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Abstract—In this paper, we make contact with the field of non-
parametric statistics and present a development and generalization
of tools and results for use in image processing and reconstruc-
tion. In particular, we adapt and expand kernel regression ideas
for use in image denoising, upscaling, interpolation, fusion, and
more. Furthermore, we establish key relationships with some pop-
ular existing methods and show how several of these algorithms,
including the recently popularized bilateral filter, are special cases
of the proposed framework. The resulting algorithms and analyses
are amply illustrated with practical examples.

Index Terms—Bilateral filter, denoising, fusion, interpolation,
irregularly sampled data, kernel function, kernel regression, local
polynomial, nonlinear filter, nonparametric, scaling, spatially
adaptive, super-resolution.

I. INTRODUCTION

THE ease of use and cost effectiveness have contributed to
the growing popularity of digital imaging systems. How-

ever, inferior spatial resolution with respect to the traditional
film cameras is still a drawback. The apparent aliasing effects
often seen in digital images are due to the limited number of
CCD pixels used in commercial digital cameras. Using denser
CCD arrays (with smaller pixels) not only increases the pro-
duction cost, but also results in noisier images. As a cost-effi-
cient alternate, image processing methods have been exploited
through the years to improve the quality of digital images. In
this paper, we focus on regression methods that attempt to re-
cover the noiseless high-frequency information corrupted by the
limitations of imaging systems, as well as the degradations pro-
cesses such as compression.

We study regression, as a tool not only for interpolation of
regularly sampled frames (up-sampling), but also for restoration
and enhancement of noisy and possibly irregularly sampled im-
ages. Fig. 1(a) illustrates an example of the former case, where
we opt to upsample an image by a factor of two in each direc-
tion. Fig. 1(b) illustrates an example of the latter case, where
an irregularly sampled noisy image is to be interpolated onto a
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high resolution grid. Besides inpainting applications [1], inter-
polation of irregularly sampled image data is essential for ap-
plications such as multiframe super-resolution, where several
low-resolution images are fused (interlaced) onto a high-reso-
lution grid [2]. Fig. 2 represents a block diagram representation
of such super-resolution algorithm. We note that “denoising” is
a special case of the regression problem where samples at all de-
sired pixel locations are given [illustrated in Fig. 1(c)], but these
samples are corrupted, and are to be restored.

Contributions of this paper are the following. 1) We describe
and propose kernel regression as an effective tool for both de-
noising and interpolation in image processing, and establish its
relation with some popular existing techniques. 2) We propose a
novel adaptive generalization of kernel regression with excellent
results in both denoising and interpolation (for single or multi-
frame) applications.

This paper is structured as follows. In Section II, we will
briefly describe the kernel regression idea for univariate data,
and review several related concepts. Furthermore, the classic
framework of kernel regression for bivariate data and intuitions
on related concepts will also be presented. In Section III, we
extend and generalize this framework to derive a novel data-
adapted kernel regression method. Simulation on both real and
synthetic data are presented in Section IV, and Section V con-
cludes this paper. We begin with a brief introduction to the no-
tion of kernel regression.

II. CLASSIC KERNEL REGRESSION AND ITS PROPERTIES

In this section, we formulate the classical kernel regression
method, provide some intuitions on computational efficiency,
as well as weaknesses of this method, and motivate the devel-
opment of more powerful regression tools in the next section.

A. Kernel Regression in 1-D

Classical parametric image processing methods rely on a spe-
cific model of the signal of interest and seek to compute the pa-
rameters of this model in the presence of noise. Examples of
this approach are presented in diverse problems ranging from
denoising to upscaling and interpolation. A generative model
based upon the estimated parameters is then produced as the
best estimate of the underlying signal.

In contrast to the parametric methods, nonparametric
methods rely on the data itself to dictate the structure of the
model, in which case this implicit model is referred to as a
regression function [3]. With the relatively recent emergence
of machine learning methods, kernel methods have become
well-known and used frequently for pattern detection and
discrimination problems [4]. Surprisingly, it appears that the
corresponding ideas in nonparametric estimation—what we
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Fig. 1. (a) Interpolation of regularly sampled data. (b) Reconstruction from irregularly sampled data. (c) Denoising.

Fig. 2. Image fusion often yields us irregularly sampled data.

call here kernel regression—are not widely recognized or used
in the image and video processing literature. Indeed, in the
last decade, several concepts related to the general theory we
promote here have been rediscovered in different guises, and
presented under different names such as normalized convolu-
tion [5], [6], bilateral filter [7], [8], edge-directed interpolation
[9], and moving least squares [10]. Later in this paper, we shall
say more about some of these concepts and their relation to
the general regression theory. To simplify this introductory
presentation, we treat the 1-D case where the measured data
are given by

(1)

where is the (hitherto unspecified) regression function and
s are the independent and identically distributed zero mean

noise values (with otherwise no particular statistical distribu-
tion assumed). As such, kernel regression provides a rich mech-
anism for computing point-wise estimates of the function with
minimal assumptions about global signal or noise models.

