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Fast and Robust Multiframe Super Resolution
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Abstract—Super-resolution reconstruction produces one or a set
of high-resolution images from a set of low-resolution images. In
the last two decades, a variety of super-resolution methods have
been proposed. These methods are usually very sensitive to their
assumed model of data and noise, which limits their utility. This
paper reviews some of these methods and addresses their short-
comings. We propose an alternate approach using 1 norm min-
imization and robust regularization based on a bilateral prior to
deal with different data and noise models. This computationally in-
expensive method is robust to errors in motion and blur estimation
and results in images with sharp edges. Simulation results confirm
the effectiveness of our method and demonstrate its superiority to
other super-resolution methods.

Index Terms—Bilateral filter, deblurring, enhancement, image
restoration, multiframe, regularization, robust estimation, super
resolution, total variation (TV).

I. INTRODUCTION

THEORETICAL and practical limitations usually constrain
the achievable resolution of any imaging device. A dy-

namic scene with continuous intensity distribution is
seen to be warped at the camera lens because of the relative mo-
tion between the scene and camera. The images are blurred both
by atmospheric turbulence and camera lens by continuous point
spread functions and . Then, they will
be discretized at the CCD resulting in a digitized noisy frame

. We represent this forward model by the following:

(1)

in which is the two-dimensional convolution operator, is
the warping operator, is the discretizing operator, is
the system noise, and is the resulting discrete noisy and
blurred image. Fig. 1 illustrates this equation.

Super resolution is the process of combining a sequence of
low-resolution (LR) noisy blurred images to produce a higher
resolution image or sequence. The multiframe super-resolution
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Fig. 1. Block diagram representation of (1), where X(x; y) is the continuous
intensity distribution of the scene, V [m;n] is the additive noise, and Y [m;n]
is the resulting discrete low-quality image.

problem was first addressed in [1], where they proposed a fre-
quency domain approach, extended by others, such as [2]. Al-
though the frequency domain methods are intuitively simple and
computationally cheap, they are extremely sensitive to model er-
rors [3], limiting their use. Also, by definition, only pure trans-
lational motion can be treated with such tools and even small
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deviations from translational motion significantly degrade per-
formance.

Another popular class of methods solves the problem of reso-
lution enhancement in the spatial domain. Non-iterative spatial
domain data fusion approaches were proposed in [4]–[6]. The
iterative back-projection method was developed in papers such
as [7] and [8]. In [9], the authors suggested a method based on
the multichannel sampling theorem. In [10], a hybrid method,
combining the simplicity of ML with proper prior information
was suggested.

The spatial domain methods discussed so far are generally
computationally expensive. The authors in [11] introduced a
block circulant preconditioner for solving the Tikhonov regular-
ized super-resolution problem formulated in [10] and addressed
the calculation of regularization factor for the under-determined
case by generalized cross validation in [12]. Later, a very fast
super-resolution algorithm for pure translational motion and
common space invariant blur was developed in [5]. Another
fast spatial domain method was recently suggested in [13],
where LR images are registered with respect to a reference
frame defining a nonuniformly spaced high-resolution (HR)
grid. Then, an interpolation method called Delaunay trian-
gulation is used for creating a noisy and blurred HR image,
which is subsequently deblurred. All of the above methods
assumed the additive Gaussian noise model. Furthermore,
regularization was either not implemented or it was limited to
Tikhonov regularization. Considering outliers, [14] describes a
very successful robust super-resolution method, but lacks the
proper mathematical justification ( limitations of this robust
method and its relation to our proposed method are discussed
in Appendix B). Finally, [15] and [16] have considered quan-
tization noise resulting from video compression and proposed
iterative methods to reduce compression noise effects in the
super-resolved outcome.

The two most common matrix notations used to formulate the
general super-resolution model of (1) represent the problem in
the pixel domain. The more popular notation used in [5], [11],
and [14] considers only camera lens blur and is defined as

(2)

where the matrix is the geometric motion
operator between the HR frame (of size ) and the

th LR frame (of size ) which are rearranged in
lexicographic order and is the resolution enhancement factor.
The camera’s point spread function (PSF) is modeled by the

blur matrix , and matrix
represents the decimation operator. The vector

is the system noise and is the number of available LR frames.
Considering only atmosphere and motion blur, [13] recently

presented an alternate matrix formulation of (1) as

(3)

In conventional imaging systems (such as video cameras),
camera lens blur has a more important effect than the atmo-
spheric blur (which is very important for astronomical images).
In this paper, we use the model (2). Note that, under some
assumptions which will be discussed in Section II-B, blur and

motion matrices commute and the general matrix super-resolu-
tion formulation from (1) can be rewritten as

(4)

Defining merges both models into a form
similar to (2).

In this paper, we propose a fast and robust super-resolution al-
gorithm using the norm, both for the regularization and the
data fusion terms. Whereas the former is responsible for edge
preservation, the latter seeks robustness with respect to motion
error, blur, outliers, and other kinds of errors not explicitly mod-
eled in the fused images. We show that our method’s perfor-
mance is superior to what was proposed earlier in [5], [11], [14],
etc., and has fast convergence. We also mathematically justify a
noniterative data fusion algorithm using a median operation and
explain its superior performance.

This paper is organized as follows. Section II explains the
main concepts of robust super resolution. Section II-B justifies
using the norm to minimize the data error term; Section II-C
justifies using our proposed regularization term. Section II-D
combines the results of the two previous sections and explains
our method and Section II-E proposes a faster implementation
method. Simulations on both real and synthetic data sequences
are presented in Section III, and Section IV concludes this paper.

II. ROBUST SUPER RESOLUTION

A. Robust Estimation

Estimation of an unknown HR image is not exclusively based
on the LR measurements. It is also based on many assumptions
such as noise or motion models. These models are not supposed
to be exactly true, as they are merely mathematically convenient
formulations of some general prior information.

From many available estimators, which estimate a HR image
from a set of noisy LR images, one may choose an estimation
method which promises the optimal estimation of the HR frame,
based on certain assumptions on data and noise models. When
the fundamental assumptions of data and noise models do not
faithfully describe the measured data, the estimator performance
degrades. Furthermore, existence of outliers, which are defined
as data points with different distributional characteristics than
the assumed model, will produce erroneous estimates. A method
which promises optimality for a limited class of data and noise
models may not be the most effective overall approach. Often,
suboptimal estimation methods which are not as sensitive to
modeling and data errors may produce better and more stable
results (robustness).

