
A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Tree Topology Estimation
Rolando Estrada, Carlo Tomasi, Scott C. Schmidler, and Sina Farsiu

Abstract—Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree—what
connects to what—from a two-dimensional image of it. However, the projected branches often cross in the image: the tree
projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed.
We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear
time if one knows the direction of each edge in the graph—which edge endpoint is closer to the root of the tree—but becomes
NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely
topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant
root, and synthetic tree datasets show that our methodology is both accurate and efficient.

Index Terms—Computer vision, graph theory, image analysis, stochastic processes, tree topology.

F

1 INTRODUCTION

T REES are fundamental physical structures in na-
ture. Aside from the eponymous large plants,

other examples include retinal vessels, lung airways,
neurons, lightning, plant roots, and more. Trees typi-
cally arise from a branching process that grows away
from an initial root to efficiently distribute a fluid,
a current, or signals between a central source and a
set of end-points. Different growth processes produce
strikingly different trees, both in terms of their geom-
etry and their connectivity, as Figure 1 illustrates.

A wide variety of imaging techniques—including
fluorescein angiography, retinal fundus imaging, and
x-ray and color photography—yield two-dimensional
images of trees, from which it is often useful to
reconstruct the tree’s original connectivity. However,
the three-dimensional location of each tree branch is
lost after projection, and parts of different branches
often map to the same point on the image. See Figure 1
again.

Specifically, the image of a tree obscures its original
topology in two key ways:

1) There may be spurious branch crossings in the
image that resemble true branchpoints.

2) The directionality (flow to or from the root)
along the branches may be lost.

The resulting loss of information makes reconstruct-
ing tree connectivity and flow direction from an im-
age an ill-posed problem, and a prior model must

• R. Estrada is with the Department of Ophthalmology, Duke University,
Durham, NC, 27707.

• C. Tomasi is with the Department of Computer Science, Duke Univer-
sity, Durham, NC, 27707.

• S. C. Schmidler is with the Departments of Statistical Science and
Computer Science, Duke University, Durham, NC, 27707.

• S. Farsiu is with the Departments of Biomedical Engineering, Ophthal-
mology, Electrical and Computer Engineering, and Computer Science,
Duke University, Durham, NC, 27707.

(a) A retina (b) Plant roots

(c) A leafy tree (d) Lightning

Fig. 1. Images of physical trees: (This Figure is best
viewed on-screen). Different combinations of internal and
external factors yield remarkably different trees. However, all
these trees facilitate a hierarchical flow between a central
node and a series of end-points. (a) and (b) are samples
from our experimental datasets, while (c) and (d) are public
domain images.

be introduced to regularize the solution. Fortunately,
good theoretical and empirical models have been
developed in several domains to describe the expected
morphology or growth pattern of a particular type
of tree. Well-studied trees include blood vessels [31],
[33], plant roots [2], [20], neurons [24], [28], leafy trees
[3], [34], and lightning [15], [29].

In this work, we present a comprehensive method-
ology for estimating the most likely topology of a
rooted, directed, three-dimensional tree given a single
two-dimensional image of it and a growth model
for that type of tree. We address this challenging
inverse problem through a combination of greedy
approximation and heuristic search algorithms that

sf59
Text Box
IN PRESSIEEE PAMI2014

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

efficiently explore the space of possible trees. Our
main theoretical contributions are:

1) The formalization of the tree estimation problem
from a single projection.

2) A proof that the tree estimation problem is NP-
hard if flow direction is unknown.

3) A greedy linear-time algorithm for approximat-
ing the most likely topology of a tree.

4) A heuristic search algorithm that efficiently ex-
plores the space of possible trees starting from
the greedy solution.

The rest of this paper is organized as follows:
Section 2 discusses related work. Sections 3 and 4
describe the projection of three-dimensional trees onto
two-dimensional images and elucidate the space of
possible solutions, respectively. Section 5 presents a
generative, parametric model of tree growth and de-
fines the probability of a projected tree given the
model. Section 6 examines the complexity of esti-
mating the most probable tree. Section 7 presents
both a greedy approximation algorithm and a heuris-
tic search method that refines the greedy estimate.
Finally, Section 8 presents experimental results on
retinal vessel, plant root, and synthetic tree datasets,
and Section 9 discusses future work.

