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1. INTRODUCTION

Theoretical and practical limitations usually constrain the
achievable resolution of any imaging device. While higher-
quality images may result from more expensive imaging
systems, often we wish to increase the resolution of im-
ages previously captured under nonideal situations. For in-
stance, enhancing the quality of a video sequence captured by
surveillance cameras in a crime scene is an example of these
situations.

The basic idea behind SR is the fusion of a sequence
of low-resolution (LR) noisy blurred images to produce a
higher-resolution image. Early works on SR showed that it
is the aliasing effects in the LR images that enable the recov-
ery of the high-resolution (HR) fused image, provided that
a relative subpixel motion exists between the undersampled
input images [1]. However, in contrast to the clean but prac-
tically naive frequency-domain description of SR in that early
work, in general, SR is a computationally complex and nu-
merically ill-posed problem in many instances [2]. In recent
years, more sophisticated SR methods have been developed
(see [2–12] as representative works).

In this work, we consider SR applied on an image se-
quence, producing a sequence of SR images. At time point
t, we desire an SR result that fuses the causal images at times
t, t − 1, . . . , 1. The natural approach, as most existing works
so far suggest, is to apply the regular SR on this set of images
with the tth frame as a reference, produce the SR output, and
repeat this process all over again per each temporal point. We

refer to this as the static SR method, since it does not exploit
the temporal evolution of the process.

In contrast, in this work, we adopt a dynamic point of
view, as introduced in [13, 14], in developing the new SR so-
lution. The memory and computational requirements for the
static process are so taxing as to preclude its direct applica-
tion to the dynamic case, without highly efficient algorithms.
It is natural to expect that if the SR problem is solved for time
t−1, our task for time t could use the solution at the previous
time instant as a stepping stone towards a faster and more re-
liable SR solution. This is the essence of how dynamic SR is to
gain its speed and better results, as compared to a sequence
of detached static SR solutions.

The work presented here builds on the core ideas as ap-
peared in [13, 14], but deviates from them in several impor-
tant ways, to propose a new and better reconstruction algo-
rithm.

(i) Speed. Whereas the methods in [13, 14] rely on the in-
formation pair to approximate the KF, this work uses
the more classic mean-covariance approach. We show
that for the case of translational motion and common
space-invariant blur, the proposed method is compu-
tationally less complex than the dynamic SR methods
proposed previously. Also, in line with [15], we show
that this problem can be decomposed into two disjoint
pieces, without sacrificing optimality.

(ii) Treatment of mosaiced images. In this paper, we focus
on two common resolution-enhancement problems in
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digital video/photography that are typically addressed
separately, namely, SR and demosaicing. While SR is
naturally described for monochrome images, aiming
to increase resolution by the fusion of several frames,
demosaicing is meant to recover missing color values,
decimated deliberately by the sensor. In this work, we
propose a method of dealing with these two prob-
lems jointly, and dynamically. Note that in our pre-
vious work as appeared in [16, 17] we addressed the
static multiframe demosaicing problem, and so the
work presented here stands as an extension of it to the
dynamic case.

(iii) Treatment of color. Our goal in this paper is to de-
velop a dynamic SR algorithm for both monochro-
matic and color input and output sequences. We seek
improvements in both visual quality (resolution en-
hancement and color artifact reduction) and com-
putational/memory efficiency. We introduce advanced
priors that handle both spatial and color-wise relation-
ships properly, this way leading to high quality recov-
ery.

(iv) Causality. The work presented in [13, 14] considered a
causal mode of operation, where the output image at
time t0 fuses the information from times t ≤ t0. This is
the appropriate mode of operation when online pro-
cessing is considered. Here, we also study a noncausal
processing mode, where every HR reconstructed im-
age is derived as an optimal estimate incorporating in-
formation from all the frames in the sequence. This is
an appropriate mode of operation for offline process-
ing of movies, stored on disk. We use the smoothed KF
to obtain an efficient algorithm for this case.

This paper is organized as follows. In Section 2, we dis-
cuss a fast dynamic image fusion method for the transla-
tional motion model, assuming regular monochromatic im-
ages, considering both causal and noncausal modes. This
method is then extended in Section 3 to consider an en-
hancement algorithm of monochromatic deblurring and in-
terpolation. We address multiframe demosaicing and color-
SR deblurring problems in Section 4. Simulations on both
real and synthetic data sequences are presented in Section 5,
and Section 6 concludes this paper.

Before delving into the details, we should mention that
this paper (with all color pictures and a Matlab-based soft-
ware package for resolution enhancement) is available at
http://www.soe.ucsc.edu/∼milanfar.

2. DYNAMIC DATA FUSION

2.1. Recursive model

In this paper, we use a general linear dynamic forward model
for the SR problem as in [13, 14]. A dynamic scene with in-
tensity distribution X(t) is seen to be warped at the cam-
era lens because of the relative motion between the scene
and camera, and blurred by camera lens and sensor integra-
tion. Then, it is discretized at the CCD, resulting in a digi-
tized noisy frame Y(t). Discretization in many commercial

digital cameras is a combination of color filtering and down-
sampling processes. However, in this section, we will restrict
our treatment to simple monochrome imaging. We represent
this forward model by the following state-space equations
[18]:

X(t) = F(t)X(t − 1) + U(t), (1)

Y(t) = D(t)H(t)X(t) + W(t). (2)

Equation (1) describes how the ideal superresolved im-
ages relate to each other through time. We use the under-
score notation such as X to indicate a vector derived from
the corresponding image of size [rQ1 × rQ2] pixels, scanned
in lexicographic order. The current image X(t) is of size
[r2Q1Q2 × 1], where r is the resolution-enhancement fac-
tor, and [Q1 × Q2] is the size of an input LR image. Equa-
tion (1) states that up to some innovation content U(t),
the current HR image is a geometrically warped version of
the previous image, X(t − 1). The [r2Q1Q2 × r2Q1Q2] ma-
trix F(t) represents this warp operator. The so-called system
noise U(t), of size [r2Q1Q2 × 1], is assumed to be additive
zero-mean Gaussian with Cu(t) as its covariance matrix of
size [r2Q1Q2× r2Q1Q2]. Note that the closer the overlapping
regions of X(t) and the motion compensated X(t−1) are, the
smaller Cu(t) becomes. Therefore, Cu(t) reflects the accuracy
of the motion estimation process and for overlapped regions
it is directly related to the motion estimation covariance ma-
trix.

