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The retina is a highly ordered tissue whose outermost
layers are formed by subcellular compartments of photo-
receptors generating light-evoked electrical responses.
We studied protein distributions among individual photo-
receptor compartments by separating the entire photore-
ceptor layer of a flat-mounted frozen retina into a series of
thin tangential cryosections and analyzing protein com-
positions of each section by label-free quantitative mass
spectrometry. Based on 5038 confidently identified pep-
tides assigned to 896 protein database entries, we gener-
ated a quantitative proteomic database (a “map”) corre-
lating the distribution profiles of identified proteins with
the profiles of marker proteins representing individual
compartments of photoreceptors and adjacent cells. We
evaluated the applicability of several common peptide-to-
protein quantification algorithms in the context of our
database and found that the highest reliability was ob-
tained by summing the intensities of all peptides repre-
senting a given protein, using at least the 5–6 most in-
tense peptides when applicable. We used this proteome
map to investigate the distribution of glycolytic en-
zymes, critical in fulfilling the extremely high metabolic
demands of photoreceptor cells, and obtained two ma-
jor findings. First, unlike the majority of neurons rich in
hexokinase I, but similar to other highly metabolically
active cells, photoreceptors express hexokinase II.
Hexokinase II has a very high catalytic activity when
associated with mitochondria, and indeed we found it
colocalized with mitochondria in photoreceptors. Sec-
ond, photoreceptors contain very little triosephosphate
isomerase, an enzyme converting dihydroxyacetone
phosphate into glyceraldehyde-3-phosphate. This may
serve as a functional adaptation because dihydroxyac-
etone phosphate is a major precursor in phospholipid
biosynthesis, a process particularly active in photore-
ceptors because of the constant renewal of their light-
sensitive membrane disc stacks. Overall, our approach
for proteomic profiling of very small tissue amounts at a

resolution of a few microns, combining cryosectioning
and liquid chromatography-tandem MS, can be applied
for quantitative investigation of proteomes where spa-
tial resolution is paramount. Molecular & Cellular Pro-
teomics 10: 10.1074/mcp.M110.002469, 1–14, 2011.

The vertebrate retina is a layered tissue containing several
types of neurons and supporting cells (1). The outermost half
of the retina is formed by rod and cone photoreceptors, which
produce electrical responses upon capturing photons. Pho-
toreceptors are polarized neurons in which specific functions
are carried out in individual highly specialized subcellular
compartments. For example, the processes of light capturing
and visual signaling are confined to the distal outer segment,
whereas information transfer to the secondary retina neurons
takes place at the synaptic terminal located at the opposite
side of the cell. In this study, we analyzed the patterns of
subcellular protein distribution in photoreceptors by label-free
quantitative mass spectrometry.

Proteomic analysis of layered or intricately structured tis-
sues requires a difficult analytical combination of reproducible
sample preparation with high spatial resolution, significant
depth of proteome coverage, and accurate quantification.
These challenges have been addressed to varying degrees by
laser-capture microdissection along with MS analysis and
matrix assisted laser desorption ionization (MALDI)1 imaging.
Laser capture microdissection is typically performed following
immunostaining for specific markers to define the regions of
interest (2–7); although this approach has very high resolution
(microns), the amount of material available for MS analysis is
exceedingly small because of the limited thickness of tissue
sections. MALDI imaging has the advantage of high speed
and ease of sample preparation, but suffers from lower spatial
resolution (typically hundreds of microns), inherent difficulty in
protein identification, and limited depth of proteome coverage
(8–13).
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Unbiased quantitative label-free proteomics, utilizing liquid
chromatography-tandem MS (LC-MS/MS), is a rapidly emerg-
ing methodology allowing comparison of protein contents
across multiple samples, when utilizing the accurate-mass
and time-tag approach for alignment of peptides across the
samples (14–20). This technique requires accurate-mass,
high-resolution mass spectrometers for data collection and
sophisticated software for data analysis. Many open-source
and commercial options are now available to perform the
latter task (21–24). The label-free approach also has the ad-
vantage of unlimited scalability with respect to number of
samples or number of experimental variables, provided that
methods for sample preparation are sufficiently quantitative
and control for analysis-to-analysis variability is carefully
considered.

Taking advantage of the highly ordered retina structure, we
obtained thin serial tangential sections through the rat outer
retina, which contained proteins derived from different parts
of the photoreceptor cells. Because the rat retina is domi-
nated by rod photoreceptors (outnumbering cones by �100-
fold (25)), the vast majority of photoreceptor-derived proteins
in these sections originated from rods. In the past, we com-
bined this technique with Western blot detection of individual
proteins in sections, which provided an alternative to immu-
nohistochemistry to study longitudinal protein distributions in
these cells (26). This method resolved several long-standing
controversies regarding the subcellular localization of photo-
receptor-specific proteins, which arose from conflicting re-
sults of immunohistochemical studies (26–28). We now ex-
tended this methodology to analyze distribution profiles of
hundreds of proteins by combining serial sectioning of the
retina with quantitative mass spectrometry. The results are
summarized in a database (which we call a proteome “map”),
correlating the relative abundances of all identified proteins in
individual serial sections with those of marker proteins repre-
senting specific compartments of photoreceptors and neigh-
boring cells. We used this map to assess the subcellular
distribution of all glycolytic enzymes and uncovered novel
patterns for the two hexokinase isoforms and triosephosphate
isomerase, each likely reflecting the unusually high metabolic
activity of photoreceptor cells.

EXPERIMENTAL PROCEDURES

Animals—Sixty-day-old pigmented Long-Evans rats (Rattus norvegi-
cus) were purchased from Charles River Laboratories (Wilmington, MA).
Animals were dark-adapted for at least 12 h and sacrificed under dim
red light either immediately or following one hour exposure to bright light
producing 15,000 lux on the cornea surface as described in (29).