2 RELATED WORK

To the best of our knowledge, the only prior work
on automatically determining the topology of a three-
dimensional tree given a single, two-dimensional im-
age of it is the method developed by Zeng et al.
[44] for modeling visually plausible unfoliaged trees
from images. Their algorithm greedily assigns to each
branch segment the parent branch that has the most
plausible thickness and forms the most plausible an-
gle with the candidate branch. The results in their
paper did not include any quantitative evaluation.
We now survey other related work concerning tree
imaging and modeling.
Tree reconstruction: Most previous tree estimation
work focused on three-dimensional data, primarily
from MRI, computed tomography (CT), and optical
coherence tomography (OCT) scans of lung airways,
cardiac vasculature, and retinal vessels. Reconstruc-
tion from three-dimensional images is a well-posed
problem. The most popular methods in this field
are region growing [16], [26], probabilistic branch
tracking [12], [36], and dynamic programming [17],
[18]. Tomographic reconstruction methods from con-
ventional photographs have also been developed for
plant roots grown in a clear medium using volumetric
carving [20], [45]. We estimate the topology of a three-
dimensional tree from a two-dimensional graph.
Tree segmentation: Two-dimensional analysis of tree
structures, primarily of retinal vessels, has focused on
binary segmentation, which seeks to extract the tree
pixels but not the corresponding three-dimensional

topology. Segmentation methods employ local filter-
ing [42], [37], dynamic programming [4], [10], span-
ning tree sampling [14], [40], Steiner trees [19], or
tubular tracking [30], [43]. Recent work also attempts
to distinguish arteries from veins using a combination
of color features and vessel tracking [7], [35].
Graphical tree modeling: Work on modeling trees us-
ing computer graphics follows three main approaches:
Rule-based methods generate trees using fractals or
other local deformations [1], [32]. In sketch-based tree
modeling, a user draws one or more two-dimensional
sketches and a tree is generated based on them [6],
[38]. In image-based modeling, a set of input images
is used to synthesize a plausible three-dimensional
tree model [27], [44]. Overall, the goal of graphical
tree modeling is to obtain a visually plausible three-
dimensional geometry based on either a user’s traced
branches or a set of branch-generating rules. Our
focus, on the other hand, is to faithfully estimate an
input tree’s topology.
Tree-growth models: There has been considerable
work on modeling the growth of specific types of
trees by accounting for the interactions between the
various forces that affect the growing tree. Blood
vessel models describe growth at multiple scales—
from single cells to tissues—primarily through sys-
tems of differential equations that describe cell de-
velopment and migration [31], [33]. Plant-root growth
models generally employ similar principles, but also
incorporate architectural constraints driven by gravity
[2], [20]. Neuron growth modeling has focused on
statistical techniques, such as Bayesian networks [24],
[28]. Leafy tree models have used flow diffusion and
fractals [3], [34], while lightning modeling has focused
on the ambient electric field [15], [29]. We develop a
generative probabilistic model that captures a wide
class of trees with a modicum of parameters, and
lends itself well to stochastic search.

3 TREE PROJECTION
We study rooted trees in three-dimensional space that
project onto graphs in two-dimensional images. More
specifically, our trees carry a flow of something—a
fluid, a current, information—from their roots to their
leaves or vice versa, so that a direction consistent
with this flow is associated to each of their branches.
For simplicity, we assume that all flow is from the
root, the reverse case being entirely equivalent. In our
discussion, we often distinguish a graph from its em-
bedding. Thus, for clarity, we use the term “directed
tree” to refer to the graph of the three-dimensional
tree and “arborescence” to refer to its embedding, even
though “arborescence” is typically used for both in
the literature.

Projecting an arborescence removes information
about the distance of each of its branches to the image
plane. Most of the time, projection also obscures in-
formation about the direction of flow associated with

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

each branch, as branches taper very slowly, if at all, in
typical images. As a result, projecting an arborescence
yields an undirected graph in the image plane. This
graph is planar if new branch intersections, formed
as a result of projection, are considered to be new
vertices.

