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Abstract— Objective: Although optical imaging of neurons 

using fluorescent genetically encoded calcium sensors has 

enabled large-scale in vivo experiments, the sensors’ slow 

dynamics often blur closely-timed action potentials into 

indistinguishable transients. While several previous approaches 

have been proposed to estimate the timing of individual spikes, 

they have overlooked the important and practical problem of 

estimating inter-spike-interval (ISI) for overlapping transients. 

Methods: We use statistical detection theory to find the minimum 

detectable ISI under different levels of signal-to-noise ratio 

(SNR), model complexity, and recording speed. We also derive 

the Cramer-Rao lower bounds (CRBs) for the problem of ISI 

estimation. We use Monte-Carlo simulations with biologically 

derived parameters to numerically obtain the minimum 

detectable ISI and evaluate the performance of our estimators. 

Furthermore, we apply our detector to distinguish overlapping 

transients from experimentally-obtained calcium imaging data. 

Results: Experiments based on simulated and real data across 

different SNR levels and recording speeds show that our 

algorithms can accurately distinguish two fluorescence signals 

with ISI on the order of tens of milliseconds, shorter than the 

waveform’s rise time. Our study shows that the statistically 

optimal ISI estimators closely approached the CRBs. Conclusion: 

Our work suggests that full analysis using recording speed, 

sensor kinetics, SNR, and the sensor’s stochastically distributed 

response to action potentials can accurately resolve ISIs much 

smaller than the fluorescence waveform’s rise time in modern 

calcium imaging experiments. Significance: Such analysis aids 

not only in future spike detection methods, but also in future 

experimental design when choosing sensors of neuronal activity.  

 
Index Terms—Calcium imaging, Hypothesis testing, Cramer-

Rao bound, Poisson statistics, Resolution 
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I. INTRODUCTION 

ALCIUM imaging relies on the sudden change of 

intracellular calcium ion concentration during neuronal 

activity, called action potentials (APs) [1, 2]. Genetically 

encoded calcium indicators (GECIs) are popular tools used to 

image intracellular calcium dynamics and therefore, track 

neuronal activity [1, 2]. These indicators consist of a calcium 

binding domain connected to a fluorescent protein. Calcium 

binding to the indicator causes the protein to undergo 

conformational changes, increasing the fluorescence 

brightness during times of AP [1]. 

Recent advances in optical microscopy and GECIs have 

increased the use of these tools in large scale in vivo recording 

of neuronal populations [2-5]. Accurate extraction of neuronal 

activities from the optical recordings is expected to give 

insight into how neuronal circuitry process information. 

Therefore, to fully understand how stimuli are processed and 

transmitted among neurons, spike extraction approaches with 

high accuracy and precision are needed. However, during 

periods of rapid activity, closely timed AP induced 

fluorescence transients accumulate, making the detection and 

separation of individual spikes a challenge (Fig. 1 (a)).  

Over the past years, several groups have tackled the 

paramount problem of firing rate inference or spike train 

extraction from the observed fluorescence signals. Methods 

that estimate firing rate or spiking probabilities include 

particle filtering [6], fast nonnegative deconvolution [7], 

supervised learning with probabilistic models [8], and the 

Markov Chain Monto-Carlo methods [9]. Although these 

approaches are advantageous for assessing the uncertainty in 

the estimations, they might not be best suitable for temporal 

coding studies where a single spike train with spike time 

estimates is necessary [21]. Methods that estimate spike trains 

include nonnegative deconvolution [10, 11], sparsity-based 

reconstruction [12-15], template matching [16-18], finite rate 

of innovation [19, 20], and Bayesian methods [21]. Several of 

these studies behave well in reconstructing neuronal bursting 

activities [8, 13-15, 20, 21]. However, few of these studies 

have conducted theoretical performance limit analysis. Such 

analysis can aid in resolving experimental design issues for 

optimal spike detectability, such as sensor kinetics, recording 

speed, and photon counts [17]. Among the above-mentioned 
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studies, only [17] and [20] have compared their single spike 

time estimation method with the optimal performance of any 

unbiased estimator through the Chapman-Robbins and 

Cramer-Rao lower bounds (CRB), respectively.  

In this paper, we extend the application of previous 

studies [17, 20] which considered only isolated spikes, by 

investigating the case of temporally overlapping waveforms. 

In parallel to other computational spike extraction methods 

[10-21], we quantify 1) resolution from the statistical point-of-

view and 2) the theoretical bound on the precision of 

estimating the inter-spike-interval (ISI). Our work is based on 

the statistical and information theoretic tools developed in the 

past two decades for estimating the fundamental resolution of 

optical systems [22-26]. As the symmetric point spread 

function (PSF) considered in the numerical results of these 

optically oriented papers does not match our problem, we 

extend this framework for the ISI estimation and study 

possible consequences of asymmetric waveforms. 

The organization of the paper is as follows. In section II, 

the statistical description of the acquired data, the detection 

framework for finding the minimum detectable ISI, and the 

derivation of the Fisher information matrix related to the 

asymptotic performance of the estimation problem is 

described. Section III presents the numerical results on 

simulated and experimentally-obtained datasets. Finally, 

discussion and concluding remarks are presented in sections 

IV and V, respectively. 

II. METHODS 

A. Action Potential Evoked Fluorescence Signal Model  

In response to an AP, the intracellular calcium 

concentration rises rapidly, which is followed by a slow decay 

to its baseline value [27]. As validated by experiments in [1], 

we assume that the measured fluorescence signal is linearly 

related to the intracellular calcium concentration. Given 

samples at time points 𝑡𝑘 (k = 1, 2…, K), the mean 

fluorescence signal generated in response to a single AP at 

time 𝑡 = 0 with normalized peak amplitude  𝜃0 = 𝛢 is 

expressed as [16] 

   0 0 0 0
,;

k k
s t ΑF h t F                                 (1) 

where the change in the fluorescence signal is modeled as 

      1- exp - / exp - / ( ).
k k on k d kh t a t t u t          (2) 

In (1), 𝐹0 is the baseline photon rate due to the neuron’s 

resting state fluorescence, autofluorescence from cellular 

structures, and fluorescence from the extracellular space [17]. 

In (2), 𝑢(𝑡𝑘) is the unit step function, 𝑎 is a normalization 

factor, and 𝜏𝑜𝑛 and 𝜏𝑑 are known rise and decay time 

constants, respectively. 