While the specific form of may remain unspecified, if
we assume that it is locally smooth to some order , then in
order to estimate the value of the function at any point given
the data, we can rely on a generic local expansion of the function
about this point. Specifically, if is near the sample at , we
have the -term Taylor series

(2)

(3)

The above suggests that if we now think of the Taylor series
as a local representation of the regression function, estimating
the parameter can yield the desired (local) estimate of the

regression function based on the data.1 Indeed, the parameters
will provide localized information on the th deriva-

tives of the regression function. Naturally, since this approach
is based on local approximations, a logical step to take is to
estimate the parameters from the data while giving
the nearby samples higher weight than samples farther away. A
least-squares formulation capturing this idea is to solve the fol-
lowing optimization problem:

(4)

where is the kernel function which penalizes distance away
from the local position where the approximation is centered, and
the smoothing parameter (also called the “bandwidth”) con-
trols the strength of this penalty [3]. In particular, the function

is a symmetric function which attains its maximum at zero,
satisfying

(5)

where is some constant value.2 The choice of the particular
form of the function is open, and may be selected as a
Gaussian, exponential, or other forms which comply with the
above constraints. It is known [11] that for the case of classic
regression the choice of the kernel has only a small effect on
the accuracy of estimation, and, therefore, preference is given

1Indeed the local approximation can be built upon bases other than polyno-
mials [3].

2Basically, the only conditions needed for the regression framework are that
the kernel function be nonnegative, symmetric, and unimodal. For instance, un-
like the kernel density estimation problems [11], even if the kernel weights in
(6) do not sum up to one, the term in the denominator will normalize the final
result.
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to the differentiable kernels with low computational complexity
such as the Gaussian kernel. The effect of kernel choice for
the data-adaptive algorithms presented in Section III is an
interesting avenue of research, which is outside the scope of
this paper and part of our ongoing work.

Several important points are worth making here. First, the
above structure allows for tailoring the estimation problem to
the local characteristics of the data, whereas the standard para-
metric model is generally intended as a more global fit. Second,
in the estimation of the local structure, higher weight is given to
the nearby data as compared to samples that are farther away
from the center of the analysis window. Meanwhile, this ap-
proach does not specifically require that the data to follow a
regular or equally spaced sampling structure. More specifically,
so long as the samples are near the point , the framework is
valid. Again this is in contrast to the general parametric ap-
proach which generally either does not directly take the loca-
tion of the data samples into account, or relies on regular sam-
pling over a grid. Third, and no less important as we will de-
scribe later, the proposed approach is both useful for denoising,
and equally viable for interpolation of sampled data at points
where no actual samples exist. Given the above observations, the
kernel-based methods are well suited for a wide class of image
processing problems of practical interest.

Returning to the estimation problem based upon (4), one can
choose the order to effect an increasingly more complex local
approximation of the signal. In the nonparametric statistics lit-
erature, locally constant, linear, and quadratic approximations
(corresponding to 0, 1, 2) have been considered most
widely [3], [12]–[14]. In particular, choosing , a lo-
cally linear, adaptive, filter is obtained, which is known as the
Nadaraya–Watson estimator (NWE) [15]. Specifically, this es-
timator has the form

(6)

The NWE is the simplest manifestation of an adaptive filter
resulting from the kernel regression framework. As we shall
see later in Section III, the bilateral filter [7], [8] can be
interpreted as a generalization of NWE with a modified kernel
definition.

Of course, higher order approximations are also
possible. The choice of order in parallel with the smoothness
affects the bias and variance of the estimate. Mathematical ex-
pression for bias and variance can be found in [16] and [17], and,
therefore, here, we only briefly review their properties. In gen-
eral, lower order approximates, such as NWE, result in smoother
images (large bias and small variance) as there are fewer degrees
of freedom. On the other hand, overfitting happens in regres-
sions using higher orders of approximation, resulting in small
bias and large estimation variance. We also note that smaller
values for result in small bias and consequently large variance
in estimates. Optimal order and smoothing parameter selection
procedures are studied in [10].

Fig. 3. Examples of local polynomial regression on an equally spaced data set.
The signals in the first and second rows are contaminated with the Gaussian
noise of SNR = 9 [dB] and �6.5 [dB], respectively. The dashed lines, solid
lines, and dots represent the actual function, estimated function, and the noisy
data, respectively. The columns from left to right show the constant, linear, and
quadratic interpolation results. Corresponding RMSEs for the first row experi-
ments are 0.0364, 0.0364, 0.0307 and for the second row are as 0.1697, 0.1708,
0.1703.

The performance of kernel regressors of different order are
compared in the illustrative examples of Fig. 3. In the first ex-
periment, illustrated in the first row, a set of moderately noisy3

regularly sampled data are used to estimate the underlying
function. As expected, the computationally more complex
high-order interpolation results in a better estimate
than the lower-ordered interpolators ( or ). The
presented quantitative comparison of the root-mean-square
errors (RMSE) supports this claim. The second experiment,
illustrated in the second row, shows that for the heavily noisy
data sets (variance of the additive Gaussian noise 0.5), the
performance of lower order regressors is better. Note that the
performance of the and -ordered estimators
for these equally spaced sampled experiments are identical. In
Section II-D, we study this property in more detail.

B. Related Regression Methods

In addition to kernel regression methods we are advocating,
there are several other effective regression methods such as
B-spline interpolation [18], orthogonal series [13], [19], cubic
spline interpolation [20], and spline smoother [13], [18], [21].
We briefly review some of these methods in this section.

In the orthogonal series methods, instead of using Taylor se-
ries, the regression function can be represented by a linear
combination of other basis functions, such as Legendre polyno-
mials, wavelet bases, Hermite polynomials [10], and so on. In
the 1-D case, such a model, in general, is represented as

(7)

3Variance of the additive Gaussian noise is 0.1. Smoothing parameter is
chosen by the cross validation method (Section II-E).
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Fig. 4. Comparison of the position of knots in (a) kernel regression and (b) classical B-spline methods.