As to equation (2), it describes how the measured im-
age Y(t) of size [Q1Q2 × 1] is related to the ideal one, X(t).
The camera’s point spread function (PSF) is modelled by the
[r2Q1Q2 × r2Q1Q2] blur matrix H(t), while the [Q1Q2 ×
r2Q1Q2] matrixD(t) represents the downsampling operation
at the CCD (downsampling by the factor r in each axis). In
mosaiced cameras, this matrix also represents the effects of
the color filter array, which further downsamples the color
images—this will be described and handled in Section 4. The
noise vectorW(t) of size [Q1Q2×1] is assumed to be additive,
zero-mean, white Gaussian noise. Thus, its [Q1Q2 × Q1Q2]
covariance matrix is Cw(t) = σ2

wI . We further assume that
U(t) and W(t) are independent of each other.

The equations given above describe a system in its state-
space form, where the state is the desired ideal image. Thus,
a KF formulation can be employed to recursively compute
the optimal estimates (X(t), t ∈ {1, . . . ,N}) from the mea-
surements (Y(t), t ∈ {1, . . . ,N}), assuming that D(t),H(t),
F(t), σw, and Cu(t) are all known [13, 14, 18]. This estimate
could be done causally, as an online processing of an incom-
ing sequence, or noncausally, assuming that the entire image
sequence is stored on disk and processed offline. We consider
both these options in this paper.

As to the assumption about the knowledge of various
components of our model, while each of the operators
D(t),H(t), and F(t) may vary in time, for most situations the
downsampling (and later color filtering), and camera blur-
ring operations remain constant over time assuming that the
images are obtained from the same camera. In this paper, we
further assume that the camera PSF is space-invariant, and
the motion is composed of pure translations, accounting for

http://www.soe.ucsc.edu/~milanfar
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either vibrations of a gazing camera, or a panning motion of
a faraway scene. Thus, both H and F(t) are block-circulant
matrices,1 and as such, they commute. We assume that H
is known, being dependent on the camera used, and F(t) is
built from motion estimation applied on the raw sequence
Y(t). The downsampling operator D is completely dictated
by the choice of the resolution-enhancement factor (r). As to
σw, and Cu(t), those will be handled shortly.

We limit our model to the case of translational motion
for several reasons. First, as we describe later, such a motion
model allows for an extremely fast and memory efficient dy-
namic SR algorithm. Second, while simple, the model fairly
well approximates the motion contained in many image se-
quences, where the scene is stationary and only the camera
moves in approximately linear fashion. Third, for sufficiently
high frame rates, most motion models can be (at least locally)
approximated by the translational model. Finally, we believe
that an in-depth study of this simple case yields much insight
into the more general cases of motion in dynamic SR.

By substituting Z(t) = HX(t), we obtain from (1) and
(2) an alternative model, where the state vector is Z(t),

Z(t) = F(t)Z(t − 1) + V(t), (3)

Y(t) = DZ(t) + W(t). (4)

Note that the first of the two equations is obtained by left
multiplication of both sides of (1) by H and using the fact
that it commutes with F(t). Thus, the vector V(t) is a col-
ored version of U(t), leading to Cv(t) = HCu(t)HT as the
covariance matrix.

With this alternative definition of the state of the dy-
namic system, the solution of the inverse problem at hand
decomposes, without loss of optimality, into the much sim-
pler subtasks of fusing the available images to compute
the estimated blurry image ̂Z(t), followed by a deblurring/
interpolation step, estimating ̂X(t) from ̂Z(t). In this section,
we treat the three color bands separately. For instance, only
the red band values in the input frames, Y(t), contribute to
the reconstruction of the red band values in ̂Z(t). The corre-
lation of the different color bands is discussed and exploited
in Section 4.

We next study the application of KF to estimate Z(t). In
general, the application of KF requires the update of the state
vector’s covariance matrix per each temporal point, and this
update requires an inversion of the state vector’s covariance
matrix. For a superresolved image with r2Q1Q2 pixels, this
matrix is of size [r2Q1Q2 × r2Q1Q2], implying a prohibitive
amount of computations and memory.

Fast and memory efficient alternative ways are to be
found, and such methods were first proposed in the context
of the dynamic SR in [13, 14]. Here we show that significant
further speedups are achieved for the case of translational
motion and common space-invariant blur.

1 True for cyclic boundary conditions that will be assumed throughout this
work.

2.2. Forward data fusion method

The following defines the forward Kalman propagation and
update equations [18] that accounts for a causal (online)
process. We assume that at time t − 1 we already have the
mean-covariance pair, (̂Z(t−1), ̂M(t−1)), and those should
be updated to account for the information obtained at time
t. We start with the covariance matrix update based on (3),

˜M(t) = F(t)̂M(t − 1)FT(t) + Cv(t). (5)

The KF gain matrix is given by

K(t) = ˜M(t)DT
[

Cw(t) + D˜M(t)DT
]−1

. (6)

This matrix is rectangular of size [r2Q1Q2×Q1Q2]. Based on
K(t), the updated state-vector mean is computed by

̂Z(t) = F(t) ̂Z(t − 1) + K(t)
[

Y(t)−DF(t) ̂Z(t − 1)
]

. (7)

The final stage requires the update of the covariance matrix,
based on (4),

̂M(t) = Cov
(

̂Z(t)
) = [I− K(t)D

]

˜M(t). (8)

More on the meaning of these equations and how they are
derived can be found in [18, 19].

While in general the above equations require the prop-
agation of intolerably large matrices in time, if we refer to
Cv(t) as a diagonal matrix, then ˜M(t) and ̂M(t) are diago-
nal matrices of size [r2Q1Q2 × r2Q1Q2]. It is relatively easy
to verify this property: for an arbitrary diagonal matrix GB

(B stands for big), the matrix DGBDT is a diagonal matrix.
Similarly, for an arbitrary diagonal matrix GS (S stands for
small), the matrix DTGSD is diagonal as well. Also, in [15], it
is shown that for an arbitrary pure translation matrix F and
an arbitrary diagonal matrix GB, the matrix FGBFT is diago-
nal. Therefore, if the matrix ˜M(0) is initialized as a diagonal
matrix, then ˜M(t) and ̂M(t) are necessarily diagonal for all
t, being the results of summation, multiplication, and inver-
sions of diagonal matrices.