Assuming that the undirected image graph G has
been segmented out of the image (see Section 8.2.1
for segmentation) of an arborescence A with directed
tree T , our task is to reconstruct T from G. Since
projection is a many-to-one mapping, many different
directed trees can project to the same graph, making
the reconstruction problem ill-posed. To regularize
it, we introduce a generative prior model M for the
growth of any given type of tree—the dendrites of
a neuron, the vessels in a retina, plant roots, or the
branchings in a stroke of lightning. This model allows
us to define a prior probability pM (T) on the set of all
possible directed trees, and we then seek a most likely
tree given its image graph and the model:

T ? = argmax
T∈T (G)

pM (T), (1)

where T (G) ⊂ T is the set of directed trees consistent
with the graph G and T is the set of all directed trees.

The formulation in Eq. 1 can be interpreted as a spe-
cial case of maximum a posteriori (MAP) estimation,

T ? = argmax
T∈T

pO(G|T)pM (T),

where the observation probability pO(G|T) is uniform
over graphs obtained by projecting T onto the image
and zero elsewhere. Thus, our formulation leaves all
regularization up to the prior model M , while any
noise in the image is handled in the segmentation
stage that extracts G from the image. We leave more
nuanced models of image formation for future work.

The next two subsections describe how an arbores-
cence projects to a planar graph and how to generate
all possible directed trees consistent with this graph.
Section 4 shows how to explore the space of all these
trees.

3.1 Arborescence Projection
The topology of a tree T is endowed with geometry
by embedding it in an arborescence A, which then
projects to a planar graph G in the image. More
formally, the edges of a directed tree T = (VT , ET , rT)
rooted at vertex rT ∈ VT are oriented away from the
root; that is, every edge

e = (u, v) ∈ ET with u, v ∈ VT

is an ordered pair, with u the parent and v the child.
The arborescence A = η(T) is an embedding of T in
R3 such that every vertex v ∈ VT maps to a vertex
v = η(v) of A in R3 and every edge e = (u, v) ∈ ET
maps to a directed line segment e between the two
vertices u = η(u) and v = η(v). In particular, we

Fig. 2. The projection P (A) of an arborescence A:
(Best viewed in color.) The hollow circles are the roots of
A and P (A). Both green and red dots project to crossings
in P (A); that is, points in P (A) onto which distinct points
in A project. Red dots are vertices of A and green dots,
called refined vertices of A, are not. The red, green, and
blue projection lines indicate vertex-vertex, edge-edge, and
vertex-edge crossings, respectively.

denote rA = η(rT). We assume that all the vertices
of A are distinct points in space and all its edges
are mutually disjoint [41]. Intuitively, an arborescence
is a set of a non-intersecting, piecewise-linear, three-
dimensional branches.

The image projection P (A) of A may intersect itself.
More concretely, as Figure 2 illustrates:

1) Multiple vertices can project to the same point.
2) Distinct edges can intersect in the projection.
3) Vertices can project onto edges.

We exclude the degenerate cases of edges in A pro-
jecting to points in P (A), or distinct edges of A
overlapping in line segments in P (A).

The set P (A) is the embedding η(Gd) of a di-
rected planar graph Gd = (VGd

, EGd
, rGd

) with root
rGd

= P (rA). This graph has one vertex v ∈ VGd

for every vertex in A that projects to P (A) with no
overlap, plus one for every point where two or more
projected line segments overlap (including at their
vertex endpoints). The latter type of vertex is called
a crossing. In other words, v ∈ P (A) is a crossing
whenever its multiplicity |P−1(η(v))| is greater than
1. Here, |X| denotes the size of set X .

The graph has an edge e = (u, v) ∈ EGd
for

u, v ∈ VGd
if and only if the line segment between

its endpoints is fully contained in P (A) and e has
the same direction as the projected line segment that
contains it. Thus, every edge of Gd is either identical
to a projected line segment of A or is a subset of one.
Either way, the edge inherits the segment’s direction.