The coefficients are the unknown parameters we want
to estimate. We refer the interested reader to [13, pp. 104–107]
which offers further examples and insights.

Following the notation used in the previous section, the
B-spline regression is expressed as the linear combination of
shifted spline functions

(8)

where the -order B-spline function is defined as a times
convolution of the zero-order B spline [18]

where

else
(9)

The scalar in (8), often referred to as the knot, defines the
center of a spline. Least squares is usually exploited to estimate
the B-spline coefficients .

The B-spline interpolation method bears some similarities to
the kernel regression method. One major difference between
these methods is in the number and position of the knots as illus-
trated in Fig. 4. While in the classical B-Spline method the knots
are located in equally spaced positions, in the case of kernel re-
gression the knots are implicitly located on the sample positions.
A related method, the nonuniform rational B-spline is also pro-
posed [22] to address this shortcoming of the classical B-Spline
method by irregularly positioning the knots with respect to the
underlying signal.

Cubic spline interpolation technique is one of the most pop-
ular members of the spline interpolation family which is based
on fitting a polynomial between any pair of consecutive data.
Assuming that the second derivative of the regression function
exists, cubic spline interpolator is defined as

(10)

where under the following boundary conditions:

(11)

all the coefficients ( s) can be uniquely defined [20].
Note that an estimated curve by cubic spline interpolation

passes through all data points which is ideal for the noiseless
data case. However, in most practical applications, data is
contaminated with noise and, therefore, such perfect fits are no
longer desirable. Consequently, a related method called spline
smoother has been proposed [18]. In the spline smoothing
method, the afore-mentioned hard conditions are replaced with
soft ones, by introducing them as Bayesian priors which pe-
nalize rather than constrain nonsmoothness in the interpolated
images. A popular implementation of the spline smoother [18]
is given by

(12)

where

and can be replaced by either (8) or any orthogonal se-
ries (e.g., [23]), and is the regularization parameter. Note that
assuming a continuous sample density function, the solution to
this minimization problem is equivalent to NWE (6), with the
following kernel function and smoothing parameter:

(13)

where is the density of samples [13], [24]. Therefore, spline
smoother is a special form of kernel regression.

In Section IV, we compare the performance of the spline
smoother with the proposed kernel regression method, and, later
in Section V, we give some intuitions for the outstanding per-
formance of the kernel regression methods.
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The authors of [9] propose another edge-directed interpola-
tion method for upsampling regularly sampled images. The in-
terpolation is implemented by weighted averaging the four im-
mediate neighboring pixels in a regular upsampling scenario
where the filter coefficients are estimated using the classic co-
variance estimation method [25].

The normalized convolution method presented in [5] is very
similar to the classic kernel regression method (considering a
different basis function), which we show is a simplified ver-
sion of the adaptive kernel regression introduced in Section III.
An edge-adaptive version of this work is also very recently pro-
posed in [6].

We note that other popular edge-adaptive denoising or inter-
polation techniques are available in the literature, such as the
PDE-based regression methods [26]–[28]. A denoising exper-
iment using the anisotropic diffusion (the second-order PDE)
method of [26] is presented in Section IV; however, a detailed
discussion and comparison of all these diverse methods is out-
side the scope of this paper.

C. Kernel Regression Formulation in 2-D

Similar to the 1-D case in (1), the data measurement model
in 2-D is given by

(14)

where the coordinates of the measured data is now the 2
1 vector . Correspondingly, the local expansion of the regres-
sion function is given by

(15)

where and are the gradient (2 1) and Hessian (2 2)
operators, respectively, and is the vectorization operator,
which lexicographically orders a matrix into a vector. Defining

as the half-vectorization operator of the “lower-trian-
gular” portion of a symmetric matrix, e.g.,

(16)

and considering the symmetry of the Hessian matrix, (15) sim-
plifies to

(17)

Then, a comparison of (15) and (17) suggests that is
the pixel value of interest and the vectors and are

(18)

(19)

As in the case of univariate data, the s are computed from the
following optimization problem:

(20)

with

(21)

where is the 2-D realization of the kernel function, and is
the 2 2 smoothing matrix, which will be studied more care-
fully later in this section. It is also possible to express (20) in a
matrix form as a weighted least-squares optimization problem
[10], [29]

(22)

where

(23)

(24)

...
...

...
...

(25)
with “diag” defining a diagonal matrix.

Regardless of the estimator order , since our primary in-
terest is to compute an estimate of the image (pixel values), the
necessary computations are limited to the ones that estimate the
parameter . Therefore, the least-squares estimation is simpli-
fied to

(26)

where is a column vector with the first element equal to one,
and the rest equal to zero. Of course, there is a fundamental
difference between computing for the case, and
using a high-order estimator and then effectively dis-
carding all estimated s except . Unlike the former case,
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the latter method computes estimates of pixel values assuming
a -order locally polynomial structure is present.

D. Equivalent Kernels

In this section, we present a computationally more efficient
and intuitive solution to the above kernel regression problem.
Study of (26) shows that is a
block matrix, with the following structure:

...
...

...
. . .

(27)

where is an matrix (block). The block elements of
(27) for orders up to are as follows:

(28)

(29)

(30)

(31)

(32)

(33)

Considering the above shorthand notations, (26) can be repre-
sented as a local linear filtering process

(34)

where

(35)

(36)

Fig. 5. (a) Uniformly sampled data set. (b) Horizontal slice of the equivalent
kernels of orders N = 0, 1, and 2 for the regularly sampled data in (a). The
kernel K in (20) is modeled as a Gaussian, with the smoothing matrixH =
diag[10; 10].