Assuming the optical technique used for measurement has 

negligible read out noise, the recordings are photon shot noise 

limited. Therefore, the K-element measurement vector 𝒚 is 

distributed according to Poisson statistics with a time-varying 

mean 𝑠0(𝑡𝑘; 𝜃0). 

B. Statistical Analysis of Resolution  

In this section, we explain the tools from statistical theory 

used in the detection problem. Our study is the continuation of 

a previous work by Shahram and Milanfar [24], generalized 

by considering asymmetric waveforms and Poisson statistics. 

We test the hypothesis of whether one or two spikes are 

present at an observation window of length K points, as 

illustrated in Fig. 1 (b). The null hypothesis 𝐻0 denotes the 

case where there is one spike present as described in the 

previous section. The alternative hypothesis 𝐻1 refers to the 

case where we have two spikes with ISI ≠ 0. The peak 

amplitude of the signal generated by the two spikes in 𝐻1 

should be comparable to the peak amplitude of a single spike 

under the 𝐻0 hypothesis. Thus, in the case where the neuron 

spikes twice at times 𝑑1 and −𝑑2 (ISI = 𝑑1 + 𝑑2 = 𝑑) with 

normalized peak amplitudes 𝛼 and 𝛽 (where 𝛢 = 𝛼 + 𝛽), we 

define the accumulated mean signal as 

     
1 0 1 0 2 01

; ,
k k k

s t F t d F t d Fh h       

where  
1 1 2

,  ,  , d d  θ  is the parameter vector defining the 

signal. 
The probability distribution of the set of photon 

measurements 𝒚 under 𝐻𝑗  (𝑗 ∈ {0,1}) is then modelled as 

 
 

Fig. 1.  Closely timed AP induced fluorescence transients accumulate, 

making the detection of spike counts a challenge. (a) Simultaneous optical 
and electrical recording from a neuron. Red markers in the electrical 

recording correspond to spike times. Data are from [1]. (b) Illustration of the 

null hypothesis with one AP evoked signal (top), and the alternative 
hypothesis of two closely timed fluorescence signals with sub-second ISI 

(bottom). 
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The Log-likelihood Ratio Test (LRT) can be used to choose 

between the two hypotheses [28] for a given set of 

measurements:  
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For any given dataset, 𝐻1 is selected as the more likely 

hypothesis if the log-likelihood ratio exceeds a predefined 

threshold. The choice of threshold depends on the desirable 

value for the probability of detection, 𝑃𝐷, or the tolerable 

value for the probability of false positive, 𝑃𝐹  [28]. 

Parameters (𝜏𝑜𝑛, 𝜏𝑑, and 𝐹0) for a particular calcium 

probe in a particular biological system can be systematically 

characterized and thus are considered to be known quantities. 

However, the model parameters ({𝜃0, 𝜽1}) in the above LRT 

are unknown in general. To address this composite hypothesis 

problem, we use the Generalized Likelihood Ratio Test 

(GLRT) to simultaneously assess the existence of two spikes 

and estimate the ISI between them. GLRT uses the maximum 

likelihood (ML) estimates of the unknown parameters to form 

the Neyman-Pearson detector [28]. The ML estimates of the 

unknown parameters in 𝜽𝑗 are found by maximizing the log-

likelihood function of the data under 𝐻𝑗 (𝑗 ∈ {0,1}): 
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   (3) 

where we have kept only the parameter dependent parts. We 

numerically solve the above nonlinear maximization problem 

using MATLAB’s optimization toolbox. Note that without 

loss of generality, we have set the single spike model 

characterized in (1) to start at 𝑡 = 0. In the case of aiming to 

detect the timing of single spikes, modifying the signal model 

in (1) to include the unknown time shift and using this model 

in the maximum likelihood equation will solve the problem. 

Before addressing the general case of detecting spikes with 

fully unknown parameters, we consider the more intuitive case 

of detecting spikes with known amplitudes, as in [24].  

1) Spikes with Known Amplitudes 

The hypotheses for differentiating the case of one large 

spike starting at the test origin (defined as time zero), versus 

the case of two smaller amplitude spikes located around the 

test origin are expressed as 
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Note that while the amplitudes (α, β) are assumed to be 

known, their values can be equal or different. Also, the spikes 

in the 𝐻1 case can be symmetrically (𝑑1 = 𝑑2 = 𝑑/2) or 

asymmetrically (𝑑1 ≠ 𝑑2) distributed around the test origin.  

The minimum detectable distance between two spikes that 

can be distinguished from a single spike is modified by how 

the time origin of the test is defined. Conceptually, the most 

challenging problem set up has high temporal overlap between 

𝑠1(𝑡𝑘; 𝜽1) and 𝑠0(𝑡𝑘). Numerically, such a set up can be 

attained by finding the maximum point of cross-correlation 

between 𝑠1(𝑡𝑘; 𝜽1) and 𝑠0(𝑡𝑘) [24]. This setup, using the 

Taylor expansion, then defines the test time origin 𝜏 as  

1 2 .
d d 


 





 

Therefore, fixing the location of the test origin to 𝜏 = 0 leads 

to 𝛼𝑑1 = 𝛽𝑑2, or equivalently, 

      
   

1 2
and . d d d d

 

   
 

 
     (4) 

This suggests that, for 𝛼 = 𝛽, the “best” (i.e. most 

challenging) location to carry out the hypothesis test is in the 

middle of the two transients and for 𝛼 ≠ 𝛽, the point should 

be closer to the larger signal. The condition of whether the 

spikes are symmetrically or asymmetrically located according 

to (4) around the test origin is studied to investigate the effect 

of defining the test origin, or equivalently the 𝐻0 hypothesis, 

in quantifying the resolution limit. 