Serial Tangential Sectioning of the Rat Retina—Serial sectioning
was performed as described in (26) with modifications described in
(29) and (30). Briefly, eyes were enucleated from an anesthetized rat
and dissected in ice-cold Ringer’s solution under dim red light. A
retina fragment (3 mm in diameter) was cut from the eyecup with a
surgical trephine positioned right next to the optic disc (so that the
optic nerve remained just outside the analyzed specimen), transferred
onto PVDF membrane with the photoreceptor layer facing up, flat-

mounted between two glass slides separated by plastic spacers (ca.
240 �m) and frozen on dry ice. Progressive tangential sections were
then collected using a cryo-microtome following aligning the retina
surface with the cutting plane of the microtome knife. The uneven
edges of the retina specimen were trimmed and twelve 10-�m sec-
tions were collected.

Sample Preparation for Mass Spectrometry—A complete analysis
was performed with two sets of retina sections, one obtained from a
dark-adapted and another from a light-adapted rat referred as retinas
#1 and #2, respectively, throughout the text. Each retina section was
dissolved in 50 �l 0.5% v/v anionic acid liable surfactant II (Protea
Biosciences, Morgantown, WV), followed by sonication and boiling for
5 min. Cysteine residues were reduced with 10 mM dithiothreitol and
alkylated with 20 mM iodoacetamide. Proteins were digested with
trypsin (15 ng/�l) overnight at 37 °C and anionic acid liable surfactant
II was inactivated by adding trifluoroacetic acid to the final concen-
tration of 1%. Samples were vacuum-dried and dissolved in 25 �l
0.1% trifluoroacetic acid and 2% acetonitrile. The typical amount of
total protein in a section prepared as above was �1.5 �g as deter-
mined by BCA assay in retina sections prepared identically to those
analyzed by MS; no protein measurements were performed directly in
samples used for MS in order to maximize the amount of material for
analysis. We chose this gel-free protein digestion protocol in order to
minimize any variability in peptide extraction and thus to improve
quantitative aspects of the subsequent analysis.

LC/MS Data Collection—Peptide digests obtained from each of the
24 sections (12 from each retina) where analyzed using a nanoAcquity
UPLC system coupled to a Synapt HDMS mass spectrometer (Waters
Corp, Milford, MA). Approximately 500 ng of peptide material in 8 �l
was first trapped at 20 �l/min for 2 min in 99.9% water with 0.1% v/v
formic acid on a 20 �m � 180 mm Symmetry C18 column. Separa-
tions were then performed on a 75 �m � 250 mm column with 1.7 �m
C18 BEH particles (Waters) using a 120-min gradient of 5 to 40%
acetonitrile with 0.1% formic acid at a flow rate of 0.3 �l/min and
45 °C column temperature. We conducted two data-independent
(MSE) analyses of each retina section for simultaneous peptide quan-
tification and identification. MSE runs of samples obtained from dif-
ferent sections were performed in random order, and used 0.9 s cycle
time alternating between low collision energy (6 V) and high collision
energy ramp (15 to 40 V). The quantitative analyses were followed by
an additional, supplementary LC-MS/MS experiment in the data-de-
pendent analysis (DDA) mode for each section, using a 0.9 s MS scan
followed by MS/MS acquisition on the top three ions with charge
greater than one. MS/MS scans for each ion used an isolation window
of �3 Da, a maximum of 4 s per precursor, and dynamic exclusion for
120 s within 1.2 Da.

LC-MS Data Processing—For robust peak detection and label-free
alignment of individual peptides across all 72 sample injections, we
utilized the Rosetta Elucidator® v3.3 software (Rosetta Biosoftware,
Inc., Seattle, WA) with PeakTeller algorithm, in a similar manner to
several recent publications (24, 31–37). Following alignment and an-
notation, chromatographic peak intensities belonging to the same
precursor mass in the MSE aligned chromatograms were used to
calculate the relative peptide and protein abundance on a section-
by-section basis. Two MSE analytical replicate intensities for each
peptide were combined by averaging following robust median scaling
(top and bottom 10% excluded), to generate one intensity value per
peptide for each of the 24 photoreceptor layer sections.

We utilized both MS/MS DDA and MSE to generate peptide iden-
tifications. For DDA acquisition files, .mgf searchable files were pro-
duced in Rosetta Elucidator and searches were then submitted to and
retrieved from the Mascot v2.2 (Matrix Sciences, Inc) search engine in
an automated fashion. For MSE data, ProteinLynx Global Server 2.4
(Waters Corporation) was used to generate searchable files that were
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then submitted to the IdentityE search engine (Waters Corporation,
Milford, MA) (38, 39); results files were then imported back into
Elucidator. To enable global spectra scoring across results from both
search engines, all search results were concurrently validated using
the PeptideProphet and ProteinProphet algorithms in Elucidator using
independent reverse decoy database validation (40, 41). Peptides
with PeptideProphet scores greater than 0.8 were then annotated;
this score corresponded to a 2% peptide false discovery rate. Indi-
vidual peptide scores are reported in supplemental Table 1. Each
peptide identified was allowed to be assigned to a single protein
entry, and these assignments were made by ProteinProphet accord-
ing to the rules of parsimony, and ProteinProphet scores are provided
in supplemental Table 1.

Both DDA and MSE data were searched against the NCBInr data-
base with Rattus norvegicus taxonomy (downloaded March 4, 2009
from http://www.ncbi.nlm.nih.gov/pubmed/), with full 1� reverse da-
tabase appended for peptide false discovery rate determination, and
duplicates removed using Protein Digest Simulator Basic (http://om-
ics.pnl.gov/software/ProteinDigestionSimulatorBasic.php). The final
database contained 134914 sequences including reverse entries.
Precursor ion mass tolerance was 20 ppm for both PLGS and Mascot
searches, and product ion tolerance was 0.1 Da for Mascot and 40
ppm for PLGS. Enzyme specificity was set to semitryptic for Mascot
searches and tryptic for PLGS 2.4 searches, and a maximum of two
missed cleavages was allowed. Carbamidomethyl cysteine was in-
cluded as a fixed modification, and variable modifications included
oxidized methionine and deamidated asparagine and glutamine. Ad-
ditionally, phosphorylation of serine, threonine, and tyrosine was al-
lowed in Mascot searches (only nine phosphorylated peptides were
observed).