[see (37), shown at the bottom of the page] and

(38)

Therefore, regardless of the order, the classical kernel regres-
sion is nothing but local weighted averaging of data (linear fil-
tering), where the order determines the type and complexity of
the weighting scheme. This also suggests that higher order re-
gressions are equivalents of the zero-order regression

but with a more complex kernel function. In other
words, to effect the higher order regressions, the original kernel

is modified to yield a newly adapted “equivalent”
kernel [3], [17], [30].

To have a better intuition of “equivalent” kernels, we study the
example in Fig. 5, which illustrates a uniformly sampled data
set, and a horizontal cross section of its corresponding equiv-
alent kernels for the regression orders 0, 1, and 2. The
direct result of the symmetry condition (5) on
with uniformly sampled data is that all odd-order “moments”
( and ) consist of elements with values very
close to zero. Therefore, as noted in Fig. 5(b), the kernels for

, and are essentially identical. As this observation
holds for all regression orders, for the regularly sampled data,
the order regression is preferred to the computation-
ally more complex order regression, as they produce
the same results. This property manifests itself in Fig. 5, where
the or -ordered equivalent kernels are identical.

In the next experiment, we compare the equivalent kernels
for an irregularly sampled data set shown in Fig. 6(a). The

-ordered equivalent kernel for the sample marked with “ ,” is
shown in Fig. 6(b). Fig. 6(c) and (d) shows the horizontal and
vertical cross sections of this kernel, respectively. This figure
demonstrates the fact that the equivalent kernels tend to adapt
themselves to the density of available samples. Also, unlike the
uniformly sampled data case, since the odd-order moments are

(37)
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Fig. 6. Equivalent kernels for an irregularly sampled data set shown in (a); (b) is the second-order (N = 2) equivalent kernel. The horizontal and vertical slices
of the equivalent kernels of different orders (N = 0, 1, 2) are compared in (c) and (d), respectively. In this example, the kernel K in (20) was modeled as a
Gaussian, with the smoothing matrixH = diag[10; 10].

nonzero, the and equivalent kernels are no longer
identical.

E. Smoothing Matrix Selection

The shape of the regression kernel as defined in (21), and,
consequently, the performance of the estimator depend on the
choice of the smoothing matrix [16]. For the bivariate data
cases, the smoothing matrix is 2 2, and it extends the sup-
port (or footprint) of the regression kernel to contain “enough”
samples. As illustrated in Fig. 7, it is reasonable to use smaller
kernels in the areas with more available samples, whereas larger
kernels are more suitable for the more sparsely sampled areas of
the image.

The cross validation “leave-one-out” method [3], [13] is a
popular technique for estimating the elements of the local s.
However, as the cross validation method is computationally very
expensive, we can use a simplified and computationally more
efficient model of the smoothing kernel as

(39)

where is a scalar that captures the local density of data sam-
ples (nominally set to ) and is the global smoothing
parameter.

The global smoothing parameter is directly computed from
the cross validation method, by minimizing the following cost
function

(40)

where is the estimated pixel value without using the th
sample at . To further reduce the computations, rather than
leaving a single sample out, we leave out a set of samples (a
whole row or column) [31]–[33].

Following [11], the local density parameter, is estimated
as follows:

(41)

where the sample density, , is measured as

(42)

and , the density sensitivity parameter, is a scalar satisfying4

. Note that and are estimated in an iterative
fashion. In the first iteration, we initialize with and
iterate until convergence. Fortunately, the rate of convergence
is very fast, and in none of the presented experiments in this
paper did we need to use more than two iterations.

In this section, we studied the classic kernel regression
method and showed that it is equivalent to an adaptive locally
linear filtering process. The price that one pays for using such
computationally efficient classic kernel regression methods
with diagonal matrix is the low-quality of reconstruction
in the edge areas. Experimental results on this material will be
presented later in Section IV. In the next section, we gain even
better performance by proposing data-adapted kernel regression
methods which take into account not only the spatial sampling
density of the data, but also the actual (pixel) values of those
samples. These more sophisticated methods lead to locally
adaptive nonlinear extensions of classic kernel regression.

III. DATA-ADAPTED KERNEL REGRESSION

In the previous section, we studied the kernel regression
method, its properties, and showed its usefulness for image
restoration and reconstruction purposes. One fundamental
improvement on the afore-mentioned method can be realized
by noting that the local polynomial kernel regression estimates,
independent of the order , are always local linear combina-
tions of the data. As such, though elegant, relatively easy to
analyze, and with attractive asymptotic properties [16], they
suffer from an inherent limitation due to this local linear action
on the data. In what follows, we discuss extensions of the kernel
regression method that enable this structure to have nonlinear,
more effective, action on the data.

Data-adapted kernel regression methods rely on not only the
sample location and density, but also on the radiometric proper-
ties of these samples. Therefore, the effective size and shape of

4In this paper, we choose � = 0:5, which is proved in [34] to be an appro-
priate overall choice for the density sensitivity parameter.
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Fig. 7. Smoothing (kernel size) selection by sample density.

Fig. 8. Kernel spread in a uniformly sampled data set. (a) Kernels in the classic
method depend only on the sample density. (b) Data-adapted kernels elongate
with respect to the edge.

the regression kernel are adapted locally to image features such
as edges. This property is illustrated in Fig. 8, where the clas-
sical and adaptive kernel shapes in the presence of an edge are
compared.

Data-adapted kernel regression is structured similarly to (20)
as an optimization problem

(43)

where the data-adapted kernel function now depends
on the spatial sample locations s and density, as well as the
radiometric values of the data.