Diagonality of Cv(t) is a key assumption in transferring
the general KF into a simple and fast procedure, and as we
will see, the approximated version emerging is quite faithful.
Following [13, 14], if we choose a matrix σ2

v I ≥ Cv(t), it im-
plies that σ2

v I − Cv(t) is a positive semidefinite matrix, and
there is always a finite σv that satisfies this requirement. Re-
placing Cv(t) with this majorizing diagonal matrix, the new
state-space system in (3) and (4) simply assumes a stronger
innovation process. The effect on the KF is to rely less on
the temporal relation in (3) and more on the measurements
in (4). In fact, at the extreme case, if σv → ∞, the KF uses
only the measurements, leading to an intraframe maximum-
likelihood estimator. Thus, more generally, such a change
causes a loss in the accuracy of the KF because it relies less
on the internal dynamics of the system, but this comes with
a welcomed simplification of the recursive estimator. It must
be clear that such change in Cv(t) has no impact on the con-
vergence properties of the dynamic estimator we apply, and
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it does not introduce a bias in the estimate. Note that all
the above is true also for a diagonal non-Toeplitz alternative,
where the main diagonal entries are varying in space.

Once we chose Cv(t) to be diagonal, (5), (6), (7), and (8)
are simplified, and their use is better understood on a pixel-
by-pixel basis. Before we turn to describe such a KF for the
forward case, we introduce some notations to simplify the
explanation of the process.

The warp matrix F(t) and its transpose can be exactly
interpreted as image shift operators [8, 15]. We use here-
after the superscript “ f ,” to simplify the notation of forward
shifting of vectors and diagonal matrices, and thus Z f (t) =
F(t)Z(t − 1) and ̂M f (t) = F(t)̂M(t − 1)FT(t).

Also, the matrix D and its transpose can be exactly in-
terpreted as downsampling and upsampling operators. Ap-
plication of DZ(t) and D̂M(t)DT results in downsampling of
the vector Z(t) and the diagonal matrix ̂M(t). Likewise, ap-
plication of DTY(t) and DTCw(t)D results in upsampling of
the vector Y(t) and the diagonal matrix Cw(t) with zero fill-
ing. Figure 1 illustrates the effect of matrix upsampling and
downsampling operations, and this also sheds some light on
the previous discussion on the diagonality assumption on
˜M(t) and ̂M(t).

Finally, we will use the notation [G]q to refer to the (q, q)
entry of the diagonal matrix G, and [G]q to refer to the (q, 1)
entry in the vector G. This way we will be able to handle both
the LR and the HR grids in the same equations.

Let us now return to the KF equations and show how
they are implemented in practice on a pixel-by-pixel basis.
First, referring to the propagated covariance matrix, we start
by observing that in (6), the term Cw(t)+D˜MDT is a diagonal
matrix of size [Q1Q2 ×Q1Q2], with the (q, q)th entry being

[

Cw(t)
]

q +
[

̂M f (t)
]

qr2 +
[

Cv(t)
]

qr2 , (9)

with q in the range [1,Q1Q2]. The “jumps” in r2 in the in-
dices of ̂M f (t) and Cv(t) are caused by the decimation D.
Applying an inversion replaces the above by its reciprocal.
Using interpolation DT(Cw(t) +D˜MDT)−1D gives a diagonal
matrix of size [r2Q1Q2 × r2Q1Q2], with the qth entry being

1
[

Cw(t)
]

q/r2 +
[

̂M f (t)
]

q +
[

Cv(t)
]

q

, (10)

this time referring to the indices q = r2, 2r2, . . . ,Q1Q2r2. For
all other (r2 − 1)Q1Q2 indices, the entries are simply zeros,
filled by the interpolation. Merging this with (6) and (8), we
obtain

[

̂M(t)
]

q =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

Cw(t)
]

q/r2

([

̂M f (t)
]

q +
[

Cv(t)
]

q

)

[

Cw(t)
]

q/r2 +
[

̂M f (t)
]

q +
[

Cv(t)
]

q

for q = r2, 2r2, . . . ,Q1Q2r2,
[

̂M f (t)
]

q +
[

Cv(t)
]

q otherwise.

(11)

a 0 0

0 b 0

0 0 c

a 0 0 0 0 0
0 0 0 0 0 0
0 0 b 0 0 0
0 0 0 0 0 0
0 0 0 0 c 0
0 0 0 0 0 0

GS GB

DTGSD

DGBDT

Figure 1: The diagonal matrix GB on the right is the result of
applying the upsampling operation (DTGSD) on an arbitrary di-
agonal matrix GS on the left. The matrix GS can be retrieved
by applying the downsampling operation (DGBDT). The upsam-
pling/downsampling factor for this example is two.

Note that the incorporation of each newly measured LR im-
age only updates values of Q1Q2 entries in the diagonal of
̂M(t), located at the [r2, 2r2, . . . , r2Q1Q2] positions. The re-
maining (r2−1)Q1Q2 diagonal entries are simply propagated
from the previous temporal point, based on (5) only. As we
will see, the same effect holds true for the update of ̂Z(t),
where (r2−1)Q1Q2 entries are propagated from the previous
temporal point without an update.

Turning to the update of the mean vector, ̂Z(t), using the
same reasoning applied on (6) and (7), we obtain the relation

[

̂Z(t)
]

q

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

Cw(t)
]

q/r2

[

̂Z
f
(t)
]

q+
([

̂M f (t)
]

q+
[

Cv(t)
]

q

)[

Y(t)
]

q/r2

[

Cw(t)
]

q/r2 +
[

̂M f (t)
]

q +
[

Cv(t)
]

q

for q = r2, 2r2, . . . ,Q1Q2r2,
[

̂Z
f
(t)
]

q otherwise.

(12)

Figure 2 describes the above equation’s upper part as a block
diagram. Notice that two images are merged here—an inter-

polated version of Y(t) and ̂Z
f
(t). The merging is done as a

weighted average between the two, as the figure suggests.
The overall procedure using these update equations is

outlined in Algorithm 1. Since the update operations are
simply based on shifting the previous estimates ̂Z(t − 1) and
̂M(t− 1) and updating the proper pixels using (11) and (12),
we refer hereafter to this algorithm as the dynamic shift-
and-add process. Similarly, we call ̂Z(t) the dynamic shift-
and-add image. Several comments are in order, regarding the
above procedure.