It is useful to add a new vertex, called a refined
vertex, to the original tree T for every non-vertex point
of A = η(T) that projects to a crossing. These points
are the green dots in Figure 2. Edges are split at
refined vertices as illustrated in Figure 3. The resulting
tree T ′ is called the refined (directed) tree. This tree
is homeomorphic (in the graph-theoretical sense) to
T . Its embedding A′ = η(T ′) is called the refined
arborescence. By construction, only vertices can yield
crossings in the projection of a refined arborescence.

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b)

Fig. 3. Edge subdivision: In (a), an edge subdivision
replaces a single edge (u, v) with two new edges (u,w) and
(w, v). In (b), the same subdivision in an embedded edge
maintains the continuity of the embedding. Old vertices are
highlighted in light blue, while the new vertex is shown in red.

Typically, the directed graph Gd is not observed
in the image, since projecting an arborescence often
obscures the directions of its edges. What is observed
instead is an undirected graph G = (VG, EG, rG) with
the same vertex set VG = VGd

and root rG = rGd
as

Gd and with an undirected edge e = {u, v} ∈ EG if
either (u, v) or (v, u) is in EGd

. In other words, Gd is an
orientation of G. Because of crossings, the number of
vertices in Gd (and G) is at most equal to the number
of vertices in T ′. That is,

|VG| = |VGd
| ≤ |VT ′ | .

3.2 Crossings and Valid Partitions

In general, multiple directed trees are consistent with
(i.e. project down to) a single directed planar graph
Gd; we will now show how to generate these possible
trees. To this end, we assume that (i) the root rGd

is
not a crossing, (ii) the pre-image of every point x on
the embedding P (A) of Gd is finite—whether x is a
crossing or not—and (iii) the number of crossings is
finite. These conditions are mild. In particular, finite
pre-images prevent any edge segment from projecting
“edge-on”to a single point, and a finite number of
crossings excludes infinitely tortuous edges.

Under these assumptions, crossings are exactly those
vertices with in-degree greater than 1 in Gd. To see this,
let deg(v) and deg−(v) denote the degree and in-
degree of a vertex v ∈ VGd

. Since Gd is the projection
of tree T ′, each (directed) edge entering v must enter a
distinct vertex in T ′, so the multiplicity of v is deg−(v).
In particular, no vertex other than the root can have
in-degree zero. Furthermore, all possible directed trees
consistent with Gd yield the same crossings; thus, in
what follows we will treat the “crossings of Gd”as
intrinsic to the projected graph, without needing to
reference any particular tree that is consistent with it.

Thus, to reconstruct T ′, each crossing of Gd must
be split into deg−(v) vertices, and the deg+(v) =
deg(v) − deg−(v) edges out of v, if any, must be
partitioned into deg−(v) sets. Such a partition is valid
if each edge exiting v is associated to exactly one
of the new vertices. Different combinations of valid
partitions correspond to different trees that could
have projected down to Gd, and the number of these
trees is exponential in the number of crossings [9].

v wu

Fig. 4. Some graph orientations cannot be transformed into
connected directed trees by valid partitions. This directed
graph has only one crossing v, which can only be partitioned
in one way. Applying this valid partition yields two discon-
nected trees.

v v1
v2 v1

v2

(a) (b) (c)

Fig. 5. For crossings that are part of a directed circuit, only
some of their valid partitions lead to trees. (a) A crossing v
that is part of a directed circuit. (b) A valid partition of v into
v1 and v2 that disconnects the graph and retains the circuit.
Thus, the result is not a tree. (c) A different partition of v does
yield a connected directed tree.

4 GRAPH ORIENTATIONS

When only an undirected graph G is available from
the image, we must first choose an orientation for
each of its edges before we can generate a directed
tree consistent with it. This section shows a systematic
way to generate good graph orientations. First, Sec-
tion 4.1 defines a “good”orientation as one for which
every combination of valid partitions of its crossings
yields a single, connected directed tree. Then, Section
4.2 shows that all good orientations for a given graph
can be visited by flipping the orientation of one
edge at a time, i.e. that they are connected. Based
on these results, in Section 7 we present a heuristic
search algorithm that explores this space by iteratively
flipping edges to move between orientations. To the
best of our knowledge, all the following results in this
section are novel and may be of independent interest.