A. Bilateral Kernel

A simple and intuitive choice of the is to use separate
terms for penalizing the spatial distance between the pixel of
interest and its neighbors , and the radiometric “distance”
between the corresponding pixels and

(44)

where is the spatial smoothing matrix and is
the radiometric smoothing scalar. The properties of this adap-
tive method, which we call bilateral kernel regression (for rea-
sons that will become clear shortly), can be better understood

by studying the special case of , which results in a
data-adapted version of NWE

(45)

Interestingly, this is nothing but the recently well-studied and
popular bilateral filter [7], [8]. We note that, in general, since the
pixel values at an arbitrary position might not be avail-
able from the data, the direct application of (44) is limited to the
denoising problem. This limitation, however, can be overcome
by using an initial estimate of by an appropriate interpolation
technique (e.g., for the experiments of Section IV, we used the
second-order classic kernel regression method). Also, it is worth
noting that the bilateral kernel choice, along with higher order
choices for , will lead to generalizations of the bilateral
filter, which have not been studied before. We report on these
generalizations in [44].

In any event, breaking into spatial and radiometric
terms as utilized in the bilateral case weakens the estimator per-
formance since it limits the degrees of freedom and ignores cor-
relations between positions of the pixels and their values. In par-
ticular, we note that, for very noisy data sets, s tend to
be large, and, therefore, most radiometric weights are very close
to zero, and effectively useless. The following section provides
a solution to overcome this drawback of the bilateral kernel.

B. Steering Kernel

The filtering procedure we propose next takes the above ideas
one step further, based upon the earlier nonparametric frame-
work. In particular, we observe that the effect of computing

in (44) is to implicitly measure a function of the
local gradient estimated between neighboring values and to use
this estimate to weight the respective measurements. As an ex-
ample, if a pixel is located near an edge, then pixels on the same
side of the edge will have much stronger influence in the fil-
tering. With this intuition in mind, we propose a two-step ap-
proach where first an initial estimate of the image gradients is
made using some kind of gradient estimator (say the second-
order classic kernel regression method). Next, this estimate is
used to measure the dominant orientation of the local gradients
in the image (e.g., [35]). In a second filtering stage, this orien-
tation information is then used to adaptively “steer” the local
kernel, resulting in elongated, elliptical contours spread along
the directions of the local edge structure. With these locally
adapted kernels, the denoising is effected most strongly along
the edges, rather than across them, resulting in strong preser-
vation of details in the final output. To be more specific, the
data-adapted kernel takes the form

(46)

where s are now the data-dependent full matrices which we
call steering matrices. We define them as

(47)
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Fig. 9. Schematic representation illustrating the effects of the steering matrix and its component (C = 
 U ��� U ) on the size and shape of the regression
kernel.

where s are (symmetric) covariance matrices based on differ-
ences in the local gray-values. A good choice for s will effec-
tively spread the kernel function along the local edges, as shown
in Fig. 8. It is worth noting that, even if we choose a large in
order to have a strong denoising effect, the undesirable blurring
effect, which would otherwise have resulted, is tempered around
edges with appropriate choice of s. With such steering ma-
trices, for example, if we choose a Gaussian kernel, the steering
kernel is mathematically represented as

(48)
The local edge structure is related to the gradient covari-

ance (or equivalently, the locally dominant orientation), where
a naive estimate of this covariance matrix may be obtained as
follows:

(49)
where and are the first derivatives along and

directions and is a local analysis window around the po-
sition of interest. The dominant local orientation of the gradi-
ents is then related to the eigenvectors of this estimated matrix.
Since the gradients and depend on the pixel values

, and since the choice of the localized kernels in turns de-
pends on these gradients, it, therefore, follows that the “equiva-
lent” kernels for the proposed data-adapted methods form a lo-
cally “nonlinear” combination of the data.

While this approach [which is essentially a local principal
components method to analyze image (orientation) structure]
[35]–[37] is simple and has nice tolerance to noise, the resulting
estimate of the covariance may, in general, be rank deficient or
unstable, and, therefore, care must be taken not to take the in-
verse of the estimate directly in this case. In such case, a di-
agonal loading or regularization methods can be used to obtain
stable estimates of the covariance. In [35], we proposed an ef-
fective multiscale technique for estimating local orientations,
which fits the requirements of this problem nicely. Informed by
the above, in this paper, we take a parametric approach to the
design of the steering matrix.

In order to have a more convenient form of the covariance
matrix, we decompose it into three components (equivalent to
eigenvalue decomposition) as follows:

(50)

where is a rotation matrix and is the elongation matrix.
Now, the covariance matrix is given by the three parameters ,

, and , which are the scaling, rotation, and elongation param-
eters, respectively. Fig. 9 schematically explains how these pa-
rameters affect the spreading of kernels. First, the circular kernel
is elongated by the elongation matrix , and its semi-minor
and major axes are given by . Second, the elongated kernel is
rotated by the matrix . Finally, the kernel is scaled by the
scaling parameter .

We define the scaling, elongation, and rotation parameters as
follow. Following our previous work in [35], the dominant ori-
entation of the local gradient field is the singular vector corre-
sponding to the smallest (nonzero) singular value of the local
gradient matrix arranged in the following form:

...
...

...
...