LC-MS Data Quality Control—One quantitative data file from sec-
tion #11 of the light-adapted retina, upon visual inspection, appeared
to have inconsistent signal where significant portions of the data were
missing, and therefore this file was removed from downstream anal-
ysis. Data quality control for the remaining 71 analyses was per-
formed within the Elucidator software package by using the retention
time viewer to assess the shift required for data alignment, and
principal components analysis to assess consistency of data quality.
The retention time shift required to properly align data files was
evaluated for every LC-MS analysis. The maximum retention time
shift required at any point across all 72 analyses was 2.1 min, with 62
analyses displaying shifts not exceeding 1 min. Peptide intensities for
each sample were z-score transformed and submitted to a three-
dimensional principal components analysis to look for analytical out-
liers. This analysis showed that the technical replicate injections were
always separated by the smallest difference and in many cases the
coordinated sections from each retina were also closely grouped
(supplemental Fig. 1). No additional outliers were observed.

Intraclass Correlation Analysis of Protein Distributions Among Indi-
vidual Retina Sections—To assess the reliability of several peptide-
to-protein quantification algorithms we employed the intraclass cor-

relation analysis, which is a statistical method used to describe
correlation among results of similar experiments obtained by different
experimental approaches or different observers (42). The degree of
similarity among the results of individual experiments is reflected by
the intraclass correlation coefficient (ICC). The ICC values and their
95% confidence intervals were calculated with the PASW Statistics
software, version 18 (SPSS Inc., Chicago, IL), using the ICC(2,1)
two-way random single measures (Consistency/Absolute agreement)
option.

Data Alignment Among Protein Distribution Profiles Obtained from
Individual Retinas—The retinal sectioning is not exactly the same from
sample to sample reflecting imperfections in specimen preparation:
freezing the retina may result in layer distortions causing three-dimen-
sional waving and small variations in tissue compression (26). In
addition, the thickness of the first section cannot be precisely con-
trolled on the microtome. Therefore, averaging protein quantification
data obtained from two retinas required an alignment of protein
distribution profiles in sections obtained from each of them, so at
least two of these variations (tissue compression and the first section
thickness) could be accounted for. This was accomplished using
phosducin as a representative protein, because it is an abundant
protein distributed through the entire photoreceptor length and ab-
sent from the neighboring cell types (27, 43). The distribution profiles
of phosducin were therefore modeled as piecewise cubic polynomi-
als. To reduce boundary artifacts, the original 12 elements of the
phosducin profile measurement vector obtained from each retina
were padded by adding four extra elements in the beginning and at
the end, creating a 20 element discrete representation of this profile
(44). We set the values for the first and the last four elements of this
vector equal to the fifth and 16th elements, respectively. We used
“cftool” function of the MATLAB software (Mathworks, Natick, MA) to
fit a piecewise cubic spline curve to each 20 elements profile. Next,
we searched for the scaled affine transform that warps the phosducin

profile in retina #1 to that in retina #2: Y1�x� �
1
c
Y2�ax � b�, where Y

is the value of this profile at a distance x from the origin. We estimated
the values of coefficients a, b and c by minimizing the following
constrained least-squares cost function:

â,b̂,ĉ � ArgMin
a,b,c

��Y1�x� �
1
c
Y2�ax � b��2

2

�
such that b � ��1,1� and x � �6,15�,

where �. . .�2
2 is the Euclidean norm. The constrain over b is evoked

because the mismatch between the two section sets cannot be larger
than a single section. The constrain over horizontal (x) search space
is evoked because the first and last real sample points (elements 5
and 16 in our padded measurement vectors) and their replicas (ele-
ments 1 to 4 and 17 to 20) are most prone to the measurement noise.
The calculated coefficients were: â 	 0.8, b̂ 	 0.95, ĉ 	 1.1. This
procedure allowed us to define the data acquired in 10 �m imperfect

Database search results and spectra have been uploaded in the form of Scaffold 3 files (.sf3, Proteome Software, Inc) to the Tranche
database (https://proteomecommons.org/tranche/) under the group “Photoreceptor Cell Proteomics” with the following hashes (password:
photoreceptor).

DDA data:
oKkwTkOTW52kBbI8QOQOyL1CWR3576yJ81vNKSXDUaYRnsFFNRK8
sL8mz8cNxabVckCTuMM/OhvpWsLTtxAB94v39X4AAAAAAAACgg		

DDA data acquired from retina #1 and 2

MSE Data 1:
5
MpeIU0Bl/g/jn6JREUo7Tk73pKnGGizrT51BWESA8tde55IjI2g3y6wh3KGlSK
o6lNSV1H8hbwwYmQfvTEqgSYMfUAAAAAAAADSA		

MSE data acquired from retina #1

MSE Data 2:
etkfeflM76zo5s7/K7cT7lI2XGClV6q8kqsIxOndeESgwVPIeEMRDQbq
GnJQoiPQfsJzg54mMU/eXe/MWroh3sAo81kAAAAAAAAC3Q		

MSE data acquired from retina #2
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physical sections as a corrected distance from the distal end of the
photoreceptor cell.