2) Spikes with Random Amplitudes 

Calcium ion influx through calcium channels and calcium 

binding to the sensor are stochastic processes that can lead to 

variations in the calcium signal response and thus, the 

fluorescence signal. Therefore, the signal peak value of a 

single spike can change from time to time and even drastically 

from one neuron to another. To encompass these variabilities, 

we consider the more general case of differentiating spikes 

with unknown intensities, by treating the peak amplitudes as 

random variables. The 𝐻0 hypothesis is described by (1), and 

the 𝐻1 hypothesis under the condition in (4) is expressed as 
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This is a generalization of the previous work, in which the 

amplitudes of unknown signals were assumed to be 

deterministic [24]. Since a Bayesian hypothesis testing 

approach to combine observation data and a priori 

information about the peak amplitude distribution involves 

integrations that are not analytically solvable, we used the 

GLRT based conditional ML estimation technique [29]. We 

incorporate the prior information in quantifying the 

performance of the detector through computing the expected 

value of 𝑃𝐷 (and 𝑃𝐹) over 𝑝(𝛼, 𝛽), the joint probability 

distribution of the amplitudes [29]. 
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The prior probability distribution of the single spike 

amplitude has not been previously investigated. Therefore, we 

set to find the best probability model from a set of 

measurements.  

C. Extraction of Single and Double AP Evoked Fluorescence 

Transients  

We used the publicly available experimental dataset, 

provided by the Svoboda lab [1] as reference. The dataset 

contains simultaneous optical imaging and loose-seal cell-

attached recording of nine GCaMP6s and eleven GCaMP6f 

(types of GECIs) expressing neurons. We extract single AP 

induced transients to find the best probability model for peak 

fluorescence response. The outline of the processing steps is 

highlighted in Fig. 2. First, we identify single fluorescence 

transients using the electrophysiological data and extract them 

from the optical recordings. To ensure accurate estimation of 

single AP evoked fluorescence peak values, we discard spikes 

with ISI values less than twice the fluorescence half decay 

time constant (2𝜏1/2, approximately 1s for GCaMP6s and 0.3 s 

for GCaMP6f [1]). We also discard cases with high neuropil 

contamination. Second, the background signal 𝐹0 for each 

spike is calculated by averaging the baseline near the onset 

time in periods with no neuronal activity. Next, we use a two-

step nonlinear least square procedure to fit a double 

exponential model as in (2) to the extracted spike transients. 

The least square curve fitting method finds the best fit of the 

model to the data, 𝑦𝑖 , by minimizing 

𝜒2 =  ∑ (𝑦𝑖 − 𝑓𝑖)
2 𝜎𝑖

2⁄𝑛
𝑖=1 , where 𝑓 is the set of estimated 

values and 𝜎𝑖
2 is the standard deviation (std) of each data point 

[30]. Since the data has Poisson statistics, in the first step, we 

use the data itself as an estimate of 𝜎𝑖
2. We repeat the fitting 

for a second time to reduce the overemphasis of data points 

with lower variance [31]. In this step, we use the fitted values, 

𝑓𝑖, as the estimates of 𝜎𝑖
2. Lastly, we evaluate the goodness of 

fit by calculating the p-value associated with the final 𝜒2value. 

Signals that have a poor fit (p-value<0.05) to the model, are 

discarded from further analysis.  

We use the fitted results to obtain the distribution of 

normalized peak values for each neuron. We test fifteen 

different one-sided distributions listed in Table I on all 

neurons separately. We determine the best distribution model 

among all neurons using a two-step procedure. First, for each 

neuron, we calculate the ML estimates of each model’s 

parameters. We then use Pearson’s 𝜒2 goodness of fit test for 

each fitted model. Models that result in p-values<0.05 are 

discarded from the set of possible probability models. In the 

second step, we choose the best probability model among the 

remaining models using the Akaike Information Criterion 

(AIC), defined as [32] 

  AIC   2 ln | 2 ,ˆf x k   

where �̂� is the ML estimates of the model’s 𝑘 parameters 

based on the observations, x. For a single dataset, the model 

resulting in the smallest AIC score is the best model that 

represents the data [32]. We select the probability model with 

the lowest sum of AIC score across all neurons as the model 

that best describes the dataset (among the models considered 

in this paper). 

 We also extract visually indistinguishable double spike 

cases to demonstrate the detection performance of our 

framework on experimentally-obtained data. Double spike 

signals are defined as cases with two closely-timed spikes 

without any other spike occurring within 2𝜏1/2 time interval 

around them. Further, we discarded cases in which the two 

spikes were visually distinguishable. We centered the two 

spike signals such that time 𝑡 = 0 is in the middle of the two 

waveforms. Examples of one and two spike signals are 

illustrated in Fig. 1 (a). 

D. The Cramer-Rao Lower Bound 

In this section, we utilize the Cramer-Rao based lower 

bounds as reference to study the limits of attainable precision 

in the estimation of the AP evoked fluorescence transient peak 

amplitudes and ISI under 𝐻1hypothesis. The covariance matrix 

C of any unbiased estimator of the p-parameter vector 𝜽1 is a 

𝑝 × 𝑝 matrix that satisfies [33] 

1

1

ˆ ,
F


C I

θ
 

where 
F

I is the 𝑝 × 𝑝 Fisher information matrix. The elements 

of 
F

I for data with Poisson statistics are calculated as 
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      (5) 

In the following sections, the CRBs for estimating ISI, 𝛼, 

and 𝛽 are derived for the problems described in sections II.B.1 

and II.B.2. 

Extract spikes 
with ISI>2𝜏1/2 

Extract 
baseline value 
for each spike 

Two step 
nonlinear least 
square fitting 

Reject fits with 
p-value <0.05 

Fig. 2. Flowchart of the single spike waveform extraction and curve fitting for 

characterizing the prior probability model. 

TABLE I  
LIST OFONE SIDED DISTRIBUTIONS USED IN MODEL FITTING. 

# Distribution Name # Distribution Name 

1 Rayleigh 9 Log-Normal 

2 Birnbaum-Saunders 10 Nakagami 

3 Extreme Value 11 Normal 

4 Gamma 12 Rician 

5 Half Normal 13 Weibull 

6 Inverse Gaussian 14 Burr 

7 Logistic 15 T Location Scale 

8 Log-Logistic   
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1) CRB for Known Amplitude Signals 

For this case, under the assumption of (4), the only 

unknown parameter is 𝑑. Therefore, the Fisher information 

matrix reduces to a scalar calculated as 
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Thus, the lower bound for the unbiased estimation of d is 

var(�̂�) ≥ 𝐼𝐹
−1. We refer the reader to Supplementary Materials 

for the full derivation of the above quantity. 