(51)

where is the truncated singular value decomposition of
, and is a diagonal 2 2 matrix representing the energy in

the dominant directions. Then, the second column of the 2 2
orthogonal matrix , , defines the dominant
orientation angle

(52)

That is, the singular vector corresponding to the smallest
nonzero singular value of represents the dominant orien-
tation of the local gradient field. The elongation parameter
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Fig. 10. Block diagram representation of the iterative steering kernel regression. (a) Initialization. (b) Iteration.

can be selected corresponding to the energy of the dominant
gradient direction

(53)

where is a “regularization” parameter for the kernel elonga-
tion, which dampens the effect of the noise, and restricts the
ratio from becoming degenerate. The intuition behind (53) is to
keep the shape of the kernel circular in flat areas ,
and elongate it near edge areas . Finally, the scaling
parameter is defined by

(54)

where is again a “regularization” parameter, which dampens
the effect of the noise and keeps from becoming zero,5 and

is the number of samples in the local analysis window. The
intuition behind (54) is that, to reduce noise effects while pro-
ducing sharp images, large footprints are preferred in the flat
(smooth) and smaller ones in the textured areas. Note that the
local gradients and the eigenvalues of the local gradient matrix

are smaller in the flat (low-frequency) areas than the textured
(high-frequency) areas. As is the geometric mean of the
eigenvalues of , makes the steering kernel area large in the
flat, and small in the textured areas.

While it appears that the choice of parameters in the above
discussion is purely ad-hoc, we direct the interested reader to a
more careful statistical analysis of the distributional properties
of the singular values in [35], [38], and [39]. Our particular
selections for these parameters are directly motivated by these
earlier works. However, to maintain focus and conserve space,
we have elected not to include such details in this presentation.
We also note that the presented formulation is quite close and
apparently independently derived normalized convolution for-
mulation of [6].

Fig. 11 is a visual illustration of the steering kernel foot-
prints on a variety of image structures (texture, flat, strong edge,

5The regularization parameters � and � are used to prohibit the shape of
the kernel from becoming infinitely narrow and long. In practice, it suffices to
keep these numbers reasonably small, and, therefore, in all experiments in this
paper, we fixed their values equal to � = 1:0 and � = 0:01.

corner, and weak edge) of the Lena image for both noiseless and
noisy cases. Note that, in the noisy case, the shape and orienta-
tion of the kernel’s footprints are very close to those of the noise-
less case. Also, depending on the underlying features, in the flat
areas, they are relatively more spread to reduce the noise effects,
while in texture areas, their spread is very close to the noiseless
case which reduces blurriness.

C. Iterative Steering Kernel Regression

The estimated smoothing matrices of the steering kernel re-
gression method are data dependent, and, consequently, sen-
sitive to the noise in the input image. As we experimentally
demonstrate in the next section, steering kernel regression is
most effective when an iterative regression/denoising procedure
is used to exploit the output (less noisy) image of each iteration
to estimate the radiometric terms of the kernel in the next iter-
ation. A block diagram representation of this method is shown
in Fig. 10, where is the iteration number. In this diagram, the
data samples are used to create the initial (dense) estimate6 of
the interpolated output image Fig. 10(a). In the next iteration,
the reconstructed (less noisy) image is used to calculate a more
reliable estimate of the gradient Fig. 10(b), and this process
continues for a few more iterations. A quick consultation with
Fig. 10(a) shows that, although our proposed algorithm relies on
an initial estimation of the gradient, we directly apply the esti-
mated kernels on the original (noninterpolated) samples which
results in the populated (or denoised) image in the first iteration.
Therefore, denoising and interpolation are done jointly in one
step. Further iterations in Fig. 10(b) apply the modified kernels
on the denoised pixels which results in more aggressive noise
removal.

While we do not provide an analysis of the convergence prop-
erties of this proposed iterative procedure, we note that while
increasing the number of iterations reduces the variance of the
estimate, it also leads to increased bias (which manifests as blur-
riness). Therefore, in a few (typically around five) iterations, a
minimum mean-squared estimate is obtained. An example of
this observation is shown in Figs. 12–14. A future line of work
will analyze the derivation of an effective stopping rule from
first principles.

6Note that, in this paper, all adaptive kernel regression experiments are ini-
tialized with the outcome of the classic kernel regression method.



TAKEDA et al.: KERNEL REGRESSION FOR IMAGE PROCESSING AND RECONSTRUCTION 359

Fig. 11. Footprint examples of steering kernels with covariance matrices fC g given by the local orientation estimate (50) at a variety of image structures. (a) The
estimated kernel footprints in a noiseless image and (b) the estimated footprints for the same areas of a noisy image (after 7 iterations considering additive Gaussian
noise with � = 25 similar to the first experiment of Section IV).

It is worth pointing out that the iterative regression method
has the luxury of using directly estimated gradients. Note that
the discrete gradients used in (51) are usually approximated by
convolving a band-pass filter with the image. However, the com-
parison between (15) and (17) shows that the vector is the
direct estimate of the image gradient. Indeed direct estimation
of the gradient vector is more reliable but at the same time com-
putationally more expensive. In Appendix I, computation of ,
directly in the regression context, is shown.

IV. EXPERIMENTS

In this section, we provide experiments on simulated and real
data. These experiments show diverse applications and the ex-
cellence of the proposed adaptive technique, and also attest to
the claims made in the previous sections. Note that in all ex-
periments in this paper we used Gaussian type kernel functions.
While it is known [11] that, for classic kernel regression, the
choice of kernel is not of critical importance, the analysis of
this choice for the data-adapted regression methods remains to
be done, and is outside the scope of this paper.