(1) Initialization. For long enough sequences, the initial-
ization choice has a vanishing effect on the outcome.
Choosing ̂M(0) = ε2I guarantees that ̂M(t) is strictly
positive definite at all times, where ε is an arbitrary
large number (ε � σ2

w). Better initialization can be
proposed, based on interpolation of the image Y(t).
The same applies to regions coming from occlusion—
those can be initialized by the current image.
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̂Z
f
(t) ̂Z(t − 1)

̂Z(t)Y(t) DTY(t)

DT

F(t)

Shifted HR of time t − 1 HR at time t − 1

Weighted average

HR at time t

Time delay

Input LR Zero-filled LR

Figure 2: Block diagram representation of (12), where ̂Z(t), the new input HR output frame, is the weighted average of Y(t), the current

input LR frame, and ̂Z
f
(t), the previous estimate of the HR image after motion compensation.

(i) Task. Given {Y(t)}t≥1, estimate {Z(t)}t≥1 causally.
(ii) Initialization. Set t = 0, choose ̂Z(t) = 0 and ̂M(t) = ε2I.

(iii) Update process. Set t → t + 1, obtain Y(t), and apply

(1) motion compensation: compute ̂Z
f
(t) = F(t)̂Z(t − 1) and

̂Mf (t) = F(t)̂M(t − 1)FT(t);
(2) update of the covariance: use (11) to compute the update ̂M(t);
(3) update of the mean: use (12) to compute the update ̂Z(t).

(iv) Repeat. Update process.

Algorithm 1: Forward dynamic shift-and-add algorithm.

(2) Arrays propagated in time. The algorithm propagates
two images in time, namely, the image estimate ̂Z(t),
and the main diagonal of its covariance matrix ̂M(t).
This last quantity represents the weights assigned
per pixel for the temporal fusion process, where the
weights are derived from the accumulated measure-
ments for the pixel in question.

At this point, we have an efficient recursive estimation
algorithm producing estimates of the blurry HR image se-
quence ̂Z(t). From these frames, the sequence ̂X(t) should
be estimated. Note that some (if not all) frames will not have
estimates for every pixel in ̂Z(t), necessitating a further joint
interpolation and deblurring step, which will be discussed in
Sections 3 and 4. For the cases of multiframe demosaicing
and color SR, the above process is to be applied separately on
the R, G, and B layers, producing the arrays we will start from
in the next sections.

While the recursive procedure outlined above will pro-
duce the optimal (minimum mean-squared) estimate of the
state (blurry image ̂Z(t)) in a causal fashion, we can also

consider the best estimate of the same given “all” the frames.
This optimal estimate is obtained by a two-way recursive fil-
tering operation known as “smoothing,” which we discuss
next.

2.3. Smoothing method

The fast and memory efficient data fusion method described
above is suitable for causal, real-time processing, as it esti-
mates the HR frames from the previously seen LR frames.
However, oftentimes super-resolution is preformed offline,
and therefore a more accurate estimate of an HR frame at
a given time is possible by using both previous and future
LR frames. In this section, we study such offline dynamic SR
method also known as smoothed dynamic SR [20].

The smoothed data fusion method is a two-pass
(forward-backward) algorithm. In the first pass, the LR
frames pass through a forward data fusion algorithm similar
to the method explained in Section 2.2, resulting in a set of
HR estimates { ̂Z(t)}Nt=1 and their corresponding diagonal co-
variance matrices {̂M(t)}Nt=1. The second pass runs backward
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in time using those mean-covariance pairs, and improves
these forward HR estimates, resulting in the smoothed
mean-covariance pairs {̂Zs(t), ̂Ms(t)}Nt=1.

While it is possible to simply implement the second pass
(backward estimation) similar to the forward KF algorithm,
and obtain the smooth estimate by weighted averaging of the
forward and backward estimates with respect to their covari-
ance matrices, computationally more efficient methods are
more desirable. We refer the reader to the appendix for a
more detailed study of such algorithm based on the fixed-
interval smoothing method of Rauch, Tung, and Striebel
[21, 22].

3. DEBLURRING AND INTERPOLATION OF
MONOCHROMATIC IMAGE SEQUENCES

To perform robust deblurring and interpolation, we use the
MAP cost function

ε
(

X(t)
) = ∥∥A(t)

(

HX(t)− ̂Z(t)
)∥

∥

2
2 + λΓ

(

X(t)
)

, (13)

and define our desired solution as

̂X(t) = ArgMin
X(t)

ε
(

X(t)
)

. (14)

Here, the matrix A(t) is a diagonal matrix whose values
are chosen in relation to our confidence in the measure-
ments that contributed to make each element of ̂Z(t). These
values have inverse relation to the corresponding elements
in the matrix2

̂M(t). The regularization parameter, λ, is a
scalar for properly weighting the first term (data fidelity cost)
against the second term (regularization cost), and Γ(X) is the
regularization cost function. The regularization term pro-
vides some prior information about the solution of this ill-
posed problem and stabilizes it, improves the rate of conver-
gence, and helps remove artifacts. In this section, we propose
regularization terms that yield good results for the case of
monochromatic dynamic SR problem and in Section 4 we
address proper regularization terms for color SR, and mul-
tiframe demosaicing problems.

For the case of monochromatic SR, many regularization
terms have been proposed. Some have limited applications
and are useful for some special types of images (e.g., appli-
cation of maximum entropy type regularization terms [23]
are generally limited to producing sharp reconstructions of
point objects). Tikhonov [2, 4], total variation (TV) [24–26],
and bilateral-total variation (BTV) [8] type regularization
terms are more generally applicable. While implementation
of Tikhonov prior usually results in images with smoothed
edges, TV prior tends to preserve edges in reconstruction, as
it does not severely penalize steep local gradients.

2 Note that for the smoothed HR estimation cases, ̂Zs(t) and ̂Ms(t) substi-
tute for ̂Z(t) and ̂M(t).

Based on the spirit of TV criterion and a related tech-
nique called the bilateral filter [27, 28], the BTV regulariza-
tion is computationally cheap to implement and effectively
preserves edges (see [8] for a comparison of Tikhonov, to-
tal variation, and bilateral regularization cost functions). The
bilateral-TV regularization term is defined as

ΓBTV(X(t)) =
P
∑

l=−P

P
∑

m=−P
α|m|+|l|

∥

∥X(t)− SlxS
m
y X(t)

∥

∥

1. (15)

Slx and Smy are the operators corresponding to shifting the im-
age represented by X by l pixels in horizontal direction and m
pixels in vertical direction, respectively. This cost function in
effect computes derivatives across multiple resolution scales.
The scalar weight, 0< α < 1, is applied to give a spatially de-
caying effect to the summation of the regularization term.
Note that image shifting and differencing operations are very
cheap to implement.