2) Hybrid CRB for the Random Amplitude Signals 

To address the more challenging case of random spike 

amplitudes combined with unknown deterministic ISI, we 

estimate the unknown parameters through a joint ML and 

maximum a posteriori (MAP) estimator. This optimization 

problem involves the simultaneous ML estimation of ISI (or 

d) and MAP estimation of the normalized peak amplitudes 

[29] (𝛼 and 𝛽): 

    
1

ML

1 MAP | 1 , |

MAP

, ,

argma ln | ln , |
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d
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x p p d
 

 

  



  

 
 
 
  

y θ
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where 𝑝𝛼,𝛽|𝑑(𝛼, 𝛽|𝑑) is the conditional joint prior distribution 

of the amplitudes. For this hybrid problem, we utilize the more 

general Hybrid CRB (HCRB) [29] method, which is defined 

as 
1

HCRB .
H



I  

H
I is called the Hybrid information matrix, which defines the 

lower limit on the mean square error (MSE) of any estimator. 

It is a 3×3 matrix for the problem in section II.B.2 (𝜽1 =
[𝑑, 𝛼, 𝛽]), expressed as the sum  

,
H D P
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The elements of the Fisher information matrix are calculated 

according to (5), in which the derivatives of the mean signal 

𝑠1(𝑡𝑘; 𝜽1) relative to the amplitudes are derived in 

Supplementary Materials. To attain 
D

I , we calculate the 

expectation of 
F

I  with respect to 𝛼 and 𝛽. Note that the 

amplitudes of the two spikes are independent and identically 

distributed (i.i.d) random variables and independent from 𝑑, 
i.e. 𝑝(𝛼, 𝛽|𝑑) = 𝑝(𝛼)𝑝(𝛽). This integral is numerically solved 

using MATLAB. 
P

I on the other hand, can be attained 

analytically, which is derived in section III.C based on the best 

model match for the prior distribution of 𝛼 and  𝛽.  

III. RESULTS  

In this section, we present numerical analysis of the minimum 

detectable ISI and the CRBs formulized in the previous 

sections using biologically plausible simulations. We also 

present the detection results of applying the formulated 

detector on the experimental dataset described in section II.C. 

Our simulations are parameterized based on the experimental 

results in [1, 16] for two different calcium sensors: GCaMP6s 

and GCaMP6f. Since multiple existing scanning techniques 

have different imaging speeds, we consider multiple frame 

rates (𝑓𝑠) in our simulations as well. Acousto-optical deflector 

(AOD) based two-photon microscopes have allowed high 

speed imaging of neuronal activities up to 500 Hz [16], 

enabling millisecond precision spike time estimations. 

Resonant scanning methods are more widely used, achieving 

30 Hz for a 512×512 pixel field-of-view, or 60 Hz for a 

smaller area such that the laser dwell time per neuron is 

approximately kept the same. Without loss of generality, we 

consider the case in which the dwell time per neuron is 

constant across different recording speeds for the comparison 

between their resolution limits and theoretical lower bounds. 

Table II lists the values of parameters used in the simulations. 

We determine the dwell time by considering a 15 μm diameter 

neuron imaged by systems with 1 μm pixel size. 

A. The Gamma Distribution Characterizes the Peak 

Amplitude 

The data extraction pipeline described in section II.C 

resulted in n = 44, 10, 13, 51, 48, 30, 61, 10, and 13 

waveforms per GCaMP6s labeled neurons and n = 100, 63, 88, 

39, 14, 60, 99, 283, 54, 38, and 93 waveforms per GCaMP6f 

labeled neurons. The 𝜒2 test eliminated distribution numbers 

1, 10, 11, 12, 13, 14, and 15 for GCaMP6s neurons and 1, 2, 3, 

5, 6, 8, 9, and 15 for GCamp6f neurons from Table I. Among 

TABLE III 

LIST OF VALUES USED FOR THE KNOWN PARAMETERS IN 

SIMULATIONS. 

Parameter GCaMP6s GCaMP6f 

𝜏𝑜𝑛 72 ms [1] 18 ms [1] 

𝜏𝑑 793.5 ms [1] 204.9 ms [1] 

𝑓𝑠 500 Hz (AOD),  

60 Hz and 30 Hz 

(Resonant) 

500 Hz (AOD),  

60 Hz and 30 Hz 

(Resonant) 

Dwell time 25 μs 25 μs 

 
 

TABLE II  

LIST OF CHOSEN MEAN AND STANDARD DEVIATIONS OF 

0
Δ /F F   PRIOR DISTRIBUTIONS. 

Parameter GCaMP6s GCaMP6f 

Mean 0.23 0.19 
Std 0.03 0.06 
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remaining models, the Gamma distribution resulted in the 

minimum sum of AIC score for both calcium sensors. The 

Gamma probability distribution with parameters 𝑘 and 𝑐 is 

defined as [34]  

1
( ; , ) exp( / ) / ( ),        0,

k k
f x k c c x x c k x

 
       (7) 

where ( )k is the gamma function with argument 𝑘. The mean 

and variance of this distribution are 𝑘𝑐 and 𝑘𝑐2, respectively 

[34]. Fig. 3 (a) illustrates the empirical 𝛥𝐹/𝐹 histogram of one 

neuron from the GCaMP6f dataset, with the best fit Gamma 

distribution overlaid on it.  

Similar to previous calcium imaging studies [16], we 

define signal-to-noise ratio (SNR) as  

 
0 0

SNR  Δ / ,F F F  

where ∆𝐹 is the change in fluorescence of one AP evoked 

calcium transient at its peak amplitude, equal to 𝐴𝐹0 in (1). 

Noting that the mean and variance of the Gamma distribution 

are dependent, we carry out simulations with different levels 

of SNR by fixing 𝑘 and 𝑐 (thus fixing the mean and variance) 

while changing the baseline photon rate 𝐹0. Based on the mean 

and standard deviation of ∆𝐹/𝐹0 values from all neurons in 

each dataset, we selected the mean and standard deviation of 

both sensors’ ∆𝐹/𝐹0 prior distributions as listed in Table III. 

To be consistent in simulations between the known and 

unknown amplitude cases, we carried out the simulations 

related to section II.B.1 with 𝛼 + 𝛽 = 0.46 for GCaMP6s and 

𝛼 + 𝛽 = 0.38 for GCaMP6f. 