A. Denoising Experiment

In the first set of experiments, we compare the performance
of several denoising techniques. We set up a controlled simu-
lated experiment by adding white Gaussian noise with standard
deviation of to the Lena image shown in Fig. 12(a).
The resulting noisy image with signal-to-noise ratio (SNR)7 of
5.64 [dB], is shown in Fig. 12(b). This noisy image is then de-
noised by the classic kernel regression8 (34) with and

, result of which is shown in Fig. 12(c). The result of
applying the bilateral filter (45) with and
is shown in Fig. 12(d). For the sake of comparison, we have in-
cluded the result of applying anisotropic diffusion9 [26] and the

7Signal-to-noise ratio is defined as 10 log (� =� ), where � , � are vari-
ance of a clean image and noise, respectively.

8The criterion for parameter selection in this example (and other simulated
examples discussed in this paper) was to choose parameters which give the best
RMSE result. For the experiments on real data, we chose parameters which pro-
duced visually most appealing results.

9The software is available at http://www.cns.nyu.edu/david/aniso.html.

recent wavelet-based denoising method10 of [40] in Fig. 12(e)
and (f), respectively. Finally, Fig. 12(g) shows the result of ap-
plying the iterative steering kernel regression of Fig. 10 with

2, 2.5, and 7 iterations. The RMSE values of the re-
stored images of Fig. 12(c)–(g) are 8.94, 8.65, 8.46, 6.66 and
6.68, respectively. The RMSE results reported for the Fig. 12(f)
and (g) are the results of 35 Monte Carlo simulations. We also
noted that the wavelet method of [40], in general, is more com-
putationally efficient than the steering kernel method, though it
is applicable only to the removal of Gaussian noise.

We set up a second controlled simulated experiment by consid-
ering JPEG compression artifacts which result from compression
of the image in Fig. 13(a). The JPEG image was constructed by
usingMATLABJPEGcompressionroutinewithaqualityparam-
eterequal to10.This compressed imagewithaRMSEvalueequal
to 9.76 is illustrated in Fig. 13(b). We applied several denoising
methods (similar to the ones used in the previous experiment).
The results of applying classic kernel regression (34) (
and ), bilateral filtering (45) ( and ),
Wavelet [40], and the iterative steering kernel regression (
2, 2.0, and 3 iterations) are given in Fig. 13(c)–(f), respec-
tively. The RMSE values of the reconstructed images of (c)–(f)
are 9.05, 8.52, 8.80, and 8.48, respectively.

In the third denoising experiment, we applied several de-
noising techniques on the color image shown in Fig. 14(a),
which is corrupted by real film grain and scanning process
noise. To produce better color estimates, following [41], first
we transferred this RGB image to the YCrCb representation.
Then we applied several denoising techniques (similar to the
ones in the previous two experiments) on each channel (the
luminance component Y, and the chrominance components Cr
and Cb), separately. The results of applying Wavelet [40], and
bilateral filtering (45) ( and for all channels),
and the iterative steering kernel regression ( 2, 2.0,
and 3 iterations) are given in Fig. 14(b)–(d), respectively.
Fig. 14(e)–(g) shows the absolute values of the residuals on
the Y channel. It can be seen that the proposed steering kernel

10In this experiment, we used the code (with parameters suggested for this
experiment) provided by the authors of [40] available at http://decsai.ugr.es/
~javier/denoise/index.html.
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Fig. 12. Performance of different denoising methods are compared in this experiment. The RMSE of the images (c)–(g) are 8.94, 8.65, 8.46, 6.66, and 6.68,
respectively. (a) Original image. (b) Noisy image, SNR = 5:64 [dB]. (c) Classic kernel regression. (d) Bilateral filter. (e) Anisotropic diffusion. (f) Wavelet [40].
(g) Iterative steering kernel regression. (h) Wavelet [40]. (i) Iterative steering kernel regression.

method produces the most noise-like residuals, which, in the
absence of ground truth, is a reasonable indicator of superior
performance.

B. Interpolation Experiments for Irregularly Sampled Data

The fourth experiment is a controlled simulated regression of
an irregularly sampled image. We randomly deleted 85% of the
pixels in the Lena image of Fig. 12(a), creating the sparse image
of Fig. 15(a). To fill the missing values, first we implemented the

Delaunay-spline smoother11 with to fill the missing
values, the result of which is shown in Fig. 15(b), with some
clear artifacts on the edges. Fig. 15(c) shows the result of using
the classic kernel regression (34) with and . The
result of the bilateral kernel regression with , ,

11To implement the Delaunay-spline smoother we used MATLAB’s “grid-
data” function with “cubic” parameter to transform the irregularly sampled data
set to a dense regularly sampled one (Delaunay triangulation). The quality of the
resulting image was further enhanced by applying MATLAB’s spline smoother
routine “csaps.”
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Fig. 13. Performance of different denoising methods are compared in this experiment on a compressed image by JPEG format with the quality of 10. The RMSE
of the images (b)–(f) are 9.76, 9.03, 8.52, 8.80, and 8.48, respectively. (a) Original image. (b) Compressed image. (c) Classic kernel regression. (d) Bilateral filter.
(e) Wavelet [40]. (f) Iterative steering kernel regression.
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Fig. 14. Performance of different denoising methods are compared in this experiment on a color image with real noise; (e)–(g) show the residual between given
noisy image and the respective estimates. (a) Real noisy image. (b) Wavelet [40]. (c) Bilateral filter [7]. (d) Iterative steering kernel regression. (e) Wavelet [40].
(f) Bilateral filter [7]. (g) Iterative steering kernel regression.