To study the effect of outliers, the concept of a breakdown
point has been used to measure the robustness of an algorithm.
The breakdown point is the smallest percentage of outlier con-
tamination that may force the value of the estimate outside some
range [17]. For instance, the breakdown point of the simple
mean estimator is zero, meaning that one single outlier is suffi-
cient to move the estimate outside any predicted bound. A robust
estimator, such as the median estimator, may achieve a break-
down equal to 0.5, which is the highest value for breakdown



FARSIU et al.: FAST AND ROBUST MULTIFRAME SUPER RESOLUTION 1329

points. This suggests that median estimation may not be affected
by data sets in which outlier contaminated measurements form
less that 50% of all data points.

A popular family of estimators are the ML-type estimators (M
estimators) [18]. We rewrite the definition of these estimators
in the super resolution context as the following minimization
problem:

(5)

or by an implicit equation

(6)

where is measuring the “distance” between the
model and measurements and

. The ML estimate of
for an assumed underlying family of exponential
densities can be achieved when

.
To find the ML estimate of the HR image, many papers such

as [2], [5], and [11] adopt a data model such as (2) and model
(additive noise) as white Gaussian noise. With this noise

model, least-squares approach will result in the ML estimate
[19]. The least-squares formulation is achieved when is the

norm of residual

(7)

For the special case of super resolution, based on [5], we will
show in the next section, that least-squares estimation has the
interpretation of being a nonrobust mean estimation. As a result,
least squares-based estimation of a HR image, from a data set
contaminated with non-Gaussian outliers, produces an image
with visually apparent errors.

To appreciate this claim and study the visual effects of dif-
ferent sources of outliers in a video sequence, we set up the
following experiments. In these experiments, four LR images
were used to reconstruct a higher resolution image with two
times more pixels in vertical and horizontal directions [a resolu-
tion enhancement factor of two using the least-squares approach
(7)]. Fig. 2(a) shows the original HR image and Fig. 2(b) shows
one of these LR images which has been acquired by shifting
Fig. 2(a) in vertical and horizontal directions and subsampling
it by factor of two (pixel replication is used to match its size with
other pictures).

In the first experiment one of the four LR images contained
affine motion with respect to the other LR images. If the model
assumes translational motion, this results in a very common
source of error when super resolution is applied to real data se-
quences, as the respective motion of camera and the scene are
seldom pure translational. Fig. 2(c) shows this outlier image.
Fig. 2(d) shows the effect of this error in the motion model
(shadows around Lena’s hat) when the non robust least-squares
approach [5] is used for reconstruction.

To study the effect of non-Gaussian noise models, in the
second experiment all four LR images were contaminated with

salt and pepper noise. Fig. 2(e) shows one of these LR images
and Fig. 2(f) is the outcome of the least-squares approach for
reconstruction.

As the outlier effects are visible in the output results of least-
squares-based super-resolution methods, it seems essential to
find an alternative estimator. This new estimator should have
the essential properties of robustness to outliers and fast imple-
mentation.

B. Robust Data Fusion

In Section II-A, we discussed the shortcomings of least
squares-based HR image reconstruction. In this subsection,
we study the family of , norm estimators. We
choose the most robust estimator of this family and show how
implementation of this estimator requires minimum memory
usage and is very fast.

The following expression formulates the minimization
criterion:

(8)

Note that if , then (8) will be equal to (7).
Considering translational motion and with reasonable as-

sumptions such as common space-invariant PSF, and similar
decimation factor for all LR frames (i.e., and

which is true when all images are acquired with a
unique camera), we calculate the gradient of the cost. We
will show that norm minimization is equivalent to pixelwise
weighted averaging of the registered frames. We calculate these
weights for the special case of norm minimization and show
that norm converges to median estimation which has the
highest breakpoint value.

Since and are block circulant matrices, they commute
( and ). Therefore, (8) may be
rewritten as

(9)

We define . So, is the blurred version of the ideal
HR image . Thus, we break our minimization problem in two
separate steps:

1) finding a blurred HR image from the LR measurements
(we call this result );

2) estimating the deblurred image from .
Note that anything in the null space of will not converge by
the proposed scheme. However, if we choose an initialization
that has no gradient energy in the null space, this will not pose
a problem (see [5] for more details). As it turns out, the null
space of corresponds to very high frequencies, which are not
part of our desired solution. Note that addition of an appropriate
regularization term (Section II-C) will result in a well-posed
problem with an empty null space. To find , we substitute
with

(10)
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Fig. 2. Simulation results of outlier effects on super-resolved images. The original HR image in (a) was warped with translational motion and down sampled
resulting in four images such as (b). (c) Image acquired with downsampling and zoom (affine motion). (d) Reconstruction of these four LR images with least-squares
approach. (e) One of four LR images acquired by adding salt and pepper noise to set of images in (b). (f) Reconstruction of images in (e) with least-squares approach.
(a) Original HR frame. (b) LR frame. (c) LR Frame with zoom. (d) Least-squares result. (e) LR frame with salt and pepper outlier. (f) Least-squares result.

The gradient of the cost in (10) is

(11)

where operator is the element-by-element product of two
vectors.

The vector which minimizes the criterion (10) will be the
solution to . There is a simple interpretation for the so-
lution: The vector is the weighted mean of all measurements
at a given pixel, after proper zero filling and motion compensa-
tion.

To appreciate this fact, let us consider two boundary values
of . If , then

(12)
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Fig. 3. Effect of upsampling D matrix on a 3� 3 image and downsampling matrix D on the corresponding 9� 9 upsampled image (resolution enhancement
factor of three). In this figure, to give a better intuition, the image vectors are reshaped as matrices.

which is proved in [5] to be the pixelwise average of measure-
ments after image registration. If then the gradient term
will be

(13)

We note that copies the values from the LR grid to the
HR grid after proper shifting and zero filling, and copies
a selected set of pixels in HR grid back on the LR grid (Fig. 3
illustrates the effect of upsampling and downsampling matrices

, and ). Neither of these two operations changes the pixel
values. Therefore, each element of , which corresponds to
one element in , is the aggregate of the effects of all LR frames.
The effect of each frame has one of the following three forms:

1) addition of zero, which results from zero filling;
2) addition of , which means a pixel in was larger than

the corresponding contributing pixel from frame ;
3) addition of , which means a pixel in was smaller than

the corresponding contributing pixel from frame .
A zero gradient state ( ) will be the result of adding an
equal number of and , which means each element of
should be the median value of corresponding elements in the
LR frames. , the final super-resolved picture, is calculated by
deblurring .

So far, we have shown that results in pixelwise me-
dian and results in pixelwise mean of all measurements
after motion compensation. According to (11), if ,
then both and terms
appear in . Therefore, when the value of is near one, is
a weighted mean of measurements, with much larger weights
around the measurements near the median value, while when
the value of is near two the weights will be distributed more
uniformly.