B. The Detector Distinguishes Two Fluorescence Transients 

with ISI on the Order of Tens of Milliseconds 

1) Performance Characterized Through Data Simulation 

Due to the asymmetry of the transients, ISI values greater 

than 𝑡𝑟𝑖𝑠𝑒 (the time when the fluorescence transient ℎ(𝑡) 

reaches its maximum) result in visually distinguishable 

transients. Therefore, in this paper we are interested in the 

range of values ISI< 𝑡𝑟𝑖𝑠𝑒 . For the bi-exponential model 

described in (2) and according to GCaMP6s parameters in 

Table II, we have  

   ln 1 / 0.2  .
rise on d on

t s      

Numerical evaluation of the smallest detectable ISI 

depends on the selection of 𝑃𝐷 and 𝑃𝐹 . We set the number of 

false positives to be equal to the number of misses, relating 𝑃𝐹  

and 𝑃𝐷 through 

Fig. 3. Resolution limit is quantified by the smallest detectable ISI (ISImin). ISImin smaller than the fluorescence waveform’s rise time can be achieved under 

certain experimental conditions. (a) Experimental probability distribution of peak Δ𝐹/𝐹 from the GCaMP6f dataset is best described by the Gamma distribution 

(n = 283 samples). (b) GLRT achieves similar ISImin values to LRT. (c) ISIminversus combined SNR and ratio between signal amplitudes for (lower curves) 

𝑑1 = 𝑑2 and (upper curves) 𝛼𝑑1 = 𝛽𝑑2. Detecting two unequally bright transients that are symmetrically located around the test origin gives better detection 
results.  (d) Prior knowledge about the probability distribution of randomly distributed amplitudes results in similar detection performance to the equal known 

amplitude case. (e) ISImin calculated for different recording speeds. Under the same dwell time and photon emission rate by the neuron, faster recordings detect 

smaller ISIs.  All results (b)-(e) were obtained with 2000 Monte-Carlo simulation and at detection performance point of  𝑃𝐷 = 0.99 and 𝑃𝐹 = 0.017. 
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1 1

/ 1 1 ,
F D

P p H p H P       (8) 

where 𝑝(𝐻1) is the probability of the 𝐻1 hypothesis. Assuming 

a Gamma distribution for ISI values [35], 𝑝(𝐻1)  is the 

probability of ISI < 𝑡𝑟𝑖𝑠𝑒, calculated by 

   
0.2

1

0

  Gamma , ,

x

p H k c dx



         (9) 

were the Gamma distribution is defined in (7). We determined 

the parameters 𝑘 and 𝑐 using the dataset from section II.C. 

Since this dataset was obtained from anesthetized mice (which 

include very large ISIs not observed in awake state), we used 

only ISI values less than 1 ms for estimating biologically 

plausible values for the Gamma distribution in awake mice. 

Fitting Gamma distributions to the ISI values of individual 

neurons, we estimated a mean value of 𝑘 = 1 and 𝑐 = 0.2. 

Substituting these values in (9) and considering a high 

detection threshold of 𝑃𝐷 = 0.99 for (8) result in 𝑃𝐹 = 0.017; 

the same values of 𝑃𝐷 and 𝑃𝐹  are used for analyzing the 

resolution limits of GCaMP6s and GCaMP6f.  

It is illuminating to see how well the GLRT detector 

performs compared to the best optimal detector (LRT), in 

which all the parameters are known. Fig. 3 (b) shows the 

smallest detectable ISI (ISImin) of both sensors for the 

symmetrically located spikes with equal known amplitudes 

versus SNR for an AOD scanner operating at 𝑓𝑠 = 500 Hz. 

The results were obtained by generating receiver operating 

characteristic (ROC) curves from 2000 Monte-Carlo 

simulations at each SNR and ISI sampled with 0.5 ms spacing. 

ISIminwas determined by the smallest ISI value for which the 

corresponding ROC curve satisfied 𝑃𝐷 = 0.99 and 𝑃𝐹 = 0.017. 

Comparing the two detectors of each sensor, Fig. 3 (b) 

suggests that GLRT performs very close to the optimal 

detector. It also shows that we can accurately resolve ISI 

values much smaller than the fluorescence waveforms’ rise 

times (𝑡𝑟𝑖𝑠𝑒 ≅ 200 ms and 45 ms for GCaMP6s and GCaMP6f, 

respectively) at different levels of SNR. In particular, at SNR 

= 3 obtained from the GCaMP6s dataset, the detector 

distinguishes fluorescence waveforms with ISI as small as 

about 60 ms. Similarly, for SNR = 2 obtained from GCaMP6f 

dataset, we can distinguish waveforms with ISI as small as 40 

ms. 

Fig. 3 (c) compares two cases of the known amplitudes, 

namely, 𝑑1 = 𝑑2 and 𝛼𝑑1 = 𝛽𝑑2, for different combined SNR 

levels (i.e., sum of the two transients’ SNRs) and amplitude 

ratios between the waveforms. The 𝛼 ≠ 𝛽 case gives better 

detection performance under the 𝑑1 = 𝑑2 condition, 

suggesting that at a fixed SNR level, we can resolve smaller 

ISIs compared to the equal amplitudes case. This result was 

also reported in [24] for a symmetric PSF. As explained in 

section II.B.1, for the case of 𝛼 ≠ 𝛽 with 𝑑1 = 𝑑2, the 𝐻0 

hypothesis is not located in the most challenging distance 

between two signals of the 𝐻1 hypothesis, making the 

detection problem easier. However, when the test is conducted 

according to (4), the 𝛼 ≠ 𝛽 case is a more challenging 

problem compared to 𝛼 = 𝛽. That is, with the same SNR 

level, the detector can resolve a larger ISI. This result 

emphasizes the importance of the 𝐻0 hypothesis in the 

performance of the detector. 