TAKEDA et al.: KERNEL REGRESSION FOR IMAGE PROCESSING AND RECONSTRUCTION 363

Fig. 15. Irregularly sampled data interpolation experiment, where 85% of the pixels in the Lena image are omitted in (a). The interpolated images using dif-
ferent methods are shown in (b)–(f). RMSE values for (b)–(f) are 9.15, 9.69, 9.72, 8.91, and 8.21, respectively. (a) Irregularly downsampled. (b) Delaunay-spline
smoother. (c) Classic kernel regression, N = 2. (d) Bilateral kernel regression. (e) Steering kernel regression,N = 0. (f) Steering kernel regression,N = 2.
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Fig. 16. Image fusion (super-resolution) experiment of a real data set consisting of ten compressed color frames. One input image is shown in (a); (b)–(d) show
the multiframe shift-and-add images after interpolating by the Delaunay-spline smoother, classical kernel regression, and steering kernel regression methods,
respectively. The resolution enhancement factor in this experiment was 5 in each direction. (a) The first input frame. (b) Multiframe Delaunay-spline smoother.
(c) Multiframe classic kernel regression. (d) Multiframe steering kernel regression.

and is shown in Fig. 15(d). Fig. 15(e) and (f) shows the
results of implementing steering kernel regression ( 0,
0.8, and no iterations), and ( 2, 1.6, and 1 iteration),
respectively. The RMSE values for images Fig. 15(b)–(f) are
9.15, 9.69, 9.72, 8.91, and 8.21, respectively.

Our final experiment is a multiframe super-resolution of a real
compressed color image sequence captured with a commercial
video surveillance camera; courtesy of Adyoron Intelligent Sys-

tems, Ltd., Tel Aviv, Israel. A total number of ten frames were
used for this experiment, where the underlying motion was as-
sumed to follow the translational model. One of these frames
is shown in Fig. 16(a). To produce better color estimates, fol-
lowing [41], first we transferred the RGB frames to the YCrCb
representation, and treated each channel separately. We used the
method described in [42] to estimate the motion vectors. Then,
we fused each channel of these frames on a high-resolution grid
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with five times more pixels in each direction (i.e., 25 times as
many overall pixels) as illustrated in Fig. 2, interpolated the
missing values, and then deblurred the interpolated image using
Bilateral total variation regularization [2].12 The result of inter-
polating the irregularly sampled image by the Delaunay-spline
smoother (implementation similar to the previous experiment
with for the luminance and for the chromi-
nance channels) followed by deblurring is shown in Fig. 16(b).
The results of applying the classic kernel regression ( and

for the luminance channel and for the chromi-
nance channels) followed by deblurring and the steering kernel
regression ( 2, 4.0 for the luminance channel and
8.0 for the chrominance channels, and 1 iteration) followed by
deblurring are shown in Fig. 16(c) and (d), respectively.

A comparison of these diverse experiments shows that, in
general, the robust nonparametric framework we propose re-
sults in reliable reconstruction of images with comparable (if
not always better) performance with respect to some of the most
advanced methods designed specifically for particular applica-
tions, data and noise models. We note that while the proposed
method might not be the best method for every application,
imaging scenario, data or noise model, it works remarkably well
for a wide set of disparate problems.

V. CONCLUSION AND FUTURE WORKS

In this paper, we studied a nonparametric class of regression
methods. We promoted, extended, and demonstrated kernel re-
gression, as a general framework, yielding several very effec-
tive denoising and interpolation algorithms. We compared and
contrasted the classic kernel regression with several other com-
peting methods. We showed that classic kernel regression is in
essence a form of locally adaptive linear filtering process, the
properties of which we studied under the equivalent kernel topic.

To overcome the inherent limitations dictated by the linear
filtering properties of the classic kernel regression methods, we
developed the nonlinear data adapted class of kernel regressors.
We showed that the popular bilateral filtering technique is a spe-
cial case of adaptive kernel regression and how the bilateral filter
can be generalized in this context. Later, we introduced and jus-
tified a novel adaptive kernel regression method, called steering
kernel with with comparable (if not always better) performance
with respect to all other regression methods studied in this paper.
Experiments on real and simulated data attested to our claim.

The outstanding performance of the adaptive methods can
be explained by noting that the spline smoother [formulated in
(12)] in effect exploits the Tikhonov (L ) regularizers. However,
the data-adapted kernel regression in its simplest form (bilateral
filter) exploits the (PDE-based) total variation (TV) regulariza-
tion [28], [43]. The relation between the bilateral filtering and
TV regularization is established in [2]. The study in [2] also
shows the superior performance of the TV-based regularization
compared to the Tikhonov-based regularization.

Finally, in Section III-C, we proposed an iterative scheme
to further improve the performance of the steering kernel re-

12For this experiment, the camera point spread function (PSF) was assumed to
be a 5 � 5 disk kernel (obtained by the MATLAB command “fspecial(‘disk’,
2)”). The deblurring regularization coefficient for the luminance channel was
chosen to be 0.2 and for the chrominance channels was chosen to be 0.5.

gression method. An automatic method for picking the optimal
number of iterations as well as the optimal regression order is a
part is an open problem.

APPENDIX I
LOCAL GRADIENT ESTIMATION

In this Appendix, we formulate the estimation of the direct
gradient of the second-order kernel regressors.
Note that direct gradient estimation is useful not only for the iter-
ative steering kernel regression, but also for many diverse appli-
cations such as estimating motion via gradient-based methods
(e.g., optical flow) and dominant orientation estimation.

(55)

Following the notation of (27), the local quadratic derivative
estimator is given by

(56)

where

(57)
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