC, 3D-ASRC-WA and 3D-ASRC methods with compression ratio=40 on two human retinal 

datasets.   

 



 

Fig. 8. Comparison of reconstructed results using MPEG-4 and the proposed 3D-ASRC methods under 

seven different compression ratios (ranging from 10 to 40) on a human retinal image. 

 

 



TABLE I 

MEAN OF THE PSNR AND FSIM FOR 16 FOVEAL IMAGES FROM 16 DIFFERENT SUBJECTS 

RECONSTRUCTED BY JPEG 2000, MPEG-4, SPIHT [47], K-SVD [29], SRC-DIF, 2D-ASRC, 

3D-ASRC-WA, AND 3D-ASRC UNDER SEVEN DIFFERENT COMPRESSION RATIOS RANGING FROM 

10-40. 

Method/Compression ratio 10 15 20 25 30 35 40 

JPEG 2000 19.67/0.65 20.33/0.67 20.70/0.69 21.34/0.70 21.92/0.70 22.41/0.71 22.78/0.71 

MPEG-4 20.42/0.72 22.44/0.78 22.63/0.79 22.71/0.79 22.76/0.79 23.21/0.78 23.22/0.79 

SPIHT 25.56/0.80 26.17/0.82 26.50/0.82 26.68/0.82 26.79/0.82 26.86/0.82 26.89/0.82 

K-SVD 20.74/0.68 22.51/0.70 22.51/0.72 23.06/0.74 23.56/0.75 23.94/0.75 24.28/0.76 

SRC-Dif 26.98/0.85 27.26/0.86 27.45/0.87 27.54/0.87 27.56/0.87 27.58/0.86 27.55/0.86 

2D-ASRC 26.14/0.81 26.51/0.82 26.73/0.82 26.85/0.83 26.89/0.83 26.91/0.83 26.99/0.83 

3D-ASRC-WA 26.31/0.82 26.70/0.83 26.97/0.84 27.11/0.85 27.23/0.85 27.29/0.85 27.33/0.85 

3D-ASRC 27.60/0.88 27.65/0.87 27.68/0.87 27.71/0.87 27.75/0.87 27.75/0.87 27.74/0.87 

 

TABLE II 

THE AVERAGE RUNNING TIME (SECONDS) FOR THE COMPRESSION AND RECONSTRUCTION OF ONE 

HUMAN RETINAL IMAGE BY THE JPEG 2000, MPEG-4, SPIHT [47], K-SVD [29], SRC-DIF, 2D-ASRC, 

3D-ASRC-WA, AND 3D-ASRC METHODS UNDER SEVEN DIFFERENT COMPRESSION RATIOS 

RANGING FROM 10-40. IN THIS TABLE, “COM” DENOTES THE REQUIRED TIME FOR THE 

COMPRESSION STAGE WHILE THE “REC” STANDS FOR THE  REQUIRED TIME FOR THE 

RECONSTRUCTION STAGE. 
Method/Compression 

Ratio 

10 15 20 25 30 35 40 

Com Rec Com Rec Com Rec Com Rec Com Rec Com Rec Com Rec 

JPEG 2000 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01 

MPEG-4 0.66 0.02 0.64 0.02 0.62 0.02 0.58 0.02 0.53 0.02 0.47 0.02 0.45 0.02 

SPIHT 2.41 1.23 1.28 0.63 0.91 0.46 0.83 0.35 0.68 0.27 0.59 0.28 0.58 0.24 

SRC-Dif 3.43 2.68 2.63 2.27 2.17 1.85 1.88 1.83 1.69 1.73 1.41 1.56 1.36 1.23 

2D-ASRC 2.82 2.01 2.11 1.65 1.73 1.24 1.53 1.21 1.41 1.13 1.24 0.96 1.23 0.64 

3D-ASRC-WA 2.93 2.04 2.18 1.66 1.78 1.26 1.57 1.22 1.43 1.14 1.26 0.97 1.24 0.64 

3D-ASRC 2.93 2.61 2.18 2.23 1.78 1.83 1.57 1.79 1.43 1.71 1.26 1.54 1.24 1.21 

 

 

 



 

Fig. 9. Reconstructed results using JPEG 2000, MPEG-4, SPIHT [47], SRC-Dif, 3D-ASRC-WA and 

the 3D-ASRC methods with compression ratios of 10 and 25 on one mouse retinal dataset.  