4.1 Flow Directed Acyclic Graphs
Figure 4 shows that some graph orientations cannot
be transformed into connected directed trees by any
set of valid partitions on its crossings, while Figure 5
shows that, for other orientations, only some combina-
tions of valid partitions lead to a tree. In this section,
we characterize the set of graph orientations for which
every combination of valid partitions yields a single
connected directed tree.

If we examine Figure 4 again, we can see that if we
flip edge (w, v) to (v, w), then the resulting orientation
is consistent with the tree u→ v → w. We denote this
new orientation as a flow orientation. More generally,
an orientation Gd of an undirected graph G is a flow
orientation if and only if there exists a vertex rGd

from

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

which every other vertex in VGd
can be reached while

respecting edge orientations.
Then, we propose that a directed graph Gd is the

projection of at least one directed tree if and only if Gd is a
flow orientation. To prove this, note that if Gd is not a
flow orientation, then at least one vertex is unreach-
able from the root. Valid partitions can only eliminate
paths between nodes, so there is no sequence of valid
partitions that will create the necessary path and
transform Gd into a directed tree. Conversely, if Gd
is a flow orientation, a directed tree can be built in
two steps: first, make a directed spanning tree rooted
at rGd

. Then, assign an arbitrary orientation to each
of the edges that are not in the spanning tree to
obtain a full orientation of G. By construction, the
directed spanning tree guarantees that every vertex
is reachable from rGd

, thus ensuring that Gd is a flow
orientation.

We denote graphs that are both flow orientations
and Directed Acyclic Graphs (DAGs) as flow-DAGs.
Flow-DAGs enjoy two important properties:

(1) All connected, undirected graphs admit at least one
flow-DAG. A simple way to build one is to first run
breadth-first search starting at an arbitrary vertex to
define a topological ordering of the graph’s vertices.
Then, orient every edge of the graph based on this
ordering, i.e. orient every edge from the vertex that
appears earlier in the ordering to the one that appears
later.

(2) Every combination of valid partitions for the cross-
ings of a flow-DAG yields a directed tree. To see this, pick
any node v in the flow-DAG other than the root. Since
the graph is a flow orientation, v is reachable from the
root. Since there are no cycles in a DAG, the parents
of v must be on paths from the root to v. When v
is validly partitioned, every child of v is connected
to one of the parents of v, and is therefore reachable
from the root. By this construction, after partitioning
every crossing, every resulting vertex other than the
root has exactly one parent, so the resulting graph is
a connected directed tree.

Note, however, that not every tree projects to a
flow-DAG. In particular, if some branches of the tree
grow back towards the root, it may happen that the
resulting true orientation of the image graph contains
cycles. By restricting our attention to flow-DAGs we
rule out these types of trees. These are rare in nature,
however, because doubling back towards the root
implies inefficiency in the flow mechanism that the
tree embodies.

4.2 The Flow-DAG Meta-Graph

Any two flow-DAGs for a given undirected graph G
differ only by the subset of edges that are oriented
differently in the two orientations. Thus, one possible
way to explore the set of flow-DAGs for a given
undirected graph G is to build an initial flow-DAG for

Fig. 6. The flow-DAG meta-graph: (This Figure is best
viewed in color.) The flow-DAG meta-graph for a small graph
G. Neighboring orientations differ by one valid flip. The meta-
graph is in blue. Edges entering a crossing in each flow-DAG
are in red.

it (Section 4.1 showed that we can always do so) and
then successively modify it by changing the direction
of one of the edges—an edge flip—to obtain other
solutions. In this section, we show that it is possible
to reach every other flow-DAG for G given the initial
solution through some sequence of flips, such that
every intermediate orientation is also a flow-DAG.