Immunohistochemistry—Immunofluorescence detection of se-
lected proteins in the rat retina was performed as described previ-
ously (45); all experiments were performed in triplicate. Briefly, eye
cups were fixed in paraformaldehyde and embedded in 4.5% low-
melt agarose (Invitrogen). One hundred and fifty-�m-thick cross-
sections of the retina were collected with a vibratome (Leica VT1200
S), incubated with blocking solution (3% goat serum and 0.1% Triton
X-100 in phosphate-buffered saline), treated with primary antibodies
overnight, washed and incubated with goat anti-rabbit Alexa Fluor
488 secondary antibodies (1:400). Stained sections were mounted
with Fluoromount G (Electron Microscopy Sciences) under glass cov-
erslips and visualized using a Nikon Eclipse 90i confocal microscope.
Polyclonal rabbit antibodies against hexokinase I and against hexoki-
nase II (1:200) were provided by J.E. Wilson (Department of Biochem-
istry, Michigan State University, East Lansing, MI), and antibodies
against triosephosphate isomerase (Fl-249) and GAPDH (sc-47724)
were purchased from Santa Cruz Biotechnology(Santa Cruz, CA)
(1:100). No signals were observed in control sections incubated with
the secondary antibody only.

RESULTS AND DISCUSSION

Label-Free Protein Quantification in Retinal Serial Sec-
tions—To analyze the patterns of protein distribution along
the longitudinal axis of the photoreceptor cell, we separated
the entire photoreceptor layer from a frozen flat-mounted rat
retina into 12 serial 10-�m-thick tangential sections and de-
termined the relative abundance of individual proteins in each
section by LC/MS (our workflow is illustrated in Fig. 1). The
analysis of 24 sections obtained from two individual retinas
yielded a total of 5038 unique peptides corresponding to 896
protein database entries (supplemental Table 1). This table
contains intensity values for all peptides from each section,
which were used for protein quantification. There are several
approaches to translate information contained in peptide in-
tensities determined in multiple biological samples into rela-
tive protein abundance in each sample. Many studies rely on

averaging the peptide intensity ratios of multiple peptides
representing each protein in different samples (e.g. (36, 46–
48)). Others average signals from the three most intense pep-
tides (49) or sum signals from all peptides identified for a given
protein (50–52). We, therefore, evaluated the accuracies of
these protein quantification algorithms in application to our
case.

Despite the unique protein composition of each section,
there are several protein groups expected to preserve a con-
stant molar ratio in all sections where they are found. These
are proteins confined to specific cellular organelles, which
maintain constant composition of their constituents regard-
less of their abundance in different sections. We applied four
different quantification algorithms to generate the distribution
profiles of proteins representing two organelles, the rod outer
segment and the mitochondrion: (1) we expressed the peak
area for the single most intense peptide from each protein as
percentage distribution among all twelve sections; (2) we
summed the peak areas for the three most intense peptides
representing a given protein; (3) we summed the peak areas
for all peptides from a given protein; (4) we calculated the
fraction of each peptide present in each section and averaged
the resulting values among all peptides representing a protein
of interest. Note that in algorithms #2 and #3 peptides
producing more intense peaks contributed to the resulting
value with higher weights, whereas in algorithm #4 each
peptide made an equal contribution to the resulting value.
The reliability of protein quantification obtained using each
algorithm was assessed by cross-correlating the resulting
profiles of proteins representing each organelle. We used
the intraclass correlation analysis (42), an ANOVA-based
statistical methodology in which the degree of similarity
among the individual protein profiles was reflected by the
ICC, ranging from 0 to 1.

FIG. 1. Schematic illustration of the
serial sectioning technique, sample
preparation, and MS workflow.
Twelve 10 �m-thick tangential sections
were collected from the photoreceptor
layer of a frozen flat-mounted rat retina
(left; reproduced with permission from
(26)). Each section was transferred into
a 0.6-ml reaction tube (middle panel)
and processed as described in the
workflow on the right. Abbreviations:
OS, outer segments; IS, inner seg-
ments; N, nuclear layer; ST, synaptic
termini.
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FIG. 2. Distribution profiles of rod
outer segment and mitochondrial pro-
teins calculated by four peptide-to-
protein quantification algorithms.
Data obtained for outer segment-spe-
cific proteins are shown on the left (A–G)
and for mitochondrial proteins on the
right (B–H). The plots are color-coded
according to descriptions in the legends
below the panels. Quantification algo-
rithms used in each case are indicated in
the panels. The subcellular localization
of each protein group is indicated by
black bars below the photoreceptor cell
cartoons on the top. Abbreviations: OS,
outer segment; IS, inner segment; N, nu-
cleus; ST, synaptic terminal.
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The first protein group included six phototransduction pro-
teins localized exclusively to rod outer segments (Fig. 2; Table
I), and indeed each protein quantification algorithm yielded
distribution profiles peaking in the several most distal sections
expected to represent rod outer segments. Interestingly, even
algorithm #1 based on the single most intense peptide
showed a fair degree of cross-correlation among individual
proteins (ICC 	 0.88; Fig. 2A). However, the ICC values were
higher for each other algorithm we used, with the best cross-
correlation obtained with algorithm #3 summing the intensi-
ties of all peptides from a given protein (Fig. 2E; ICC 	 0.96),
and the other two falling slightly behind (ICCs of 0.92 and 0.89
for algorithms #2 and #4, respectively; Fig. 2C, G). Repeating
this analysis for sections obtained from the second retina
yielded comparable results (Table I).

We next quantified a randomly chosen subset of eight
mitochondrial proteins (Figs. 2B, D, F, H; Table I). Their dis-
tribution profiles in photoreceptors are rather complex: the
majority resides in the inner segment and a minority in the
synaptic terminal (see cartoon above Fig. 2B), reflected by
lower absolute ICC values than for phototransduction pro-

teins. However, the relative ranking among the four protein
quantification algorithms was essentially the same: the best
cross-correlation was obtained by summing the intensities of
all peptides, algorithms #2 and #4 provided intermediate re-
sults, and the worst cross-correlation was obtained using the
single-peptide approach.