The overall cost function is the summation of the data
fidelity penalty term and the regularization penalty term:

̂X(t) = ArgMin
X(t)

[

∥

∥A(t)
(

HX(t)− ̂Z(t)
)∥

∥

2
2

+λ
P
∑

l=−P

P
∑

m=−P
α|m|+|l|

∥

∥X(t)−SlxSmy X(t)
∥

∥

1

]

.

(16)

Steepest descent optimization may be applied to mini-
mize this cost function, which can be expressed as

̂Xn+1(t) = ̂Xn(t) + β

{

HTAT(t)
(

A(t)HX(t)− A(t) ̂Z(t)
)

+ λ
P
∑

l=−P

P
∑

m=−P
α|m|+|l|

[

I − S−my S−lx
]

× sign
(

X(t)− SlxS
m
y X(t)

)

}

,

(17)

where S−lx and S−my define the transposes of matrices Slx and
Smy , respectively, and have a shifting effect in the opposite di-

rections as Slx and Smy , and β is the step size.

4. DEMOSAICING AND DEBLURRING OF COLOR
(FILTERED) IMAGE SEQUENCES

Similar to what is described in Section 3, we deal with color
sequences in a two-step process of image fusion and simul-
taneous deblurring and interpolation. In this section, first
we describe the fundamentals of the multiframe demosaic-
ing and color-SR problems (Section 4.1) and then describe
the proposed method which results in optimal reconstruc-
tion of superresolved color images (Section 4.2).
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4.1. Fundamentals of multiframe demosaicing
and color SR

A color image is represented by combining three separate
monochromatic images. Ideally, each pixel should corre-
spond to three scalar values; one for each of the color bands
(red, green, and blue). In practice, however, to reduce pro-
duction cost, many digital cameras have only one color mea-
surement per pixel. The detector array is a grid of CCDs,
each made sensitive to one color by placing a color filter ar-
ray (CFA) in front of the CCD. The Bayer pattern shown in
Figure 3 (left) is a very common example of such a color fil-
ter. The values of missing color bands at every pixel are then
synthesized using some form of interpolation from neigh-
boring pixel values. This process is known as color demo-
saicing.

While numerous single-frame demosaicing methods
have been proposed (see [29–37] as representative works),
the reconstructed images are almost always contaminated
with different amounts of color artifacts. This results from
the ill-posed nature of the demosaicing problem. However,
if multiple, spatially offset, color-filtered images of the same
scene are available, one can combine them both to increase
spatial resolution, and to produce a more effective overall
demosaicing with significantly reduced artifacts. Such an ap-
proach may be termed multiframe demosaicing. What makes
multiframe demosaicing challenging is that almost none of
the single-frame demosaicing methods (but the very recent
methods in [16, 17, 38, 39]) are directly applicable to it.

A related problem, color SR, addresses fusing a set of
previously demosaiced color LR (or originally full color LR
frames) to enhance their spatial resolution. To date, there
is very little work addressing the problem of color SR. One
possible solution involves applying monochromatic SR algo-
rithms to each of the color channels independently [40, 41],
while using the color information to improve the accuracy
of motion estimation. Another approach is transforming the
problem to a different color space, where chrominance lay-
ers are separated from luminance, and SR is applied only to
the luminance channel [3]. Both of these methods are sub-
optimal as they do not fully exploit the correlation across the
color bands.

In this section, we present a very efficient dynamic
method applicable to multiframe demosaicing and also, to
the standard color SR problems (where full RGB channels are
already available). Referring to the mosaic effects, the geome-
tries of the single-frame and multiframe demosaicing prob-
lems are fundamentally different, making it impossible to
simply cross-apply traditional demosaicing algorithms to the
multiframe situation. To better understand the multiframe
demosaicing problem, we offer an example for the case of
translational motion. Suppose that a set of color-filtered LR
images is available (images on the left in Figure 3). We use
the static two-step SR process explained in [16] to fuse these
images. In the first step, LR images are upsampled, motion
compensated, and averaged to result in what we call the static
“shift-and-add” HR image.

The shift-and-add image on the right side of Figure 3
illustrates the pattern of sensor measurements in the HR

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7

1 4 3 1 4 3 1 4 3 · · ·
? 6 5 ? 6 5 ? 6 5 · · ·
7 2 ? 7 2 ? 7 2 ? · · ·
1 4 3 1 4 3 1 4 3 · · ·
? 6 5 ? 6 5 ? 6 5 · · ·
7 2 ? 7 2 ? 7 2 ? · · ·
1 4 3 1 4 3 1 4 3 · · ·
? 6 5 ? 6 5 ? 6 5 · · ·
7 2 ? 7 2 ? 7 2 ? · · ·
...

...
...

...
...

...
...

...
...

. . .

...

Figure 3: Fusion of 7 Bayer pattern LR images with relative transla-
tional motion (the figures in the left side of the accolade) results in
an HR image ( ̂Z) that does not follow Bayer pattern (the figure in
the right side of the accolade). The symbol “?” represents the high-
resolution pixel values that were undetermined after the shift-and-
add step (result of insufficient LR frames).

image grid. In such situations, the sampling pattern is quite
arbitrary depending on the relative motion of the LR im-
ages. This necessitates a different demosaicing algorithm
than those designed for the original Bayer pattern.

Figure 3 shows that treating the green channel differently
than the red or blue channels, as is done in many single-
frame demosaicing methods before, is not particulary useful
for the multiframe case. While globally there are more green
pixels than blue or red pixels, locally any pixel may be sur-
rounded by only red or blue colors. So, there is no general
preference for one color band over the others.

Another assumption, the availability of one and only one
color band value for each pixel, is also not correct in the mul-
tiframe case. In the underdetermined cases,3 there are not
enough measurements to fill the HR grid. The symbol “?”
in Figure 3 represents such pixels. On the other hand, in the
overdetermined case,4 for some pixels, there may in fact be
more than one color value available.

In the next subsection, we propose an algorithm for pro-
ducing high-quality color sequences from a collection of LR
color (filtered) images. Our computationally efficient MAP
estimation method is motivated by the color image percep-
tion properties of the human visual system. This method
is directly applicable to both color SR (given full RGB LR
frames) and the more general multiframe demosaicing prob-
lems introduced earlier.

3 Where the number of nonredundant LR frames is smaller than the square
of resolution enhancement factor.

4 Where the number of nonredundant LR frames is larger than the square
of resolution enhancement factor.
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results

Figure 4: Block diagram representation of the overall dynamic SR process for color-filtered images. The feedback loops are omitted to
simplify the diagram. Note that ̂Zi∈{R,G,B}(t) represents the forward dynamic shift-and-add estimate studied in Section 2.2.