In this subsection we studied , norm minimiza-
tion family. As , this estimator takes the shape of median
estimator, which has the highest breakpoint value, making it the
most robust cost function. For the rest of this paper, we choose

to minimize the measurement error1 (note that we left out the
study of , norm minimization family as they are
not convex functions).

In the square or under-determined cases ( and
respectively), there is only one measurement available for each

1L norm minimization is the ML estimate of data in the presence of Lapla-
cian noise. The statistical analysis presented in [20] justifies modeling the super-
resolution noise in the presence of different sources of outliers as Laplacian
probability density function (PDF) rather than Gaussian PDF.

HR pixel. As median and mean operators for one or two mea-
surements give the same result, and norm minimizations
will result in identical answers. Also, in the under-determined
cases, certain pixel locations will have no estimate at all. For
these cases, it is essential for the estimator to have an extra term,
called regularization term, to remove outliers. The next section
discusses different regularization terms and introduces a robust
and convenient regularization term.

C. Robust Regularization

Super resolution is an ill-posed problem [11], [21]. For the
under-determined cases (i.e., when fewer than frames are
available), there exist an infinite number of solutions which sat-
isfy (2). The solution for square and over-determined cases is
not stable, which means small amounts of noise in measure-
ments will result in large perturbations in the final solution.
Therefore, considering regularization in super-resolution algo-
rithm as a means for picking a stable solution is very useful,
if not necessary. Also, regularization can help the algorithm to
remove artifacts from the final answer and improve the rate of
convergence. Of the many possible regularization terms, we de-
sire one which results in HR images with sharp edges and is
easy to implement.

A regularization term compensates the missing measurement
information with some general prior information about the de-
sirable HR solution, and is usually implemented as a penalty
factor in the generalized minimization cost function (5)

(14)

where , the regularization parameter, is a scalar for properly
weighting the first term (similarity cost) against the second term
(regularization cost) and is the regularization cost function.

One of the most widely referenced regularization cost func-
tions is the Tikhonov cost function [10], [11]

(15)

where is usually a highpass operator such as derivative, Lapla-
cian, or even identity matrix. The intuition behind this regular-
ization method is to limit the total energy of the image (when
is the identity matrix) or forcing spatial smoothness (for deriva-
tive or Laplacian choices of ). As the noisy and edge pixels
both contain high-frequency energy, they will be removed in the
regularization process and the resulting denoised image will not
contain sharp edges.
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Certain types of regularization cost functions work efficiently
for some special types of images but are not suitable for general
images (such as maximum entropy regularizations which pro-
duce sharp reconstructions of point objects, such as star fields
in astronomical images [22]).

One of the most successful regularization methods for de-
noising and deblurring is the total variation (TV) method [23].
The TV criterion penalizes the total amount of change in the
image as measured by the norm of the magnitude of the gra-
dient and is defined as

where is the gradient operator. The most useful property of
TV criterion is that it tends to preserve edges in the reconstruc-
tion [22]–[24], as it does not severely penalize steep local gra-
dients.

Based on the spirit of TV criterion, and a related technique
called the bilateral filter (Appendix A), we introduce our robust
regularizer called bilateral TV, which is computationally cheap
to implement, and preserves edges. The regularizing function
looks like

(16)

where matrices (operators) , and shift by , and pixels
in horizontal and vertical directions respectively, presenting sev-
eral scales of derivatives. The scalar weight , , is ap-
plied to give a spatially decaying effect to the summation of the
regularization terms.

It is easy to show that this regularization method is a general-
ization of other popular regularization methods. If we limit
to the two cases of , and , with ,
and define operators and as representatives of the first
derivative ( and ) then (16) results in

(17)

which is suggested in [25] as a reliable and computationally
efficient approximation to the TV prior [23].

To compare the performance of bilateral TV ( ) to
common TV prior ( ), we set up the following denoising
experiment. We added Gaussian white noise of mean zero and
variance 0.045 to the image in Fig. 4(a) resulting in the noisy

image of Fig. 4(b). If and represent the original and cor-
rupted images then following (14), we minimized

(18)

to reconstruct the noisy image. Tikhonov denoising resulted in
Fig. 4(c), where in (15) was replaced by matrix realization of
the Laplacian kernel

(19)

Although a relatively large regularization factor ( ) was
chosen for this reconstruction which resulted in the loss of sharp
edges, yet the noise has not been removed efficiently. The result
of using TV prior ( , ) for denoising is shown
in Fig. 4(d). Fig. 4(e) shows the result of applying bilateral TV
prior ( , ). 2 Notice the effect of each recon-
struction method on the pixel indicated by an arrow in Fig. 4(a).
As this pixel is surrounded by nonsimilar pixels, TV prior con-
siders it as a heavily noisy pixel and uses the value of imme-
diate neighboring pixels to estimate its original value. On the
other hand, bilateral TV considers a larger neighborhood. By
bridging over immediate neighboring pixels, the value of sim-
ilar pixels are also considered in graylevel estimation of this
pixel, therefore the smoothing effect in Fig. 4(e) is much less
than Fig. 4(d). Fig. 4(f) compares the performance of TV and
bilateral TV denoising methods in estimating graylevel value
of the arrow indicated pixel. Unlike bilateral TV regularization,
increasing the number of iterations in Tikhonov and TV regular-
izations will result in more undesired smoothing. This example
demonstrates the tendency of other regularization functionals to
remove point like details from the image. The proposed regular-
ization not only produces sharp edges but also retains point like
details.

To compare the performance of our regularization method to
the Tikhonov regularization method, we set up another experi-
ment. We corrupted an image by blurring it with a Gaussian blur
kernel followed by adding Gaussian additive noise. We recon-
structed the image using Tikhonov and our proposed regulariza-
tion terms (this scenario can be thought of as a super-resolution
problem with resolution factor of one). If and represent

2The criteria for parameter selection in this example (and other examples dis-
cussed in this paper) was to choose parameters which produce visually most
appealing results. Therefore, to ensure fairness, each experiment was repeated
several times with different parameters and the best result of each experiment
was chosen as the outcome of each method. Fig. 4(c) is an exception, where we
show that Tikhonov regularization fails to effectively remove noise even with a
very large regularization factor.

(21)
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Fig. 4. (a)-(e) Simulation results of denoising using different regularization methods. (a) Original. (b) Noisy. (c) Reconstruction using Tikhonov. (d)
Reconstruction using TV. (e) Reconstruction using bilateral TV. (f) Error in gray-level value estimation of the pixel indicated by arrow in (a) versus the iteration
number in Tikhonov (solid line), TV (dotted line), and bilateral TV (broken line) denoising.

the original and corrupted images and represents the matrix
form of the blur kernel then following (14), we minimized

(20)

to reconstruct the blurred noisy image.
Fig. 5 shows the results of our experiment. Fig. 5(a) shows the

original image ( ). Fig. 5(b) is the corrupted ,
where is the additive noise. Fig. 5(c) is the result of recon-
struction with Tikhonov regularization, where in (15) was re-
placed by the Laplacian kernel (19) and . Fig. 5(d)

shows the result of applying our regularization criterion (16)
with the following parameters , and .
The best mean-square error (MSE) achieved by Tikhonov reg-
ularization was 313 versus 215 for the proposed regularization.
The superior edge preserving property of the bilateral prior is
apparent in this example.