We also addressed how the reliability of the “sum of inten-
sities” protein quantification algorithm depends on the num-
ber of peptides used in calculations. The quantities of photo-
transduction and mitochondrial proteins in each section were
recalculated taking between one and nine most intense pep-
tides into account, and the ICC values were determined as
above (Fig. 3). All plots displayed an upward trend with ICC
values improving significantly by including a second and third
peptide and reaching saturation at �5–6 peptides, which
appears to be an optimal number for this analysis, at least for
the type of tissue samples and instrumentation used in our
study. These results are generally consistent with predictions by
Carrillo et al. (52), whose bioinformatics analysis and experi-
ments using a relatively simple protein mixture indicated that the
“sum of intensities” algorithm (#3) produces more accurate

FIG. 3. The dependence of protein quantification accuracy on the number of peptides used in the “sum of intensities” algorithm.
Protein distribution profiles for phototransduction and mitochondrial proteins were generated using the sum of intensities algorithm taking from
one to nine most intense peptides into calculation. The calculations were performed separately for each retina (retina #1 - closed symbols,
retina #2 - open symbols) for proteins shown in Fig. 2, except that transducin was omitted from the dataset in retina #2 because of its
light-driven translocation from outer segments. The ICC values were calculated for each protein group using one through nine of the most
intense peptides, as well as all peptides identified for each protein (see Experimental Procedures for computational details).

TABLE I
Intraclass correlation analysis of protein distribution profiles obtained by four different peptide-to-protein quantification algorithms

Peptide-to-protein algorithm ICCa retina #1 95% CIa retina #1 ICC retina #2b 95% CI retina #2

Outer segment proteins
Most intense peptide 0.88 0.76–0.96 0.93 0.84–0.98
Sum of 3 most intense peptides 0.92 0.89–0.98 0.95 0.89–0.98
Sum of all peptides 0.96 0.93–0.99 0.97 0.93–0.99
Ratios of all peptides 0.89 0.76–0.98 0.92 0.83–0.97

Mitochondrial proteins
Most intense peptide 0.72 0.53–0.89 0.75 0.57–0.90
Sum of 3 most intense peptides 0.90 0.80–0.96 0.87 0.75–0.95
Sum of all peptides 0.93 0.87–0.98 0.90 0.81–0.97
Ratios of all peptides 0.90 0.81–0.97 0.88 0.77–0.96

a Calculations of ICCs and 95% confidence intervals (CI) were performed separately for proteins from each retina using the PASW software
as described in Experimental Procedures.

b Transducin, known to translocate away from rod outer segments upon illumination, was excluded from this dataset.

Photoreceptor Proteome Map

10.1074/mcp.M110.002469–6 Molecular & Cellular Proteomics 10.3



estimates of relative protein abundance than the “average of
ratios” approach (#4). Our data extended this conclusion to an
example of a more complex biological system. We should also
stress that the idea to validate protein quantification algorithms
by correlating profiles of proteins known to exist in fixed stoi-
chiometric ratios in multiple samples is universally applicable to
essentially any type of biological sample.

Averaging Protein Distribution Profiles between Two Reti-
nas—We used the sum of intensities algorithm to generate
distribution profiles for all identified proteins in each retina
(supplemental Table 1, bold values). To preserve any poten-
tially useful information, we did not set any thresholds on the
minimal number of peptides or minimal peptide intensity,
although we realize that the accuracy of protein profiles ob-
tained on the basis of one or few peptides might require
particularly careful verification in any follow-up studies.

To improve reliability of this analysis, we averaged the
protein profiles between two retinas. This necessitated ac-
counting for any differences in tissue alignment encoun-
tered upon freezing and sectioning of each retina. As de-
scribed under “Experimental Procedures,” two kinds of
tissue distortion (tissue compression and unpredictability of
the first section thickness; Fig. 4A), could be compensated
mathematically. This was achieved by aligning the distribu-
tion profiles of phosducin, a marker protein chosen on the
criteria of high abundance, exclusive expression in photore-
ceptors and distribution throughout the entire photoreceptor
length (27, 43). Examination of each phosducin profile (Fig.
4C) suggested that the photoreceptor layer in retina #2 was
more compressed than in retina #1 and slightly shifted to a
lower section number. To account for both distortions, we
modeled phosducin profiles as piecewise cubic polynomials

FIG. 4. Data alignment among the
protein distribution profiles obtained
from two retinas. A and B, Cartoons
illustrating the presumed misalignment
between the two tangentially sectioned
retinas (A), compared with “perfect”
alignment (B). C, Distribution profiles of
phosducin in sections from each retina
calculated by the sum of intensities al-
gorithm. D, Phosducin distribution pro-
file from retina #2 aligned to fit the profile
from retina #1. E and F, original and
aligned distribution profiles for the
�-subunit of the cGMP-gated channel,
CNG-�1 (the mean square error value
was reduced from 1.37 � 107 to 6.22 �
106). G and H, Original and aligned dis-
tribution profiles for cytochrome C oxi-
dase subunit V (the mean square error
value was reduced from 4.75 � 104 to
7.43 � 103). Data for retina #1 are rep-
resented by a solid line; data for retina
#2 are represented by a dashed line.
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and applied a scaled linear model to align the profiles, as
described under “Experimental Procedures” (Fig. 4D), reduc-
ing the mean squared error between the retinas from 5�106 to
1.4�106. Applying the same correction parameters to other
proteins yielded very closely matching profiles, as exemplified
in Fig. 4E–4H for two abundant proteins (CNG-�1 and
COX5B) residing in different parts of the photoreceptor cell. In
all subsequent figures, we present averaged corrected protein
profiles in the physical space of retina #1.

Distribution Profiles of Proteins Representing Different Sub-
cellular Compartments of Photoreceptors—We defined the
positions of major photoreceptor compartments in the pro-
teome map using protein markers displaying highly restrictive
localization patterns. In principle, this approach is similar to
that of mapping organelles separated by centrifugation on a
sucrose density gradient (53). For example, we generated a
template profile for rod outer segments by averaging the
individual profiles of five phototransduction proteins (Fig. 5A;
solid line). Dashed lines in the same figure demonstrate that
this template is a strong predictor of the distribution profiles
for other proteins known to be confined to outer segments.
We should note that a small group of signaling proteins, most
importantly arrestin and transducin, change their distributions
between the outer segments and the rest of the photoreceptor
cell in a light-dependent manner, with arrestin moving into
and transducin out of the outer segment (54). Although a
detailed analysis of this phenomenon was not a focus of the
present study, the distribution patterns of both arrestin and
transducin were in good agreement with results obtained by
other methods (supplemental Table 1), serving as an internal
control that the expected protein distribution differences be-
tween the two retinas were clearly detected.