4.2. Multiframe demosaicing and color SR

As described in Section 2, our method is a two-step process
of image fusion and simultaneous deblurring and interpo-
lation. Figure 4 shows an overall block diagram of the dy-
namic SR process for mosaiced images (the feedback loops
are eliminated to simplify the diagram). For the case of color
SR, the first step involves nothing more than the applica-
tion of the recursive image fusion algorithm separately on
three different color bands. Image fusion of color-filtered im-
ages is done quite similarly, where each single-channel color-
filtered frame is treated as a sparsely sampled three-channel
color image. The second step (deblur and demosaic block in
Figure 4) is the enhancement step that removes blur, noise,
and color artifacts from the shift-and-add sequence, and is
based on minimizing a MAP cost function with several terms
composing an overall cost function similar to ε(X(t)) in (13).
In what follows in this section, we define the terms in this cost
function.

Data fidelity penalty term. This term penalizes the dissim-
ilarity between the raw data and the HR estimate, and is de-
fined as

J0
(

X(t)
) =

∑

i=R,G,B

∥

∥Ai(t)
(

H ̂Xi(t)− ̂Zi(t)
)∥

∥

2
2, (18)

where ̂ZR, ̂ZG, and ̂ZB are the three color channels of the
color shift-and-add image, ̂Z. AR, AG, and AB are the red,
green, and blue diagonal confidence matrices of ̂ZR, ̂ZG,
and ̂ZB, respectively. The diagonal elements of Ai∈{R,G,B}
which correspond to those pixels of ̂Zi∈{R,G,B}, which have not
been produced from any measurement are set to zero. Note
that the Ai∈{R,G,B} matrices for the multiframe demosaicing

problem are sparser than the corresponding matrices in the
color SR case.

Luminance penalty term. The human eye is more sensi-
tive to the details in the luminance component of an im-
age than the details in the chrominance components [32].
Therefore, it is important that the edges in the luminance
component of the reconstructed HR image look sharp. Ap-
plying bilateral-TV regularization to the luminance compo-
nent will result in this desired property [8], where L1 norm is
used to force spatial smoothness while creating sharp edges.
The luminance image can be calculated as the weighted sum
XL(t) = 0.299XR(t) + 0.597XG(t) + 0.114XB(t) as explained
in [42]. The luminance regularization term is defined (as be-
fore):

J1
(

X(t)
) =

P
∑

l=−P

P
∑

m=−P
α|m|+|l|

∥

∥XL(t)− SlxS
m
y XL(t)

∥

∥

1. (19)

The Slx and Smy shifting operators and the parameter α are
defined in (15).

Chrominance penalty term. The human eye is more sen-
sitive to chromatic change in the low-spatial-frequency re-
gion than the luminance change [37]. As the human eye is
less sensitive to the chrominance channel resolution, it can
be smoothed more aggressively. Therefore, L2 regularization
is an appropriate method for smoothing the Chrominance
term:

J2
(

X(t)
) = ∥∥ΛXC1(t)

∥

∥

2
2 +
∥

∥ΛXC2(t)
∥

∥

2
2, (20)

where Λ is the matrix realization of a highpass operator such
as the Laplacian filter. The images XC1(t) and XC2(t) are the
I and Q layers in the YIQ color representation.
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Orientation penalty term. This term penalizes the non-
homogeneity of the edge orientation across the color chan-
nels. Although different bands may have larger or smaller
gradient magnitudes at a particular edge, the statistics of nat-
ural images shows that it is reasonable to assume a same edge
orientation for all color channels. That is, for instance, if an
edge appears in the red band at a particular location, then
an edge with the same orientation should appear in the other
color bands at the same location as well. Following [31], min-
imizing the vector product norm of any two adjacent color
pixels forces different bands to have similar edge orientation.
With some modifications to what was proposed in [31], our
orientation penalty term is a differentiable cost function:

J3
(

X(t)
)

=
1
∑

l=−1

1
∑

m=−P

[
∥

∥XG(t)	 SlxS
m
y XB(t)− XB(t)	 SlxS

m
y XG(t)

∥

∥

2
2

+
∥

∥XB(t)	 SlxS
m
y XR(t)− XR(t)	 SlxS

m
y XB(t)

∥

∥

2
2

+
∥

∥XR(t)	SlxSmy XG(t)−XG(t)	SlxSmy XR(t)
∥

∥

2
2

]

,

(21)

where 	 is the element-by-element multiplication operator.
The overall cost function ε(X(t)) is the summation of

these cost functions:

̂X(t) = ArgMin
X(t)

[

J0
(

X(t)
)

+ λ′J1
(

X(t)
)

+ λ′′J2
(

X(t)
)

+ λ′′′J3
(

X(t)
)]

.
(22)

Coordinatewise steepest descent optimization may be ap-
plied to minimize this cost function. In the first step, the
derivative of (22) with respect to one of the color bands is
calculated, assuming the other two color bands are fixed. In
the next steps, the derivative is computed with respect to the
other color channels. The steepest descent iteration formula-
tion for this cost function is shown in [17].

5. EXPERIMENTS

Experiments on synthetic and real data sets are presented
in this section. In the first experiment, we synthesized a se-
quence of low-resolution color-filtered images from a single
color image of size 1200 × 1600 captured with a one-CCD
OLYMPUS C-4000 digital camera. A 128 × 128 section of
this image was blurred with a symmetric Gaussian lowpass
filter of size 4×4 pixels with standard deviation equal to one.
The resulting images were subsampled by the factor of four
in each direction and further color filtered with Bayer pat-
tern creating a 32 × 32 image. We added Gaussian noise to
the resulting LR frames to achieve SNR equal5 to 30 dB. We
consecutively shifted the 128 × 128 window on the original

5 Signal-to-noise ratio (SNR) is defined as 10 log10(σ2/σ2
n), where σ2 and

σ2
n are variances of a clean frame and noise, respectively.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: A sequence of 250 LR color-filtered images is recur-
sively fused (Section 2), increasing their resolution by the factor of
4 in each direction. They were further deblurred and demosaiced
(Section 4), resulting in images with much higher quality than the
input LR frames. In (a) and (b), we see the ground truth for frames
#50 and #250, and (c) and (d) are the corresponding synthesized LR
frames. In (e) and (f), we see the recursively fused HR frames, and
(g) and (h) show the deblurred-demosaiced frames.

high-resolution image by one pixel in right, down, or up di-
rections, and repeated the same image degradation process.
In this fashion, we created a sequence of 250 frames.