D. Robust Super-Resolution Implementation

In this subsection, based on the material that was developed
in Sections II-B and C, a solution for the robust super-resolu-
tion problem will be proposed. Combining the ideas presented
thus far, we propose the robust solution of the super-resolution
problem as follows [shown in (21), at the bottom of the previous
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Fig. 5. Simulation results of deblurring using different regularization methods. The mean square error (MSE) of reconstructed image using Tikhonov regularization
(c) was 313. The MSE of reconstructed image using bilateral TV (d) was 215. (a) Original. (b) Blurred and noisy. (c) Best Tikhonov regularization. (d) Proposed
regularization.

page]. We use steepest descent to find the solution to this min-
imization problem

(22)

where is a scalar defining the step size in the direction of the
gradient. and define the transposes of matrices
and respectively and have a shifting effect in the opposite
directions as and .

Simulation results in Section III will show the strength of the
proposed algorithm. The matrices , , , , and their trans-
poses can be exactly interpreted as direct image operators such
as shift, blur, and decimation [26]. Noting and implementing
the effects of these matrices as a sequence of operators spares
us from explicitly constructing them as matrices. This property
helps our method to be implemented in an extremely fast and
memory efficient way.

Fig. 6 is the block diagram representation of (22). There, each
LR measurement will be compared to the warped, blurred,
and decimated current estimate of HR frame . Block rep-
resents the gradient back projection operator that compares the

th LR image to the estimate of the HR image in the th steepest
descent iteration. Block represents the gradient of regular-
ization term, where the HR estimate in the th steepest descent
iteration is compared to its shifted version ( pixel shift in hori-
zontal and pixel shift in vertical directions).

Details of the blocks and are defined in Fig. 7(a) and
(b). Block in Fig. 7(a) replaces the matrix with a
simple convolution. Function flips the columns of PSF kernel
in the left-right direction (that is, about the vertical axis), and
then flips the rows of PSF kernel in the up-down direction (that
is, about the horizontal axis).3 The up-sampling block in
Fig. 7(a) can be easily implemented by filling zeros both
in vertical and horizontal directions around each pixel (Fig. 3).
And, finally, the shift-back block in Fig. 7(a), is imple-
mented by inverting the translational motion in the reverse di-
rection. Note that even for the more general affine motion model

3If the PSF kernel has even dimensions, one extra row or column of zeros
will be added to it to make it odd size (zero columns and rows have no effect in
convolution process).
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Fig. 6. Block diagram representation of (22), blocks G , and R are defined in Fig. 7.

Fig. 7. Extended block diagram representation of G and R blocks in Fig. 6. (a) Block diagram representation of similarity cost derivative (G ). (b) Block
diagram representation of regularization cost derivative.

a similar inverting property (though more complicated) is still
valid.

Parallel processing potential of this method, which signifi-
cantly increases the overall speed of implementation, can be
easily interpreted from Fig. 6 (the computation of each or

blocks may be assigned to a separate processor).
Our robust super-resolution approach also has an advantage

in the computational aspects over other methods including
the one proposed in [14]. In our method, an inherently robust
cost function has been proposed, for which a number of com-
putationally efficient numerical minimization methods4 are
applicable. On the contrary, [14] uses steepest descent method
to minimize the nonrobust norm cost function, and robust-
ness is achieved by modifying the steepest descent method,
where median operator is used in place of summation operator
in computing the gradient term of (12). Implementing the
same scheme of substituting summation operator with median
operator in computationally more efficient methods such as
conjugate gradient is not a straightforward task and besides it
is no longer guaranteed that the modified steepest descent and
conjugate gradient minimization converge to the same answer.

4Such as conjugate gradient (CG), preconditioned conjugate gradient (PCG),
Jacobi, and many others.

As an example, Fig. 8(a) and (b) show the result of imple-
menting the proposed method on the same image sets that was
used to generate Fig. 2(d) and (f), respectively. The outlier ef-
fects have been reduced significantly (more detailed examples
are presented in Section III).

In the next section, we propose an alternate method to achieve
further improvements in computational efficiency.

E. Fast Robust Super-Resolution Formulation

In Section II-D, we proposed an iterative robust super-reso-
lution method based on (21). Although implementation of (21)
is very fast,5 for real-time image sequence processing, faster
methods are always desirable. In this subsection, based on the
interpretation of (13) that was offered in Section II-B, we sim-
plify (21) to achieve a faster method.

In this method, resolution enhancement is broken into two
consecutive steps:

1) noniterative data fusion;
2) iterative deblurring-interpolation.

5Computational complexity and memory requirement is similar to the method
proposed in [8].
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Fig. 8. Reconstruction of the outlier contaminated image in Fig. 2 using (22). (a) Robust reconstruction of the same image that was used to produce Fig. 2(d) and
(b) is the robust reconstruction of the same image that was used to produce Fig. 2(f).

As we described in Section II-B, registration followed by the
median operation (what we call median shift and add) results in

. Usage of median operator for fusing LR images is
also suggested in [4] and [6].

The goal of the deblurring-interpolation step is finding the de-
blurred HR frame . Note that for the under-determined cases,
not all pixel values can be defined in the data fusion step, and
their values should be defined in a separate interpolation step. In
this paper, unlike [4], [6] and [13], interpolation and deblurring
are done simultaneously.

The following expression formulates our minimization crite-
rion for obtaining from

(23)

where matrix is a diagonal matrix with diagonal values equal
to the square root of the number of measurements that con-
tributed to make each element of (in the square case is
the identity matrix). So, the undefined pixels of have no ef-
fect on the HR estimate . On the other hand, those pixels of
which have been produced from numerous measurements, have
a stronger effect in the estimation of the HR frame .

As is a diagonal matrix, , and the corresponding
steepest descent solution of minimization problem (23) can be
expressed as

(24)

Decimation and warping matrices ( and ) and summation of
measurements are not present anymore, which makes the im-
plementation of (24) much faster than (22). Note that physical
construction of matrix is not necessary as it can be imple-
mented as a mask matrix with the size equal to image .