A similar approach was used to generate templates for
proteins representing photoreceptor inner segments, the nu-
clear layer and the synaptic region (Fig. 5B). Although gener-
ating nuclear and synaptic templates was a straightforward
task accomplished on the basis of randomly chosen abundant
proteins representing each compartment, generating a tem-
plate for the inner segment was challenging because most
proteins residing there are also present in other parts of the

FIG. 5. Distribution profiles of photoreceptor proteins repre-
senting different subcellular compartments. Protein distribution
profiles were calculated for each retina using the sum of intensities
algorithm and averaged among the retinas after applying the align-
ment procedure shown in Fig. 4. A, The template profile for rod outer
segment-specific proteins (solid brown line obtained by averaging the
profiles of the �-subunit of cGMP phosphodiesterase, rhodopsin
kinase, RGS9, the �-subunit of cyclic nucleotide gated channel and

type E guanylate cyclase) and profiles of four other outer segment-
specific proteins (dashed lines) listed and color-coded in the panel.
B, Template profiles for outer segments (brown), inner segments
(orange; based on rootletin), nuclear layer (blue; based on averaging
profiles of heterogeneous nuclear ribonucleoprotein F, acidic nuclear
phosphoprotein 32, nucleolin, IMP dehydrogenase, and small nuclear
ribonucleoprotein D1), and synaptic termini (green; based on averag-
ing profiles of synaptophysin, synaptic vesicle protein, Rab-3A, C-
terminal binding protein 2 and vesicle-associated membrane protein
2). C, The template profile for rod inner segments (a solid orange line)
and profiles of four other proteins closely matching this profile
(dashed lines) listed and color-coded in the panel. For each panel, the
subcellular localizations of individual protein groups are indicated by
the bars next to the photoreceptor cell cartoons.
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cell. A rare exception is rootletin, a cytoskeletal protein
thought to support the structural integrity of the inner-outer
segment junction (55). The distribution profile of rootletin (Fig.
5B; orange line) was similar to the inner segment-specific
peak of mitochondrial protein profiles, but unlike most mito-
chondrial proteins did not display a notable second peak at
the synaptic terminal (e.g. Fig. 2F). To determine whether
other proteins in our database have profiles similar to rootle-
tin, we calculated the level of overlap between the rootletin
template and averaged profiles of all other database entries.
The proteins quantified on the basis of at least two peptides
and displaying at least 80% overlap with rootletin are listed in
supplemental Table 2. Although most represent mitochondrial
proteins, because of their dominant peak in inner segments,
several other hits were revealed, most notably the voltage-
gated K
 channel and retinoschisin (Fig. 5C). The former was
shown to be expressed in photoreceptors (56) and the latter is
known to be a part of the interphotoreceptor matrix (57).
However the highly restricted localization patterns observed
in Fig. 5C have not previously been established for either
protein. On the other hand, the �2 subunit of Na
/K
 ATPase
was previously shown to be restricted to the inner segments
(58), and this pattern was indeed confirmed in Fig. 5C. An-
other interesting example, hexokinase II, will be analyzed in
detail below.

In addition to photoreceptors, the outer retina contains
parts of two non-neuronal cell types, the Müller glial cells and
the retinal pigment epithelium. The processes of the pigment
epithelium extend into the space between rod and cone outer
segments and, indeed, several proteins from the pigment
epithelium were found in the first two sections of our map
representing the outer segment tips (Fig. 6A). Müller cells

span their cell bodies throughout the entire retina up to the
border between photoreceptor inner segments and nuclei
(called the outer limiting membrane); their thin microvilli pen-
etrate even further into the space between inner segments.
Accordingly, several Müller cell-specific proteins were present
in our map, displaying distribution profiles reflecting this an-
atomical pattern (Fig. 6B). One protein, the cellular retinal
aldehyde binding protein (CRALBP), is known to be ex-
pressed in both Müller cells and the pigment epithelium (59);
in fact, the profile of CRALBP, but not other proteins from
Müller cells contained an additional small peak in the outmost
sections.

Cellular Distribution Patterns of Glycolytic Enzymes—Pho-
toreceptors are among the most metabolically active cells in
the body. In the dark, they need energy to power ion pumps
maintaining both the circulating dark current and Ca2
 flux for
synaptic transmission. In the light, they expend significant
energy to support phototransduction (see (60, 61) for recent
detailed analyses). It has been long known that glycolysis
plays a critical role in fulfilling these energy needs (62). Glu-
cose reaches the outer retina from the blood, passing the
layer of pigment epithelium cells with the aid of facilitative
glucose transporter Glut1 (63, 64). The same transporter is
used for glucose entry into photoreceptor cells, where it is
expressed in inner segments and synaptic terminals, but not
outer segments, as demonstrated in our recent study (65). We
now used the photoreceptor proteome map to investigate the
intracellular sites of subsequent glucose metabolism by ana-
lyzing distribution patterns for the entire set of glycolytic en-
zymes (Fig. 7).