 

 

 

 



TABLE III 

MEAN OF  PSNR AND FSIM FOR 16 FOVEAL IMAGES FROM 16 DIFFERENT SUBJECTS RECONSTRUCTED 

BY THE JPEG 2000, MPEG-4, SPIHT , SRC-DIF, 3D-ASRC-WA, AND 3D-ASRC METHODS UNDER 

SEVEN DIFFERENT COMPRESSION RATIOS RANGING FROM 10-40. 

Method/Compression ratio 10 15 20 25 30 35 40 

JPEG 2000 20.71/0.70 21.63/0.73 22.10/0.74 22.39/0.76 22.62/0.77 22.89/0.78 23.26/0.78 

MPEG-4 21.66/0.77 22.85/0.79 24.99/0.82 25.06/0.83 25.11/0.83 25.11/0.93 25.11/0.83 

SPIHT 26.04/0.82 26.51/0.83 26.72/0.83 26.85/0.83 26.97/0.82 27.04/0.82 27.10/0.82 

SRC-Dif 27.42/0.85 27.51/0.85 27.69/0.85 27.77/0.84 27.84/0.84 27.89/0.84 27.89/0.83 

3D-ASRC-WA 26.87/0.83 27.18/0.84 27.37/0.84 27.49/0.84 27.55/0.84 27.58/0.83 27.63/0.83 

3D-ASRC 27.94/0.86 27.96/0.86 27.99/0.85 28.05/0.85 28.06/0.84 28.07/0.84 28.08/0.84 

 

 

 

Fig. 10. Effects of different patch sizes (from 3×6 to 20×30) on the performance of the proposed 

3D-ASRC method on the mouse data. 

 

 

V.  CONCLUSIONS 

  In this paper, we presented a novel sparsity based method named 3D-ASRC for 

efficient compression of 3D SDOCT images. Unlike the previous sparsity based 



methods designed for 2D images, the 3D-ASRC method simultaneously represents 

the nearby slices of the SDOCT images via a 3D adaptive sparse representation 

algorithm. Such a 3D adaptive algorithm exploits similarities among nearby slices, yet 

is sensitive in preserving their differences. Our experiments on the 2D version of the 

proposed algorithm (2D-ASRC) showed that even in the absence of information from 

neighboring scans, the proposed algorithm is a powerful tool for compression of OCT 

images. Our experiments on real clinical grade SDOCT datasets demonstrated the 

superiority of the proposed 3D-ASRC method over several well-known compression 

methods, in terms of both visual quality and quantitative metrics. Experiments on the 

mouse dataset attested to the robustness of the algorithm to the differences between 

the dataset from which the dictionary is learned and the data that is to be compressed. 

Indeed, any compression algorithms, including our proposed method, introduce 

unique compression artifacts. The imaging artifacts of the competing techniques are 

described in the literature (e.g. wavelet artifacts are clearly visible in Fig.7 for the 

SPIHT method) [57]. The dominant imaging artifact of our proposed method is the 

piecewise constant artifact, which may result in the loss of some features such as 

small inner retinal vessels. However, for some clinical applications, including retinal 

layer segmentation, the piecewise constant artifact is less problematic, as it even 

further accentuates the boundaries between retinal layers.   

  In this paper, the correlations among the “similar” patches of the nearby slices are 

utilized. We expect that by utilizing a larger number of “similar” patches we can 

further improve the compression rate of the proposed technique. Therefore, one of our 



future works is to adopt the nonlocal searching technique [55, 58] to find more 

“similar” patches in both inter and intra slice.  

  In this paper, we demonstrated the applicability of our algorithm for compression 

of ophthalmology OCT datasets. The algorithm described here is directly applicable 

to other imaging scenarios, although its relative effectiveness compared to other 

techniques when applied to images with different noise and signal statistics is yet to 

be determined. In our future publications, we will investigate the applicability of our 

method for analyzing a wide variety of OCT images from different tissues (e.g. 

dermatology [59], Gastroenterology [60], and cardiology [61]). In addition, there is a 

strong incentive to apply the proposed 3D adaptive sparse representation algorithm to 

other large-scale inverse imaging applications (e.g., 3D image reconstruction [62], 

denoising, deblurring, and super-resolution) and also for compressing other types of 

medical images including those from MRI, tomosynthesis, and X-ray computed 

tomography. 
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