III. EXPERIMENTS

In this section, we compare the performance of the resolu-
tion enhancement algorithms proposed in this paper to existing
resolution enhancement methods. The first example6 is a con-
trolled simulated experiment. In this experiment, we create a se-
quence of LR frames by using one HR image [Fig. 9(a)]. First,
we shifted this HR image by a pixel in the vertical direction.
Then, to simulate the effect of camera PSF, this shifted image
was convolved with a symmetric Gaussian low-pass filter of size
4 4 with standard deviation equal to one. The resulting image
was subsampled by the factor of 4 in each direction. The same
approach with different motion vectors (shifts) in vertical and
horizontal directions was used to produce 16 LR images from
the original scene. We added Gaussian noise to the resulting LR
frames to achieve signal-to-noise ratio (SNR) equal7 to 18 dB.
One of these LR frames is presented in Fig. 9(b). To simulate
the errors in motion estimation, a bias equal to one pixel shift in
the LR grid was intentionally added to the known motion vec-
tors of three LR frames.

The result of implementing the noniterative resolution en-
hancement method described in [5] is shown in Fig. 9(c). It is not
surprising to see the motion error artifacts in the HR frame as the
HR image is the result of zero filling, shifting, and adding the
LR measurements. Deblurring this result with Wiener method
[Fig. 9(d)] does not remove these artifacts, of course. For refer-
ence, Fig. 9(e) shows the result of applying an iterative method
based on minimizing norm, both for the residual and the reg-
ularization terms. The following equation describes this mini-
mization criterion:

(25)

in which is defined in (19) and regularization factor was
chosen to be 0.4. As norm is not robust to motion error, mo-
tion artifacts are still visible in the result. Note that the relatively
high regularization factor which was chosen to reduce the mo-
tion artifact has resulted in a blurry image.

6This paper (with all pictures and a MATLAB-based software package for
resolution enhancement) is available at http://www.ee.ucsc.edu/~milanfar.

7SNR is defined as 10 log (� =� ), where � , � are variance of a clean
frame and noise, respectively.
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Fig. 9. Simulation results of different resolution enhancement methods are applied to the (a). (a) Original HR frame. (b) LR frame. (c) Shift and add result [5].
(d) Deconvolved shift and add [5]. (e) L + Tikhonov. (f) Zomet method [14].

The robust super-resolution method which was proposed in
[14] resulted in Fig. 9(f). Fig. 9(g) was obtained by simply
adding the regularization term defined in (25) to the proposed
method of [14] which is far better than the approach, yet
exhibiting some artifacts. Fig. 9(h) shows the implementation
of the proposed method described in Section II-D. The selected
parameters for this method were as follows: , ,

, and . Fig. 9(i) shows the implementation

of the fast method described in Section II-E. The selected
parameters for this method were as follows: , ,

, and . Comparing Fig. 9(h) and (i) to other
methods, we notice not only our method has removed the
outliers more efficiently, but also it has resulted in sharper
edges without any ringing effects.

Our second example is a real infrared camera image se-
quences with no known outliers, courtesy of B. Yasuda and



1338 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004

Fig. 9 (Continued). (g) Zomet [14] with regularization. (h) L + bilateral TV. (i) Median shift and add + bilateral TV.

the FLIR research group in the Sensors Technology Branch,
Wright Laboratory, WPAFB, OH. We used eight LR frames
in our reconstruction to get resolution enhancement factor of
four [Fig. 10(a) shows one of the input LR images].8 Fig. 10(b)
shows the cubic spline interpolation of Fig. 10(a) by factor of
four. The (unknown) camera PSF was assumed to be a 4 4
Gaussian kernel with standard deviation equal to one. We used
the method described in [27] to computed the motion vectors.

norm reconstruction with Tikhonov regularization (25)
result is shown in Fig. 10(c) where is defined in (19) and
regularization factor was chosen to be 0.1. Fig. 10(d) shows
the implementation of (22) with the following parameters

, , , and . Although modeling
noise in these frames as additive Gaussian is a reasonable
assumption, our method achieved a better result than the best

norm minimization.
Our third experiment is a real compressed sequence of 20 im-

ages (containing translational motion) from a commercial video
camera; courtesy of Adyoron Intelligent Systems, Ltd., Tel
Aviv, Israel. Fig. 11(a) is one of these LR images and Fig. 11(b)
is the cubic spline interpolation of this image by factor of three.
We intentionally rotated five frames of this sequence (rotation
from 20 to 60 ) out of position, creating a sequence of images

8Note that this is an under-determined scenario.

with relative affine motion. The (unknown) camera PSF was
assumed to be a 5 5 Gaussian kernel with standard deviation
equal to two. We used the method described in [27] to computed
the motion vectors with translational motion assumption. The
error in motion modeling results in apparent shadows in
norm reconstruction with Tikhonov regularization [Fig. 11(c)]
where is defined in (19) and regularization factor was
chosen to be 0.5. These shadows are removed in Fig. 11(d),
where the method described in Section II-D (22) was used
for reconstruction with the following parameters ,

, , and .
Our final experiment is a factor of three resolution enhance-

ment of a real compressed image sequence captured with a
commercial webcam (3Com, Model no. 3718). The (unknown)
camera PSF was assumed to be a 3 3 Gaussian kernel with
standard deviation equal to 1. In this sequence, two separate
sources of motion were present. First, by shaking the camera a
global motion was created for each individual frame. Second,
an Alpaca statue was independently moved in ten frames out of
total 55 input frames. One of the LR input images is shown in
Fig. 12(a). Cubic spline interpolation of Fig. 12(a) by factor of
three is shown in Fig. 12(b). Fig. 12(c) and (d) are the shift and
add results using mean and median operators [minimizing in
(10) with and , respectively]. Note that the median
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Fig. 10. Results of different resolution enhancement methods applied to Tank sequence. (a) One of eight LR frames. (b) Cubic spline interpolation. (c) L +

Tikhonov. (d) L + bilateral TV.

operator has lessened the (shadow) artifacts resulting from
the Alpaca motion. norm reconstruction with Tikhonov
regularization (25) result is shown in Fig. 12(e), where is
defined in (19) and regularization factor was chosen to be
one. Fig. 12(f) is the result of minimizing the cost function
(as shown at the bottom of the page), where is the norm
minimization of data error term is combined with bilateral TV
regularization with the following parameters , ,

, and (steepest descent step size). Note that the
artifacts resulting from the motion of Alpaca statue is visible
in Fig. 12(d)–(g). Robust super-resolution method proposed
in [14] is shown in Fig. 12(h). Implementation of the method
described in Section II-D (22) with the following parameters

, , , and resulted in Fig. 12(i),
with the least outlier effect. And, finally, implementation of the

fast method described in Section II-E (24) with the following
parameters , , , and resulted in
Fig. 12(j), which is very similar to the result in Fig. 12(i).