The Identity and Localization of Hexokinase Isoforms—Our
immediate surprising finding was that, unlike the majority of

FIG. 6. Distribution profiles of proteins representing the retinal pigment epithelium and Müller cells. Profiles were calculated for each
retina using the sum of intensities algorithm and averaged between the two retinas after applying the alignment procedure shown in Fig. 4. The
template profiles for the retinal pigment epithelium (A) and Müller cells (B) are shown as black solid lines. Each profile was calculated by
averaging the profiles of individual proteins listed in the panels and shown as dashed lines. Note that CRALBP was not used in template
calculations because of its presence in both cell types. The localization of each cell relative to photoreceptors is shown in cartoons above each
panel. Abbreviations: RPE, retinal pigment epithelium; MC, Müller cell.
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neurons, photoreceptors express hexokinase II in addition to
the previously found hexokinase I (66). Furthermore, the dis-
tribution profiles of each hexokinase isoform were distinctly
different from those for the majority of glycolytic enzymes (Fig.
7A). The latter displayed profiles suggesting an even distribu-
tion throughout the entire cytoplasmic volumes of photore-
ceptors and neighboring cells. They resembled the distribu-
tion of phosducin (Fig. 4), except for a higher abundance in
sections 10–12 containing significant amounts of material
from non-photoreceptor cells, consistent with these proteins
being expressed in adjacent cell types as well. In contrast, the

profiles for each hexokinase had a large peak in the inner
segment, likely reflecting their established pattern of mito-
chondrial association ((67); reviewed in (68, 69)). Hexokinase I
displayed a second, even larger peak in sections 10–12,
whereas hexokinase II was confined almost entirely to the
inner segments, resembling the profile of rootletin (Fig. 5C).

To elaborate on these observations, we immunostained
retina cross-sections with antibodies specifically recognizing
each hexokinase isoform and found that each staining pattern
closely matched its proteomic profile. Hexokinase I was ex-
pressed most abundantly outside the photoreceptor layer,

FIG. 7. The distribution of glycolytic
enzymes in the retina. A, Distribution
profiles of eleven glycolytic enzymes
identified in the photoreceptor proteome
map. The color coding of individual pro-
files is indicated to the right of the figure.
The profiles of proteins further investi-
gated by immunohistochemistry are
shown as solid lines and the profiles of
other proteins as dashed lines. B, Con-
densed schematic of the glycolytic path-
way, highlighting the reactions catalyzed
by hexokinase and triosephosphate
isomerase. C, Cartoon of a photorecep-
tor cell aligned with proteome profiles in
panel A and retina immunostainings in
panels D–G. D–G, Immunostaining of
retina cross-sections with antibodies
against hexokinase I (D), hexokinase II
(E), triosephosphate isomerase (F) and
GAPDH (G). The individual panels are
aligned by the position of the outer lim-
iting membrane, indicated by an arrow
below panel G. Abbreviations: OS, outer
segments; IS, inner segments; ONL,
outer nuclear layer; N, nucleus: ST, syn-
aptic terminal; OPL, outer plexiform lay-
er; INL, inner nuclear layer; IPL, inner
plexiform layer; GC, ganglion cell layer.
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although it was also found in photoreceptor inner segments
(Fig. 7D; see also (66)). In contrast, almost all hexokinase II
was found in inner segments, with a very small additional
signal in photoreceptor synapses and essentially no staining
in other retinal cells (Fig. 7E). For comparison, we immuno-
stained retina sections with an antibody against glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH), the proteomic
profile of which was representative of the majority of glycolytic
enzymes (Fig. 7G). The staining pattern for GAPDH differed
from both hexokinase isoforms and was indeed consistent
with an even cytoplasmic distribution in photoreceptors and
other retina cells.

The presence of hexokinase II and the mitochondria-asso-
ciated localization pattern for both isoforms likely reflect the
unique properties of glucose metabolism in photoreceptors.
Hexokinases catalyze the first step in glycolysis—the phos-
phorylation of glucose to produce glucose-6-phosphate (Fig.
7B)—which is essential for intracellular glucose retention be-
cause phosphorylated glucose cannot undergo reversible
transport through the plasma membrane. Hexokinase I is
ubiquitously expressed in neuronal tissues, whereas hexoki-
nase II is typically found in myocytes and cancer cells known
to be particularly dependent on anaerobic energy metabolism
(reviewed in (70, 71)). The latter is attributed to the higher
catalytic activity of hexokinase II and its activation through
mitochondrial association (70). Our finding that photorecep-
tors, but not other cells in the retina, express predominantly
hexokinase II suggests that they also benefit from utilizing this
more versatile isoform in order to keep up with the high level
of energy metabolism.

We should also note that the lack of either hexokinase in
the outer segment hints why outer segments are also de-
prived of the Glut1 glucose transporter (65). Glucose phos-
phorylation by hexokinase is required to trap glucose inside
the cell because glucose-6-phosphate cannot escape the
cell through the same transporter. Therefore, direct glucose
entry into the outer segment compartment devoid of hexo-
kinases would not result in its intracellular accumulation.
Instead, glucose enters the cell in the inner segment, where
it is converted into glucose-6-phosphate by hexokinases
and can undergo further metabolism in both the inner and
outer segments.

The Localization of Triosephosphate Isomerase—The third
glycolytic enzyme with a profile distinctly different from the
majority of this group was triosephosphate isomerase. Its
proteomic profile displayed a steady upward trend from outer
segments to synapses (Fig. 7A). Immunostaining revealed that
the abundance of this enzyme in photoreceptors is very low
compared with other cells. At a staining intensity providing
bright signals in the inner retina, we observed essentially no
staining in outer segments and little staining around the outer
limiting membrane and around the nuclei, a pattern more
consistent with staining of Müller cells than photoreceptors
(Fig. 7F).

The role of triosephosphate isomerase in glycolysis is to
convert dihydroxyacetone phosphate into glyceraldehyde-3-
phosphate, after both are produced upon the cleavage of
fructose-1,6-bisphosphate by fructose bisphosphate aldolase
(Fig. 7B). Therefore, low abundance of triosephosphate
isomerase in photoreceptors is predicted to result in an ele-
vated level of dihydroxyacetone phosphate compared with
other retina cells. Although we can only speculate about the
functional significance of such a phenomenon, one possibility
is that it relates to phospholipid biosynthesis, as dihydroxy-
acetone phosphate serves as a precursor of glycerol-3-phos-
phate, the phospholipid backbone (72). Photoreceptors syn-
thesize phospholipids at an unusually high rate because of the
constant renewal of their outer segment membranes (73, 74).
The surface area of these membranes produced daily in a rat
retina exceeds the surface area of the eyeball by over 50-fold
(75). This makes it plausible that an elevated dihydroxyac-
etone phosphate concentration would facilitate this biosyn-
thetic pathway.