Figures 5(a) and 5(b) show two sections of the HR image.
Figures 5(c) and 5(d) show frames #50 and #250 of the LR
sequence (for the sake of presentation each frame has been
demosaiced following the method of [29]). We created a se-
quence of HR fused images using the method described in
Section 2.2 (factor of 4 resolution enhancement by forward
shift-and-add method). Figures 5(e) and 5(f) show frames
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Figure 6: PSNR values in dB for the synthesized 250 frames se-
quence of the experiment in Figure 5.

#50 and #250 of this sequence, where the missing values were
filled in using bilinear interpolation. Note that for the partic-
ular motion in this underdetermined experiment, it is easy to
show that less than 1/3 of the pixel values in ̂Z(t) are deter-
mined by the shift-and-add process.

Later each frame was deblurred-demosaiced using the
method described in Section 4. Figures 5(g) and 5(h) show
frames #50 and #250 of this reconstructed sequence, where
the color artifacts have been almost completely removed. The
PSNR6 values for this sequence are plotted in Figure 6. This
plot shows that after the first few frames are processed, the
quality of the reconstruction is stabilized for the remaining
frames. The small distortions in the PSNR values of this se-
quence are due to the difference in color and high-frequency
information of different frames. The corresponding param-
eters for this experiment (tuned by trial-and-error) were as
follows: α = 0.9, ε = 106, β = 0.06, λ′ = λ′′ = 0.001, and
λ′′′ = 10. Fifteen iterations of steepest descent were used for
this experiment.

Our next experiment was preformed on a real-world (al-
ready demosaiced) compressed image sequence courtesy of
Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. Two frames
of this sequence (frames #20 and #40) are shown in Fig-
ures 7(a) and 7(d). We created a sequence of HR fused im-
ages (factor of 4 resolution enhancement) using the forward
data fusion method described in Section 2.2 (Figures 7(b)
and 7(e)). Later each frame in this sequence was deblurred
using the method described in Section 4 (Figures 5(c) and
7(f)). The corresponding parameters for this experiment are
as follows: α = 0.9, ε = 106, β = 0.1, λ′ = λ′′ = 0.005,
and λ′′′ = 50. Fifteen iterations of steepest descent were
used for this experiment. The (unknown) camera PSF was

6 The PSNR of two vectors X and ̂X of size [3r2Q1Q2 × 1] is defined as
PSNR(X , ̂X) = 10log10((2552 × 3r2Q1Q2)/‖X − ̂X‖2

2).

assumed to be a 4 × 4 Gaussian kernel with standard de-
viation equal to one. As the relative motion between these
images approximately followed the translational model, we
only needed to estimate the motion between the luminance
components of these images [43]. We used the method de-
scribed in [44] to compute the motion vectors. In the recon-
structed images, there are some effects of wrong motion es-
timation, seen as periodic teeth along the vertical bars. We
assume that these errors correspond to the small deviations
from the pure translational model.

In the third experiment, we used 74 uncompressed, raw
CFA images from a video camera (based on Zoran 2MP
CMOS sensors). We applied the method of [29] to demo-
saic each of these LR frames, individually. Figure 8(a) shows
frame #1 of this sequence.

To increase the spatial resolution by a factor of three,
we applied the proposed forward data fusion method of
Section 2.2 on the raw CFA data. Figure 8(b) shows the for-
ward shift-and-add result. This frame was further deblurred-
demosaiced by the method explained in Section 4 and the re-
sult is shown in Figure 8(c). To enhance the quality of recon-
struction, we applied the smoothing method of Section 2.3
to this sequence. Figure 8(d) shows the smoothed data fu-
sion result for frame #1 (smoothed shift-and-add). The
deblurred-demosaiced result of applying the method ex-
plained in Section 4 is shown in Figure 8(e).

Figure 8(f) shows the frame #69 of this sequence, de-
mosaiced by the method in [29]. Figure 8(g) shows the
result of applying the method of Section 2.3 to form
the smoothed shift-and-add image. This frame is further
deblurred-demosaiced by the method explained in Section 4
and the result is shown in Figure 8(h).

The parameters used for this experiment are as follows:
β = 0.04, ε = 106, α = 0.9, λ

′ = 0.001, λ
′′ = 50, λ

′′′ = 0.1.
The (unknown) camera PSF was assumed to be a tapered
5× 5 disk PSF.7

Note that F(t)̂X(t− 1) is a suitable candidate to initialize
̂X

0
(t), since it follows the KF prediction of the state-vector

updates. Therefore, as the deblurring-demosaicing step is
the computationally expensive part of this algorithm, for
all of these experiments we used the shifted version of de-
blurred image of t−1 as the initial estimate of the deblurred-
demosaiced image at time instant t.

6. SUMMARY AND FUTURE WORK

In this paper, we presented algorithms to enhance the quality
of a set of noisy, blurred, and possibly color-filtered images
to produce a set of monochromatic or color HR images with
less noise, aliasing, and blur effects. We used MAP estima-
tion technique to derive a hybrid method of dynamic SR and
multiframe demosaicing. Our method is also applicable to
the case of color SR.

For the case of translational motion and common space-
invariant motion, we justified a two-step algorithm. In the

7 Matlab command fspecial(‘disk’,2) creates such a blurring kernel.



Sina Farsiu et al. 11

(a) (b) (c)

(d) (e) (f)

Figure 7: A sequence of 60 real-world LR compressed color frames ((a) and (d) show frames #20 and #40; resp.) is recursively fused
(Section 2), increasing their resolution by the factor of four in each direction ((b) and (e), resp.). They were further deblurred (Section 4),
resulting in images with much higher quality than the input LR frames ((c) and (f), resp.).

first step, we used the KF framework for fusing LR images
recursively in a fast and memory-efficient way. In the second
step, while deblurring and interpolating the missing values,
we reduced luminance and color artifacts by using appro-
priate penalty terms. These terms were based on our prior
knowledge of the statistics of natural images and the proper-
ties of the human visual system. All matrix-vector operations
in the proposed method are implemented as simple image
operators.

While the proposed demosaicing method is applicable
to a very wide range of data and motion models, our dy-
namic SR method is developed for the case of translational

motion and common space-invariant blur. A fast and ro-
bust recursive data fusion algorithm based on using L1 norm
minimization applicable to general motion models is part of
our ongoing work.