IV. CONCLUSION

In this paper, we presented an algorithm to enhance the
quality of a set of noisy blurred images and produce a HR
image with less noise and blur effects. We presented a robust
super-resolution method based on the use of norm both in
the regularization and the measurement terms of our penalty
function. We showed that our method removes outliers effi-
ciently, resulting in images with sharp edges. Even for images
in which the noise followed the Gaussian model, norm
minimization results were as good as norm minimization
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Fig. 11. Results of different resolution enhancement methods applied to ADYORON test sequence. (a) One of 20 LR frames. (b) Cubic spline interpolation.
(c) L + Tikhonov. (d) L + bilateral TV.

results, which encourages using norm minimization for any
data set. The proposed method was fast and easy to implement.

We also proposed and mathematically justified a very fast
method based on pixelwise “shift and add” and related it to
norm minimization when relative motion is pure translational,
and PSF and decimation factor is common and space invariant in
all LR images. Note that the mathematical derivation of the pro-
posed shift and add method was independent of the constraint
over decimation factor, but we included it as this constraint
distinguishes super-resolution problem from the more general
problem of multiscale image fusion. In this method, we rounded
the displacements in the HR grid so that applies only integer
translations. This will not pose a problem as the rounding is done
only on the HR grid [5]. Besides, any alternative method will in-
troduce time consuming smoothing interpolation effects which
can be harder to overcome.

Analysis of the convergence properties of the steepest de-
scent method is only possible for simplistic cases such as mini-
mizing a quadratic function. Considering quantized images,
norm minimization, and regularization terms make such anal-

ysis much harder. We have observed that only five to twenty
iterations are required for convergence to the desired solution,
where the initialization and the type of involved images play a
vital role in determining the required iterations. The outcome of
the speed-up method of Section II-E is a very good initialization
guess for the more general case of Section II-D.

Although the “cross validation” method can be used to de-
termine the parameter values [12], implementing such method
for the norm is rather more difficult and computationally ex-
pensive. Parameters like can also be learned using a learning
algorithm, however such an approach is outside the scope of
this paper. We have found that setting to 2 or 3 works well;
using higher values for will be time consuming while not very
useful.

One important extension for our algorithm include incorpo-
ration of blur identification algorithms in the super-resolution
method. Although many single-frame blind deconvolution al-
gorithms have been suggested in the last 30 years [28] and re-
cently [12] incorporated a single-parameter blur identification
algorithm in their super-resolution method, still there is need
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Fig. 12. Results of different resolution enhancement methods applied to the Alpaca sequence. Outlier effects are apparent in the nonrobust reconstruction methods.
(a) Frame 1 of 55 LR frames. (b) Frame 50 of 55 LR frames. (c) Cubic spline interpolation of frame 1. (d) Mean shift and add. (e) Median shift and add. (f) L +

Tikhonov. (g) L + bilateral TV. (h) Zomet method [14]. (i) L + bilateral TV. (j) Median shift and add + bilateral.

for more research to provide a super-resolution method along
with a more general blur estimation algorithm.

Few papers have addressed resolution enhancement of com-
pressed video sequences [15] and [16]. Compression artifacts
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resulting from quantization of DCT coefficients can dramati-
cally decrease the performance of super-resolution system. The
results of Section II-E may be used to design a very fast none
iterative method for reducing the compression artifacts in the
super-resolved images.

One of the most apparent effects of DCT-based compression
methods, such as MPEG for video and JPEG for still images,
is the blocking artifact. The quantization noise variance of each
pixel in a block is space variant. For a block located in a low-fre-
quency content area, pixels near boundaries contain more quan-
tization noise than the interior pixels. On the other hand, for the
blocks located in the high-frequency area, pixels near bound-
aries contain less quantization noise than the interior pixels [29].
This space-variant noise property of the blocks may be exploited
to reduce the quantization noise. Because of the presence of mo-
tion in video sequences, pixel locations in the blocks change
from one frame to the other. So two corresponding pixels from
two different frames may be located on and off the boundaries
of the blocks in which they are located. Based on the discussion
that was presented in the previous paragraph, it is easy to de-
termine which pixel has less quantization noise. It is reasonable
to assign a higher weight to those pixels which suffer less from
quantization noise in the data fusion step which was explained
in Section II-E. The relative magnitude of the weight assigned
because of quantization and the weight that was explained in
Section II-E will depend on the compression ratio.

APPENDIX A
BILATERAL FILTER

The idea of the bilateral filter was first proposed in [30]
as a very effective one-pass filter for denoising purposes
while keeping sharp edges. Unlike conventional filters such as
Gaussian low-pass filter, the bilateral filter defines the closeness
of two pixels not only based on geometric distance but also
based on photometric distance. Considering one-dimensional
(1-D) case (for simplifying the notations), the result of applying
bilateral filter for the th sample in the estimated 1-D signal
is

(26)

where is the noisy image (vector), and 2
is the size of 1-D bilateral kernel. The weight

considers both photometric and spatial dif-
ference of sample in noisy vector from its neighbors to de-
fine the value of sample in the estimated vector . The spatial

and photometric difference weights were arbitrarily defined in
[30] as

(27)

where parameters and control the strength of spatial and
photometric property of the filter, respectively.

In [31] it was proved that such filter is a single iteration of
the weighted least-squares minimization [shown in (28), at the
bottom of the page], with Jacobi method, where implies
a shift right of samples. [31] also showed that using more
iterations will enhance the performance of this filter.

Note that if we define the th element of the diagonal
weight matrix as

that is, weighting the estimate with respect to both photometric
distance and geometric distance , then (28)
will become

(29)

which is the 1-D version of the bilateral TV criterion in (16).

APPENDIX B
LIMITATIONS OF ZOMET METHOD

A robust super-resolution method was recently proposed by
Zomet et al. [14], where robustness is achieved by modifying
the gradient of the norm cost function (7)

(30)

in which is the gradient resulted from frame and rep-
resents the residual vector. They substituted (30) with the fol-
lowing approximation:

(31)

where MED is a pixelwise median operator. Then, steepest de-
scent minimization was used to calculate

(32)

where is the step size in the direction of gradient.
We show that for certain imaging scenarios, the approximated

gradient (31) is zero in all iterations, which means estimated HR

(28)
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frame of the th iteration ( ) is the same as the initial guess
( ) and the method fails. To appreciate this fact, lets start with
a square case in which blurring effect is negligible (i.e., is an
identity matrix resulting in ). A quick consul-
tation with Fig. 3 suggests that only one of every elements in

has a nonzero value. Moreover, recall that just regis-
ters vector with respect to the estimated relative motion
without changing its value. According to (31), (the th el-
ement of the gradient vector) is equal to . As

elements in have zero value, their median
will also be zero. Therefore, every element of the approximated
gradient vector will be zero. Even for a more general case in
which the effect of blur matrix is not negligible ( is a matrix
form of a blur kernel), the same approach may be em-
ployed to show that unless ( ), the gradient will
remain zero for all iterations.