Flipping edge (u, v) in Gd yields a flow-DAG G′d if
and only if (i) vertex v is a crossing of Gd, and (ii) the
directed graph that results from the flip is acyclic. The
first condition ensures that the in-degree of v is greater
than 1, so v is still reachable from the root through one
of the other incoming edges. The second condition
retains the DAG nature of the resulting graph, and
can be verified by a depth-first search of G′d [39]. A
flip that satisfies these two conditions is a valid flip,
and Gd and G′d are neighbors in the meta-graph whose
undirected edges connect flow-DAGs that differ by
one valid flip.1 Figure 6 illustrates this point.

We now show that the flow-DAG meta-graph is
connected. That is, any two flow-DAGs for the same
graph can be reached from each other by sequences of
valid flips. We will show this by relying on a similar
property that relates all the directed spanning trees of
a graph to each other.

Let S be a directed spanning tree of Gd. Adding a
non-tree edge (u, v) of Gd to S creates a cycle called
a fundamental circuit. The edge (u, v) is a forward edge
if u is an ancestor of v in S, a backward edge if v
is an ancestor of u in S, or a cross edge otherwise.
If (u, v) is forward or cross, it can be exchanged
with one of the tree edges in the fundamental circuit
of (u, v) to form another (directed) spanning tree.
Any two spanning trees related by exactly one such
edge exchange are said to be adjacent to each other,
and repeated exchanges can transform any directed
spanning tree into any other [21]. Thus, the set of
(directed) spanning trees of a given (directed) graph
is connected with respect to this adjacency relation.

1. We use the term “meta-graph”to avoid confusion with other
graphs in this paper.

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

To extend this result to flow-DAGs, we say that a
flow-DAG Gd for an undirected graph G is consistent
with a directed spanning tree S of G if S is a (directed)
subgraph of Gd. In the following, we show that (i)
all the flow-DAGs consistent with a given directed
spanning tree for G are connected to each other, and
that (ii) for each pair of adjacent spanning trees, there
is a flow-DAG that is consistent with both of them.
This allows walking between any two flow-DAGs by
valid flips: Given flow-DAGs Gd and G′d, find span-
ning trees S and S′ consistent with them. Connect S
to S′ through a sequence of adjacent spanning trees
S = S0, . . . , Sn = S′, and form the sequence of flow-
DAGs Gd = G0, . . . , Gn = G′d where flow-DAG Gi is
consistent with trees Si−1 and Si for i = 1, . . . , n.

To prove property (i), let S be a directed spanning
tree of G, and let Gd be a flow-DAG consistent with
S. The set of non-tree edges of Gd cannot contain
backward edges (with respect to S), as they would
form cycles. For the same reason, the flip of a forward
non-tree edge of Gd is not valid, as it would yield a
backward edge. Flipping a cross edge, on the other
hand, is always valid, as it creates no cycles. Thus,
any two flow-DAGs consistent with S are related by
one or more cross flips, and the flow-DAGs consistent
with S form a connected component of the flow-DAG
meta-graph.

To prove property (ii), let directed spanning trees S
and S′ of G be adjacent to each other. Specifically, S′

is obtained from S by replacing edge e = (u, v) with
edge e′ = (w, v). Edge e′ cannot be a backward edge
in S. If it were, v would be an ancestor of w in S, and
removing e from S would sever the only path from
the root to v. Then, S′ would not be a spanning tree.
Because of this, e′ must be either forward or cross, so
that adding e′ to S (without removing e) yields a flow-
DAG Gd. So Gd contains both e and e′ and therefore
includes both S and S′, and is consistent with both.

In summary, the flow-DAG meta-graph is con-
nected. In Section 7, we define an algorithm to tra-
verse this meta-graph to look for likely trees for a
given image graph. We define this likelihood over
trees in the following section.

5 PRIOR MODEL FOR ARBORESCENCES

In this section, we present a generative, parametric,
tree-growth model that allows us to define a likeli-
hood over the set of trees consistent with an input
graph.