For the case of unknown amplitudes with prior probability 

distribution, as explained in section II.B.2, the performance of 

the detector is characterized by averaging 𝑃𝐷 and 𝑃𝐹 . Since a 

closed form expression is not available for 𝑃𝐷 and 𝑃𝐹  relating 

them to 𝛼 and 𝛽, Monte-Carlo simulation with 𝑓𝑠 = 500 Hz 

was used to numerically solve the problem. At each SNR 

value, 200 independent values of 𝛼 and 𝛽 were drawn from 

their prior distribution. For each draw at each SNR and ISI 

sampled with 0.5 ms spacing, 2000 simulations were executed, 

and the results are shown in Fig. 3 (d). Comparing the result of 

this problem with the known amplitude case for both sensors, 

we note that the prior knowledge about the amplitudes in the 

random case has resulted in a performance very close to the 

known case, with the latter slightly outperforming the former 

especially at the low SNR = 2. In all cases, the utilized 

detector can distinguish the presence of two spikes at ISIs 

much smaller than the fluorescence waveforms’ rise times. At 

the SNR levels of the GCaMP6s and GCamp6f datasets (SNR 

= 3 and 2, respectively), the detector for the general case of 

random amplitudes, on average, detects two fluorescence 

waveforms that are about 70 ms and 60 ms apart.  

We compare the detection performance of different 

recording speeds under equal dwell time and baseline photon 

emission rates in Fig. 3 (e). Results from this analysis indicate 

that higher recording speeds can resolve significantly smaller 

ISI values for both calcium sensors at low photon emission 

rates. Nonetheless, experimentalists equipped with a 

conventional recording system can attain resolution limits 

smaller than the fluorescence waveform’s rise time by 

imaging a smaller field-of-view and thus, increasing dwell 

time and SNR. Overall, when designing experiments, sensor 

properties, SNR, and frame rate should all be considered to 

achieve the desirable spike detection performance. 

2) Detector Performance on Experimental Dataset 

We applied the formulated detector under the unknown 

amplitudes case on the experimental data described in section 

II.C. The data extraction pipeline resulted in 82 and 258 two 

spike samples for GCaMP6s and GCaMP6f expressing 

neurons, respectively. In analyzing experimental data, the test 

origin needs to be determined first. This can be done by 

finding the maximum point of cross-correlation between 

individual signals and 𝑠0(𝑡𝑘). To avoid erroneous calculation 

of the time origin due to noise, we used the true spike times to 

center the extracted signals on 𝑡 = 0.  

We determined the detection threshold based on a desired 

value for 𝑃𝐹  common between all SNR values. This can be 

done because the probability distribution of the log-likelihood 

ratio under the 𝐻0 hypothesis is independent from the true 

values of parameters defining the model under 𝐻0 [27]. As an 

illustrative example, we performed the detection problem by 

setting 𝑃𝐹 = 0.3. Fig. 4 (a) illustrates examples of one and two 

spike fluorescent signals that were either correctly or 

incorrectly labeled by the detector. Fixing the detection 

threshold at the desired 𝑃𝐹  level, different theoretical 𝑃𝐷 

values are derived from the ROC curves of 2000 simulated 

data for each different SNR and ISI pair values (Fig. 4 (b) 
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illustrates the case for GCaMP6f). The detector achieved total 

detection rates of 0.74 and 0.87 for GCaMP6s and GCaMP6f 

datasets, respectively. It also resulted 0.26 in (GCaMP6s) and 

0.37 (GCaMP6f) total false positive rates, which are 

approximately the expected values from setting 𝑃𝐹 = 0.3. 

To further compare the detector’s expected performance 

through theoretical analysis to the observed performance on 

experimental data, we took the following steps. First, we 

grouped the two spike data points based on their theoretical 𝑃𝐷 

values (𝑃𝐷,Expected). Since 𝑃𝐷 is a continuous variable, we 

discretized the values by rounding to obtain the sample 

groups. Next, real 𝑃𝐷 value (𝑃𝐷,Real) for each group was 

calculated as the percentage of samples correctly detected as 

two spikes in each group. We utilized the binomial confidence 

interval to assess the 𝑃𝐷,Real values [36]. Since the number of 

samples in each group was relatively small, we used the 68% 

confidence interval corresponding to distribution of data 

within one standard deviation of the mean to assess whether 

our detector attained performance close to the theoretically 

predicted performance. Our analysis revealed that the 

detector’s detection performance on experimental data was 

indeed close to that predicted in theory (Fig. 4 (c)), as the 

𝑃𝐷,Expected values fall in the confidence intervals of 𝑃𝐷,Real.  

 

C. Prior Knowledge about Signal Amplitudes Yields 

Theoretically Equal ISI Estimation Performance to the Known 

Case 

In this subsection, we present the CRB and HCRB for the 

known and the random amplitude cases, respectively. Fig. 5 

(a) illustrates the effect of amplitude ratios on √CRB for the 

𝛼 ≠ 𝛽 case under the two conditions, 𝑑1 = 𝑑2 and 𝛼𝑑1 =
𝛽𝑑2, with fixed ISI = 60 ms and combined SNR = 8 for 

GCaMP6s. As the ratio between the amplitudes diverges from 

one, CRB gets larger for the 𝛼𝑑1 = 𝛽𝑑2 case, whereas it 

decreases in 𝑑1 = 𝑑2 (similarly for GCaMP6f illustrated in 

Supplementary Fig. 1 (a)). This result is similar to the result in 

Fig. 3, where we emphasized on the effect of defining the 𝐻0 

hypothesis. 

We complete the derivation of the HCRB described in 

section II.D.2 by calculating 𝐈𝑃 according to (6). Based on the 

i.i.d assumption of 𝛼 and 𝛽, and their independence from ISI, 

only the second and third diagonal elements of 𝐈𝑃 

corresponding to 𝛼 and 𝛽 are none-zero and equal. Referring 

that 𝛼, 𝛽~Gamma(𝑘, 𝑐), these two elements are derived as 

Fig. 5. Lower bounds on ISI estimation for GCaMP6s at 𝑓𝑠 = 500 Hz. (a) √CRB for two cases of known and unequal amplitudes versus the amplitude ratio at 
combined SNR = 8 and ISI = 60 ms. Estimating ISI from two unequally bright transients that are symmetrically located around the test origin gives better 

precision.  (b) √CRB and √HCRB  for the case of known and random amplitude cases, respectively, versus (left) ISI at combined SNR = 8, and (right) SNR at 

ISI = 60 ms (𝛼𝑑1 = 𝛽𝑑2). An optimized ISI estimator with a random but known prior distribution about the amplitudes asymptotically performs similar to an 

optimized unbiased estimator of ISI with known 𝛼 = 𝛽. 