The ( ) condition is also valid for the over-de-
termined cases where the distribution of motion vectors is uni-
form (that is the number of available LR measurements for each
pixel in the HR grid is equal). Therefore, this condition does
not depend on the number of available LR frames. In particular,
consider the identity blur matrix case, where the addition of any
new frame is equivalent to the addition of a new gradient
vector with times more zero elements (resulting from
upsampling) than nonzero elements to the stack of gradient vec-
tors. Therefore, if

even after addition of uniformly spread LR frames
will still be zero (as value of newly

added elements are zeros). Generalization of this property to
the case of arbitrary number of LR frames with uniform motion
distribution is straightforward.

This limitation can be overcome by modifying the MED oper-
ator in (31). This modified median operator would not consider
those elements of which are the result of zero filling. It is
interesting to note that such assumption will result in estimating
the HR frame as the median of registered LR frames after zero
filling, which is the exact interpretation of using norm min-
imization discussed in Section II-B.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor Prof. R.
D. Nowak and the three reviewers for valuable comments that
helped improve the clarity of presentation of this paper.

REFERENCES

[1] T. S. Huang and R. Y. Tsai, “Multi-frame image restoration and regis-
tration,” Adv. Comput. Vis. Image Process., vol. 1, pp. 317–339, 1984.

[2] N. K. Bose, H. C. Kim, and H. M. Valenzuela, “Recurcive implemen-
tation of total least squares algorithm for image reconstruction from,
noisy, undersampled multiframes,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, vol. 5, Minneapolis, MN, Apr. 1993, pp.
269–272.

[3] S. Borman and R. L. Stevenson, “Super-resolution from image se-
quences—A review,” in Proc. Midwest Symp. Circuits and Systems, vol.
5, Notre Dame, IN, Apr. 1998.

[4] L. Teodosio and W. Bender, “Salient video stills: Content and context
preserved,” in Proc. 1st ACM Int. Conf. Multimedia, vol. 10, Anaheim,
CA, Aug. 1993, pp. 39–46.

[5] M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algo-
rithm for pure translational motion and common space invariant blur,”
IEEE Trans. Image Processing, vol. 10, pp. 1187–1193, Aug. 2001.

[6] M. C. Chiang and T. E. Boulte, “Efficient super-resolution via image
warping,” Image Vis. Comput., vol. 18, no. 10, pp. 761–771, July 2000.

[7] S. Peleg, D. Keren, and L. Schweitzer, “Improving image resolution
using subpixel motion,” CVGIP: Graph. Models Image Process., vol.
54, pp. 181–186, Mar. 1992.

[8] M. Irani and S. Peleg, “Improving resolution by image registration,”
CVGIP: Graph. Models Image Process., vol. 53, pp. 231–239, 1991.

[9] H. Ur and D. Gross, “Improved resolution from sub-pixel shifted pic-
tures,” CVGIP: Graph. Models Image Process., vol. 54, no. 181–186,
Mar. 1992.

[10] M. Elad and A. Feuer, “Restoration of single super-resolution image
from several blurred, noisy and down-sampled measured images,” IEEE
Trans. Image Processing, vol. 6, pp. 1646–1658, Dec. 1997.

[11] N. Nguyen, P. Milanfar, and G. H. Golub, “A computationally efficient
image superresolution algorithm,” IEEE Trans. Image Processing, vol.
10, pp. 573–583, Apr. 2001.

[12] , “Efficient generalized cross-validation with applications to para-
metric image restoration and resolution enhancement,” IEEE Trans.
Image Processing, vol. 10, pp. 1299–1308, Sept. 2001.

[13] S. Lertrattanapanich and N. K. Bose, “High resolution image formation
from low resolution frames using delaunay triangulation,” IEEE Trans.
Image Processing, vol. 11, pp. 1427–1441, Dec. 2002.

[14] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super resolution,” in
Proc. Int. Conf. Computer Vision and Patern Recognition, vol. 1, Dec.
2001, pp. 645–650.

[15] Y. Altunbasak, A. Patti, and R. Mersereau, “Super-resolution still and
video reconstruction from mpeg-coded video,” IEEE Trans. Circuits
Syst. Video Technol., vol. 12, no. 4, pp. 217–226, Apr. 2002.

[16] C. A. Segall, R. Molina, A. Katsaggelos, and J. Mateos, “Bayesian high-
resolution reconstruction of low-resolution compressed video,” in IEEE
Int. Conf. Image Processing, vol. 2, Thessaloniki, Greece, Oct. 2001, pp.
25–28.

[17] G. C. Calafiore, “Outliers robustness in multivariate orthogonal regres-
sion,” IEEE Trans. Syst., Man. Cybern., vol. 30, no. 6, pp. 674–679, Nov.
2000.

[18] P. J. Huber, Robust Statistics. New York: Wiley, 1981.
[19] S. M. Kay, Fundamentals of Statistical Signal Processing:Estimation

Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993, vol. I.
[20] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Robust shift and

add approach to super-resolution,” in Proc. SPIE Conf. Applications of
Digital Signal and Image Processing, San Diego, CA, Aug. 2003, pp.
121–130.

[21] A. M. Tekalp, Digital Video Processing. Englewood Cliffs, NJ: Pren-
tice-Hall, 1995.

[22] A. Bovik, Handbook of Image and Video Processing. New York: Aca-
demic, 2000.

[23] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Phys. D, vol. 60, pp. 259–268, Nov. 1992.

[24] T. F. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear
denoising,” IEEE Trans. Image Processing, vol. 10, pp. 231–241, Feb.
2001.

[25] Y. Li and F. Santosa, “A computational algorithm for minimizing total
variation in image restoration,” IEEE Trans. Image Processing, vol. 5,
pp. 987–995, June 1996.

[26] A. Zomet and S. Peleg, “Efficient super-resolution and applications to
mosaics,” in Proc. Int. Conf. Pattern Recognition, Sept. 2000.

[27] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierachical
model-based motion estimation,” in Proc. Eur. Conf. Computer Vision,
1992, pp. 237–252.

[28] D. Kondur and D. Hatzinakos, “Blind image deconvolution,” IEEE
Signal Processing Mag., vol. 13, pp. 43–64, May 1996.

[29] M. Robertson and R. Stevenson, “DCT quantization noise in compressed
images,” in IEEE Int. Conf. Image Processing, vol. 1, Thessaloniki,
Greece, Oct. 2001, pp. 185–1888.

[30] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color im-
ages,” in Proc. IEEE Int. Conf. Computer Vision, New Delhi, India, Jan.
1998, pp. 836–846.