APPENDIX

A. NONCAUSAL DYNAMIC SUPER-RESOLUTION

In this appendix, we explain and formulate the two-pass
fixed-interval smoothing method of Rauch, Tung, and
Striebel [21, 22] for the dynamic SR problem. The first pass is
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Figure 8: A sequence of 74 real-world LR uncompressed color-filtered frames ((a) and (f) show frames #1 and #69, resp.) is recursively
fused (forward data fusion method of Section 2.2), increasing their resolution by the factor of three in each direction (b) and (g). They were
further deblurred (Section 4), resulting in images with much higher quality than the input LR frames (c) and (h). The smoothed data fusion
method of Section 2.3 further improves the quality of reconstruction. The smoothed shift-and-add result for frame #1 is shown in (d). This
image was further deblurred-demosaiced (Section 4) and the result is shown in (e).

quite similar to the method explained in Section 2.2, result-
ing in a set of HR estimates { ̂Z(t)}Nt=1 and their correspond-
ing diagonal covariance matrices {̂M(t)}Nt=1. The second pass
runs backward in time using those mean-covariance pairs,
and improves these forward HR estimates.

The following equations define the HR image and co-
variance updates in the second pass. Assuming that we have
the entire sequence {̂Z(t), ̂M(t)}Nt=1, we desire to estimate the
pairs {̂Zs(t), ̂Ms(t)}Nt=1 that represent the mean and covari-
ance per time t, based on all the information in the sequence.
We assume a process that runs from t = N − 1 downwards,
initialized with ̂Zs(N) = ̂Z(N) and ̂Ms(N) = ̂M(N).

We start by the covariance propagation matrix. Notice its
similarity to (5):

˜M(t + 1) = F(t + 1)̂M(t)FT(t + 1) + Cv(t + 1). (A.1)

This equation builds a prediction of the covariance matrix
for time t+ 1, based on the first-pass forward stage. Note that
the outcome is diagonal as well.

The Kalman smoothed gain matrix is computed using the
above prediction matrix, and the original forward covariance
one, by

Ks(t) = ̂M(t)FT(t + 1)
[

˜M(t + 1)
]−1

. (A.2)

This gain will be used both for the backward updates of the
mean and the covariance,

̂Zs(t) = ̂Z(t) + Ks(t)
[

̂Zs(t + 1)− F(t + 1) ̂Z(t)
]

, (A.3)

where the term ̂Zs(t + 1)− F(t + 1) ̂Z(t) could be interpreted
as a prediction error. The smoothed covariance matrix is up-
dated by

̂Ms(t) = Cov
(

̂Zs(t)
)

= ̂M(t) + Ks(t)
[

̂Ms(t + 1)− ˜M(t + 1)
]

KT
s (t).

(A.4)

Following the notations we have used before, we use the
superscript “b” to represent backward shifting in time of vec-

tors and matrices, so that ̂Z
b

s (t) = FT(t + 1) ̂Zs(t + 1) and
similarly ̂Mb

s (t) = FT(t + 1)̂Ms(t + 1)F(t + 1) and Cb
v (t) =

FT(t+1)Cv(t+1)F(t+1). Then, using the same rational prac-
ticed in the forward algorithm, the smoothed gain matrix for
a pixel at spatial position q is

[

̂M(t)
]

q
[

̂M(t)
]

q +
[

Cb
v (t)

]

q

. (A.5)
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Shifted smoothed HR at time t + 1 Smoothed HR at time t + 1
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Forward HR at time t Smoothed HR at time t
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Figure 9: Block diagram representation of (A.7), where ̂Zs(t), the new Rauch-Tung-Striebel smoothed HR output frame, is the weighted

average of ̂Z(t), the forward Kalman HR estimate at time t, and ̂Z
b

s (t) is the previous smoothed estimate of the HR image( ̂Z
b

s (t) = FT(t +
1) ̂Zs(t + 1)), after motion compensation.

(i) Task. Given {Y(t)}t≥1, estimate {Z(t)}t≥1 noncausally.
(ii) First Pass. Assume that the causal algorithm has been applied, giving

the sequence {̂Z(t), ̂M(t)}Nt=1.
(iii) Initialization. Set t = N , choose ̂Zs(t) = ̂Z(t) and ̂Ms(t) = ̂M(t).
(iv) Update process. Set t → t − 1 and apply

(1) motion compensation: compute ̂Z
b

s (t) = FT(t + 1)̂Zs(t + 1)
and ̂Mb

s (t) = FT(t + 1)̂Ms(t + 1)F(t + 1);
(2) update of the covariance: use (A.6) to compute the update ̂Ms(t);
(3) update of the mean: use (A.7) to compute the update ̂Zs(t).

(v) Repeat. Update process.

Algorithm 2: Smoothed dynamic shift-and-add algorithm.

Similar to what is shown in Section 2.2, we can simplify
(A.1), (A.2), (A.3), and (A.4) to the following pixelwise up-
date formulas:

[

̂Ms(t)
]

q =
[

̂M(t)
]

q +
[

̂M(t)
]2
q

×
[

̂Mb
s (t)

]

q −
[

̂M(t)
]

q −
[

Cb
v (t)

]

q
[

̂M(t)
]

q +
[

Cb
v (t)

]

q

,
(A.6)

[

̂Zs(t)
]

q =
[

Cb
v (t)

]

q

[

̂Z(t)
]

q +
[

̂M(t)
]

q

[

̂Z
b

s (t)
]

q
[

̂M(t)
]

q +
[

Cb
v (t)

]

q

. (A.7)

Figure 9 describes the above equation as a block diagram.
There is a simple interpretation for (A.7). The smoothed

HR pixel at time t is the weighted average of the forward HR

estimate at time t ([ ̂Z(t)]q) and the smoothed HR pixel at

time instant t + 1 after motion compensation ([ ̂Z
b

s (t)]q). In

case there is high confidence in the [ ̂Z(t)]q (i.e., the value of

[̂M(t)]q is small), the weight of [ ̂Z
b

s (t)]q will be small. On the
other hand, if there is high confidence in estimating the HR
pixel at time t + 1 from an HR pixel at time t after proper
motion compensation (i.e., the value of [Cb

v (t)]q is small),
it is reasonable to assume that the smoothed HR pixel at
time t can be estimated from a HR pixel at time t + 1 after
proper motion compensation. Note that unlike the forward
pass, estimation of HR smoothed images do not depend on
the computation of smoothed covariance update matrices as
in (A.4) and (A.6), and those can be ignored in the applica-
tion.

The overall procedure using these update equations is
outlined in Algorithm 2.
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