Fig. 4. Two spike detection results from the experimental dataset. (a)  
Examples of true positive (TP), false negative (FN), false positive (FP), 

and true negative (TN) from the GCaMP6f dataset. Vertical red lines 
correspond to spike times in the two spike cases. (b) GCaMP6f two spike 

samples overlaid on heat map of 𝑃𝐷 versus SNR and ISI at a fixed 𝑃𝐹. 
Green circles are true positive samples, whereas false negatives are 

shown with navy (n = 258 samples). The detector obtained 0.87 true 

positive rate and 0.37 false positive rate. (c) The detector approximately 
achieves the expected performance calculated through theoretical 

analysis. Error bars indicate 68% confidence intervals. Gray shaded areas 

denote discretized intervals. Number of samples in each interval is 
written along the corresponding interval. All results are obtained at fixed  

𝑃𝐹 = 0.3  
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We compare the √HCRB of the random amplitude case with 

√CRB of the known and equal amplitude case at combined 

SNR = 8 and ISI = 60 ms in Fig. 5 (b) for GCaMP6s; It is seen 

that the two bounds are nearly identical (mean±std difference 

of 0.2±0.05 ms (right) and 0.05±0.07 ms (left)). Similar 

results are obtained for GCaMP6f lower bounds, as illustrated 

in Supplementary Fig. 1 (b) (mean±std difference of 

0.24±0.04 ms (right) and 0.05±0.09 ms (left)). We thus 

conclude that an optimized unbiased estimator of ISI with 

known 𝛼 = 𝛽 asymptotically performs similar to an optimized 

ISI estimator with a random but known prior distribution 

about the amplitudes. 

D. Maximum Likelihood and Maximum a Posteriori 

Estimators Closely Approach the Theoretical Bounds 

In this section, we compare the performance of ML and 

MAP estimators with their corresponding lower bounds. Fig. 6 

(a) and (b) show the comparison of bias and standard 

deviation of GCaMP6s ISI estimation (through 5000 Monte-

Carlo simulations) to the √CRB limit, assuming symmetrically 

located spikes with known amplitudes fixed at combined SNR 

= 20. Except for very small ISI values in Fig. 6 (a), the results 

show that the ML estimator is unbiased and its standard 

deviation is very close to the lower limit, emphasizing its 

ability to achieve the theoretically best possible precision. 

However, for small values of ISI in the 𝛼 = 𝛽 problem, the 

standard deviation of ISI estimations becomes smaller than the 

lower limit. Similar results are obtained for GCaMP6f as 

illustrated in Supplementary Fig. 2 (a) and (b)). Note that in 

Fig. 6. ML and MAP estimators nearly achieve 

the information theoretic bounds. Results 
obtained from 5000 Monte-Carlo simulations at 

combined SNR = 20 for GCaMP6s. Standard 

deviation (std) and bias of ISI estimation 

compared to √CRB for known values of (a) 

𝛼 = 𝛽  and (b) 𝛽 = 3𝛼 with 𝑑1 = 𝑑2 at 𝑓𝑠 =500 

Hz. RMSE of (c, left) ISI and (c, right) 𝛼 and  𝛽 

estimations compared to their √HCRB, with 

𝛼𝑑1 = 𝛽𝑑2 at 𝑓𝑠 =500 Hz. Dashed-dot vertical 
line shows the smallest ISI for which the CRB 

comparison is valid. (d) Standard deviation of 
estimating ISI from simulated dataset compared 

to √CRB  for the case of equal amplitudes with 

different recording rates. Higher frame rates 
bring us closer to the information theoretic lower 

bound compared to slower speeds. Only valid 

regions are depicted.  
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the 𝛼 = 𝛽 problem, the maximization problem in (3) has two 

answers: ISI = d and ISI = -d. The ML estimator achieves 

asymptotic consistency and efficiency under certain 

conditions; one is that the maximum of (3) should be unique 

[37]. For large ISI values, where the two peaks are relatively 

far from each other, iterative optimization methods used to 

numerically solve the maximization problem converge to one 

of the two peaks depending on the starting point. Therefore, 

we may assume a “unique” peak at the local region around 

either one of the maximums where the consistency and 

efficiency properties hold. However, as ISI gets smaller and 

the precision of estimation decreases, observation noise will 

deviate the peak locations of the log-likelihood function 

towards ISI = 0. In the presence of such bias, the comparison 

of ML variance to CRB is theoretically invalid. We specify the 

boundary of the valid region for ML and CRB comparison 

based on the simulation results presented in Supplementary 

Fig. 3 for GCaMP6s and Supplementary Fig. 4 for GCaMP6f. 

The histograms of numerically calculated ISI values at 

combined SNR = 20 show that for small values of ISI, a 

discernible peak appears at ISI = 0. This results from the 

estimator being trapped around zero. 

At ISI > 8 ms (GCaMP6s) and ISI > 4 ms (GCaMP6f) the 

peak at zero becomes less prominent (peak height becomes 

smaller than half of the height at true value), reducing the bias. 

Therefore, we determine ISI = 8 ms and 4 ms as the boundary 

of the valid region of ML and CRB comparison for GCaMP6s 

and GCaMP6f with 500 Hz recording speed, respectively. 

These boundaries are illustrated in Fig. 6 (a) and 

Supplementary Fig. 2 (a) for the equal amplitude cases. The 

estimations to the left of these boundaries have considerable 

bias, therefore making the comparison of the standard 

deviation to the √CRB invalid. 

Fig. 6 (c) compares the root-mean-squared error (RMSE) of 

the GCaMP6s parameter estimations to the √HCRB limits 

versus ISI for the case of random amplitudes with 𝛼𝑑1 = 𝛽𝑑2, 

and combined SNR = 20 and 𝑓𝑠 = 500 Hz. The results suggest 

that the simultaneous ML and MAP estimation of ISI and the 

amplitudes achieves very close performance to the asymptotic 

limit, especially for 𝛼 and 𝛽. In the small ISI region, bias in 

the amplitude estimations towards 𝛼 = 𝛽 leads to the previous 

problem of non-unique solution for ISI. Therefore, we 

included the valid boundary as in Fig. 6 (a) for completeness. 

The comparison of the results on the left of this line to the 

boundary is not valid. Similar results are obtained for 

GCaMP6f as illustrated in Supplementary Fig. 2 (c). 