[31] M. Elad, “On the bilateral filter and ways to improve it,” IEEE Trans.
Image Processing, vol. 11, pp. 1141–1151, Oct. 2002.



1344 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004

Sina Farsiu received the B.Sc. degree in electrical
engineering from Sharif University of Technology,
Tehran, Iran, in 1999 and the M.Sc.(Hons) degree
in biomedical engineering from the University of
Tehran, Tehran, in 2001. He is currently pursuing
the Ph.D. degree in electrical engineering at the
University of California, Santa Cruz.

His technical interests include signal and image
processing, adaptive optics, and artificial intelli-
gence.

Dirk Robinson (S’01) received the B.S. degree in
electrical engineering from Calvin College, Grand
Rapids, MI, and the M.S. degree in computer en-
gineering from the University of California, Santa
Cruz (UCSC), in 1999 and 2001, respectively. He
is currently pursuing the Ph.D. degree in electrical
engineering at UCSC.

His technical interests include signal and image
processing and machine learning.

Michael Elad received the B.Sc, M.Sc., and
D.Sc. degrees from the Department of Electrical
Engineering at the Technion–Israel Institute of
Technology (IIT), Haifa, Israel, in 1986, 1988, and
1997, respectively.

From 1988 to 1993, he served in the Israeli
Air Force. From 1997 to 2000, he worked at
Hewlett–Packard Laboratories as an R&D Engineer.
From 2000 to 2001, he headed the research division
at Jigami Corporation, Israel. From 2001 to 2003,
he was a Research Associate with the Computer

Science Department, Stanford University (SCCM program), Stanford, CA. In
September 2003, he joined the Department of Computer Science, IIT, as an
Assistant Professor. He was also a Research Associate at IIT from 1998 to
2000, teaching courses in the Electrical Engineering Department. He works in
the field of signal and image processing, specializing, in particular, on inverse
problems, sparse representations, and over-complete transforms.

Dr. Elad received the Best Lecturer Award twice (in 1999 and 2000). He is
also the recipient of the Guttwirth and the Wolf fellowships.

Peyman Milanfar (SM’98) received the B.S. degree
in electrical engineering and mathematics from the
University of California, Berkeley, and the S.M.,
E.E., and Ph.D. degrees in electrical engineering
from the Massachusetts Institute of Technology,
Cambridge, in 1988, 1990, 1992, and 1993, respec-
tively.

Until 1999, he was a Senior Research Engineer at
SRI International, Menlo Park, CA. He is currently
Associate Professor of Electrical Engineering,
University of California, Santa Cruz. He was a

Consulting Assistant Professor of computer science at Stanford University,
Stanford, CA, from 1998 to 2000, where he was also a Visiting Associate
Professor from June to December 2002. His technical interests are in statistical
signal and image processing and inverse problems.

Dr. Milanfar won a National Science Foundation CAREER award in 2000
and he was Associate Editor for the IEEE SIGNAL PROCESSING LETTERS from
1998 to 2001.


	toc
	Fast and Robust Multiframe Super Resolution
	Sina Farsiu, M. Dirk Robinson, Student Member, IEEE, Michael Ela
	I. I NTRODUCTION

	Fig. 1. Block diagram representation of (1), where $X(x,y)$ is t
	II. R OBUST S UPER R ESOLUTION
	A. Robust Estimation
	B. Robust Data Fusion


	Fig. 2. Simulation results of outlier effects on super-resolved 
	Fig. 3. Effect of upsampling $D^{T}$ matrix on a 3 $\,\times\,$ 
	C. Robust Regularization

	Fig. 4. (a)-(e) Simulation results of denoising using different 
	D. Robust Super-Resolution Implementation

	Fig. 5. Simulation results of deblurring using different regular
	Fig. 6. Block diagram representation of (22), blocks $G_{k}$, an
	Fig. 7. Extended block diagram representation of $G_{k}$ and $R_
	E. Fast Robust Super-Resolution Formulation
	Fig. 8. Reconstruction of the outlier contaminated image in Fig.

	III. E XPERIMENTS

	Fig. 9. Simulation results of different resolution enhancement m
	Fig. 9 ( Continued ). (g) Zomet [ 14 ] with regularization. (h) 
	Fig. 10. Results of different resolution enhancement methods app
	IV. C ONCLUSION 

	Fig. 11. Results of different resolution enhancement methods app
	Fig. 12. Results of different resolution enhancement methods app
	B ILATERAL F ILTER
	L IMITATIONS OF Z OMET M ETHOD
	T. S. Huang and R. Y. Tsai, Multi-frame image restoration and re
	N. K. Bose, H. C. Kim, and H. M. Valenzuela, Recurcive implement
	S. Borman and R. L. Stevenson, Super-resolution from image seque
	L. Teodosio and W. Bender, Salient video stills: Content and con
	M. Elad and Y. Hel-Or, A fast super-resolution reconstruction al
	M. C. Chiang and T. E. Boulte, Efficient super-resolution via im
	S. Peleg, D. Keren, and L. Schweitzer, Improving image resolutio
	M. Irani and S. Peleg, Improving resolution by image registratio
	H. Ur and D. Gross, Improved resolution from sub-pixel shifted p
	M. Elad and A. Feuer, Restoration of single super-resolution ima
	N. Nguyen, P. Milanfar, and G. H. Golub, A computationally effic
	S. Lertrattanapanich and N. K. Bose, High resolution image forma
	A. Zomet, A. Rav-Acha, and S. Peleg, Robust super resolution, in
	Y. Altunbasak, A. Patti, and R. Mersereau, Super-resolution stil
	C. A. Segall, R. Molina, A. Katsaggelos, and J. Mateos, Bayesian
	G. C. Calafiore, Outliers robustness in multivariate orthogonal 
	P. J. Huber, Robust Statistics . New York: Wiley, 1981.
	S. M. Kay, Fundamentals of Statistical Signal Processing:Estimat
	S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Robust shift a
	A. M. Tekalp, Digital Video Processing . Englewood Cliffs, NJ: P
	A. Bovik, Handbook of Image and Video Processing . New York: Aca
	L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation bas
	T. F. Chan, S. Osher, and J. Shen, The digital TV filter and non
	Y. Li and F. Santosa, A computational algorithm for minimizing t
	A. Zomet and S. Peleg, Efficient super-resolution and applicatio
	J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, Hierach
	D. Kondur and D. Hatzinakos, Blind image deconvolution, IEEE Sig
	M. Robertson and R. Stevenson, DCT quantization noise in compres
	C. Tomasi and R. Manduchi, Bilateral filtering for gray and colo
	M. Elad, On the bilateral filter and ways to improve it, IEEE Tr