As a final note in regards to glycolytic enzymes in the outer
retina, we should mention that our data reject a recent claim
that photoreceptors, retinal pigment epithelium and Müller
cells lack glucose-6-phosphate isomerase-1 (76). We identi-
fied 36 peptides from this protein, showed that its distribution
profile matches the majority of glycolytic enzymes and found
no evidence that any other glucose-6-phosphate isomerase
isoform is present in the outer retina within the detectability
limits of our assay.

Concluding Remarks—The data presented in this study
illustrate the power of combining label-free quantitative pro-
teomics with subcellular fragmentation of a layered tissue by
serial sectioning. Based on this approach, we generated a
proteome map describing the distribution profiles of hundreds
of proteins representing the photoreceptor layer of the ret-
ina. We used this map to examine the subcellular compo-
sition of glycolytic enzymes and revealed previously un-
known patterns of isoform composition and distribution, all
suggesting unique mechanistic features employed by pho-
toreceptor cells to meet their high energetic and metabolic
needs. This is unlikely to be the sole discovery embedded
within our protein map, which is presented in a format that
can be mined by other investigators studying other aspects
of photoreceptor function.

Our approach to studying the photoreceptor proteome dif-
fers from that used in several recent reports. Most previous
studies focused on analyzing the protein composition of rod
outer segments, the organelle readily separable from the rest
of the retina by centrifugation procedures (77–79). Others
attempted to obtain proteomes of the whole photoreceptor
cell by mechanical separation of the retina layers (80), obtain-
ing tangential sections containing the entire photoreceptor
layer (81), or by analyzing the difference between proteomes
of the normal retinas and those in which rods underwent
inherited degeneration (82). Unlike any of these strategies,
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thin serial sectioning allowed us to conduct protein identifi-
cation and quantification in all the individual subcellular com-
partments of these cells, each defined by profile shapes of
marker proteins. Our approach is also different from any
“snapshot” proteomes of fractionated organelles, which rarely
contain any intrinsic hints to distinguish between the proteins
actually residing in an organelle of interest and those intro-
duced from contaminations. For example, each published rod
outer segment proteome contained multiple entries of mito-
chondrial and nuclear proteins, despite their actual absence
from outer segments (77–79). Sections representing the outer
segments in our study were not free of contamination either,
but unlike in snapshot proteomes, the distinction between
outer segment-specific proteins and contaminants from other
cellular compartments could be made on the basis of each
protein’s overall distribution profile.

Finally, we would like to stress that the approach developed
in this study can serve as a guide for generating similar
proteome databases addressing protein distribution profiles
in essentially any layered tissue. Our work represents a case
study exploring both general methodology of protein quanti-
fication and simple computational corrections for the un-
avoidable problem of tissue distortion during cryosectioning.
In fact, the retina is among the smallest layered tissues in our
body; applying the same approach to larger tissues is likely to
yield deeper protein coverage, while being less technically
challenging. Furthermore, a similar strategy could be very
useful in the proteomic investigation of specimens where
quantification of proteins with high spatial resolution at a
margin is important, for example the margins of invasive
tumors.
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15. Pasa-Tolić, L., Masselon, C., Barry, R. C., Shen, Y., and Smith, R. D. (2004)
Proteomic analyses using an accurate mass and time tag strategy.
BioTechniques 37, 621–624,626–633, 636 passim

16. Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z.,
McKenna, T., Nold, M. J., Richardson, K., Young, P., and Geromanos, S.
(2005) Quantitative proteomic analysis by accurate mass retention time
pairs. Anal. Chem. 77, 2187–2200

17. Adkins, J. N., Monroe, M. E., Auberry, K. J., Shen, Y., Jacobs, J. M., Camp,
D. G., 2nd, Vitzthum, F., Rodland, K. D., Zangar, R. C., Smith, R. D., and
Pounds, J. G. (2005) A proteomic study of the HUPO Plasma Proteome
Project’s pilot samples using an accurate mass and time tag strategy.
Proteomics 5, 3454–3466

18. Zimmer, J. S., Monroe, M. E., Qian, W. J., and Smith, R. D. (2006) Advances
in proteomics data analysis and display using an accurate mass and time
tag approach. Mass Spectrom. Rev. 25, 450–482

19. Tolmachev, A. V., Monroe, M. E., Purvine, S. O., Moore, R. J., Jaitly, N.,
Adkins, J. N., Anderson, G. A., and Smith, R. D. (2008) Characterization
of strategies for obtaining confident identifications in bottom-up pro-
teomics measurements using hybrid FTMS instruments. Anal. Chem. 80,
8514–8525

20. Webb-Robertson, B. J. M., Cannon, W. R., Oehmen, C. S., Shah, A. R.,
Gurumoorthi, V., Lipton, M. S., and Waters, K. M. (2010) A support vector
machine model for the prediction of proteotypic peptides for accurate
mass and time proteomics. Bioinformatics 26, 1677–1683

21. Kiebel, G. R., Auberry, K. J., Jaitly, N., Clark, D. A., Monroe, M. E., Peterson,
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Dorsselaer, A., Sahel, J. A., and Léveillard, T. (2003) Differential pro-
teomic analysis of the mouse retina: the induction of crystallin proteins
by retinal degeneration in the rd1 mouse. Mol. Cell. Proteomics 2,
494–505

Photoreceptor Proteome Map

10.1074/mcp.M110.002469–14 Molecular & Cellular Proteomics 10.3