Finally, we analyze the information theoretic lower bound 

for different recording systems. Under the equal amplitude 

case, Fig. 6 (d) compares the calculated standard deviation of 

ISI estimation through 5000 Monte-Carlo simulations to the 

lower bounds for the GCaMP6s sensor at the fixed combined 

SNR = 20. At the same SNR level, the CRB for ISI estimation 

using higher recording rates is smaller compared to lower 

recording rates. More importantly, the very high 500 Hz 

recording speed comes very close to achieving its estimation 

lower bound, as can be seen from the small distance between 

the calculated standard deviation and the theoretical lower 

bound. Similar results are obtained for GCaMP6f as shown in 

Supplementary Fig. 2 (d). 

IV. DISCUSSION 

Calcium sensor kinetics and SNR significantly impact spike 

detectability and precision of spike time estimation [17]. Thus, 

there is a need for understanding the theoretical resolution 

limits of detecting closely-timed neuronal spikes from 

fluorescence signals. Similar to studies that have shown 

resolutions beyond the Rayleigh limit is possible in optical 

imaging systems [22-26], this study showed that by using the 

statistical approach, attaining resolution finer than the peak 

time of the indicator is possible. While this result was 

expected from a previous algorithm conducted on OGB-1 

labeled neurons which assumed uniform calcium spike 

responses [16], our detector achieved equal performance 

considering randomly distributed calcium responses. The latter 

scenario better matches the true, stochastic response of 

calcium indicators during live animal experiments. The CRB 

lower bounds on the variance of ISI estimation further verified 

the results of the detection framework. 

Our detection theoretic framework assumed no definite 

knowledge about the peak value of a single spike, which is 

beneficial for modeling experiments with no ground truth 

available. This was a particularly challenging case since the 

peak amplitude of the single spike in the 𝐻0 hypothesis is 

comparable to the peak amplitude of the signal generated by 

two spikes in the 𝐻1 hypothesis. Thus, a simple decision 

between 𝐻0 and 𝐻1 based on amplitude alone, especially in 

low SNRs, cannot provide accurate results. We showed that 

utilizing the signal’s temporal information, as modeled 

through 𝑠0(𝑡; 𝜃0) and 𝑠1(𝑡; 𝜽1), enabled accurate detection. 

The resolution limits and estimation bounds were estimated 

based on a set of experimentally derived parameters. We 

determined the detection criteria, i.e. 𝑃𝐷 and 𝑃𝐹 , by relating 

them through the prior probabilities of the two hypotheses, 

which were derived using the available dataset with ground 

truth spike times. The prior probabilities derived in our work 

are applicable to this specific data and need to be recomputed 

for any new experiment. In general, accurate information 

about the spiking behavior of the neurons might not be 

available. In such events, experimentalists can use any 

desirable values for 𝑃𝐷 and 𝑃𝐹  to derive the resolution limits 

of detecting temporally overlapping fluorescence waveforms. 

A good performing detector is one with very high 𝑃𝐷 (usually 

above 0.9) and low 𝑃𝐹  (such as 0.01). In general, a very high 

𝑃𝐷 along with a very low 𝑃𝐹  value will make the detection of 

two spikes a harder problem, resulting in larger resolution 

limits (i.e. ISImin). 

Our model was based on Poisson statistics of the signals, 

which is generally true for shot-noise limited recordings. 

Importantly, we have demonstrated that our formulated 

detector performs as expected on experimentally-obtained 

datasets. However, under certain conditions this assumption 

can be violated. For example, some signal extraction methods 

are based on the weighted average of multiple pixel values, 

which would generate signals that are not purely Poissonian. 

Another case is when neuropil contamination is removed by 

subtracting the average pixel values around the neuron soma. 

Nevertheless, our formalism should allow incorporation of 

other noise models in future work. 
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We have assumed linear relationship between calcium 

dynamics and fluorescence response. In general, this 

relationship is non-linear and sensor saturation occurs at very 

high neuronal firing rates. This effect is especially pronounced 

for past generations of protein calcium sensors with high 

dissociation constant. For the case of GCaMP6 sensors 

considered in our work, which are currently the best GECIs 

due to their favorable properties, the fluorescence response is 

linear in the low spike regime [1]. Therefore, the non-linear 

dynamics and saturation assumptions are not necessary for the 

work presented in this paper, which deals with one and two 

spike cases. Much like our discussion of extraneous noise 

sources, we could potentially incorporate such non-linear 

models of sensor response into our models as well.  

This work is the first step in the continuum research to 

utilize detection theoretic tools to set the optimal resolution 

limits for temporally overlapping fluorescence signals. Future 

work will extend the current framework to the more general 

case of more than two spikes. Such analysis should take into 

account the non-linearity and saturation effect [38, 39].  

V. CONCLUSION 

In this paper, we addressed the problem of accurately 

detecting two AP evoked fluorescence transients from a 

statistical viewpoint. We employed a previously introduced 

hypothesis testing framework to tackle the resolution problem. 

We also presented the asymptotic performance of the 

parameter estimators using the traditional and Hybrid CRBs.  

Through simulation and experimental data across different 

SNR levels and recording speeds, we showed that the 

detectors can accurately distinguish two signals with ISI on 

the order of tens of milliseconds, shorter than the waveform’s 

rise time. Our work could also better inform the choice of 

calcium indicator used in neuroscience experiments. The latest 

GCaMP6 calcium sensors present a trade-off between sensor 

kinetics and SNR: GCaMP6s is significantly slower than other 

sensors such as GCaMP6f, but has superior ∆𝑭/𝑭 response. 

Choice between these two sensors, for example, has 

previously relied on the emphasis of one of the two metrics. 

Our work suggests that instead of assessing the kinetics of the 

sensor as the sole metric of temporal resolution, additional 

analysis using recording speed, sensor kinetics, SNR, and the 

sensor’s stochastically distributed response to action potentials 

can accurately resolve ISI values much smaller than the 

fluorescence waveform’s rise time. Such analysis aids not only 

in future spike detection, but also in future experimental 

design when choosing sensors of neuronal activity. Even as 

GECIs continue improving, our work should maintain 

relevance by assessing the achievable temporal resolution of 

an imaging experiment.  

CODE AVAILABILITY 

We have made the open-source code for our detection 

theoretic tools freely available online at 

https://github.com/soltanianzadeh/TwoSpikeGLRT to allow 

other researchers to test and modify the algorithm for their 

specific applications. 
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