5.1 A Growth Model for Arborescences

Current research on tree growth models (see Section 2)
reveals that the forces that guide growth patterns
are often complex, multi-scale, and interdependent.
Overall, the shape of a tree depends on a myriad
of global and local interactions that determine when

Fig. 7. Arborescence growth: At each step, the frontier
FT (t) (highlighted in red) is updated. At depth t, a new vertex
u is added to both FT (t) and VT (t). At depth t + 1, u is
removed from FT (t) and its offspring {v, w, x} are added to
the frontier. At depth t + 2, the three vertices are removed
from the frontier; v is succeeded by a single child and w
spawned three children, while x has none.

a given branch spawns new branches, how many
children it has, and in what directions they grow.

In this paper, we describe the growth of an arbores-
cence generatively as a stochastic, discrete, spatial
Markov branching process that evolves over time. The
resulting arborescence is a set of branches made of
concatenated line segments. In our model, an arbores-
cence can only grow by extending its leaf branches
that are still “active”. Since we do not allow internal
branches to increase in length, our model does not
describe all actual growth processes in nature, but
is rather to be seen as an abstract, generative model
of the final shape of an arborescence. Although our
model is simple, the experiments in Section 8 show
that it adequately captures the morphology of a num-
ber of different types of trees, including retinal vessels
and plant roots.

The frontier F (t) of a growing directed tree T (t) =
(VT (t), ET (t), rT) with embedding A(t) is the set of
m(t) active vertices

F (t) = {v1, . . . ,vm(t)} ⊂ VT (t)

in VT (t) that are leaves and are still growing. The
nonnegative integer t denotes the tree-depth of the
leaves. At depth t = 0, the directed tree is a single
point—its root rT , embedded at the origin of space—
and F (0) = {rT }.

At depth t > 0, each leaf v in F (t) spawns a number
c ≥ 0 of labeled branch stubs with probability ps(c),
where

∞∑
c=0

ps(c) = 1 . (2)

A stub is a short branch segment that connects a new
leaf to its parent. If c > 0, we assign an ordered
label i ∈ {1, 2, . . . , c} to each of the children of v. For
simplicity, we assume that ps(c) is the same for all t. In
our experiments, it is given by a one-inflated Poisson
distribution [25] that behaves as a Poisson distribution

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

with rate λ at all values except 1:

ps(c) =

{
1

1+α (Pois (1 ;λ) + α) if c = 1
1

1+α Pois (c ;λ) otherwise.

In many physical trees, α >> Pois (1 ;λ) to account
for the fact that extending a branch is much more
common than stopping or splitting into two or more
branches.

The vertex v is then removed from the frontier and
the leaves of any of the stubs it has spawned are
added to F (t+ 1) and VT (t+ 1).

To model stub geometry, every new leaf v in the
frontier F (t) records information about its parent
π(v) = u and about its growth increment, a three-
dimensional random vector δv = v − π(v) that de-
pends on the following factors:

1) The stub’s growth inertia
2) The preferred branching angle
3) The force field(s) surrounding u.

Growth inertia refers to the tendency of a branch to
continue to grow in a steady direction. Factors 2 and
3 depend on the type of arborescence being modeled.
A preferred branching angle captures the tendency
of angles between a parent and its (multiple) child
branches to take on similar patterns for a given type of
arborescence and number of children. The force field
encapsulates environmental forces that affect growth,
such as a gravitational or electromagnetic field or the
density of the growth medium.

These terms are combined as follows. The location
of vi, the i-th child of vertex u, is given by:

vi = u+ δvi,

δvi ∼ VF(µ̂i, κ, γ) = γ
κ

2π(eκ − e−κ)
e(κµ̂

>
i δvi).

(3)

The direction of the growth increment vector δvi is
drawn from a von Mises-Fisher distribution [22] with
concentration κ and its length is scaled by a parameter
γ > 0, which can be either a constant or drawn from
some distribution. The expected direction of growth
µ̂i =

µi

‖µi‖
is given by a vector sum that incorporates

the three factors outlined above:

µi = s(ρc(i), φc(i), zc(i)) + f(u), (4)

where c is the number of children of u. Here,

• s(ρc(i), φc(i), zc(i)) is the expected direction of
growth of the i-th child of u. We parameterize s
using cylindrical coordinates with origin u and
cylindrical axis along δu.2 Variables ρc(i) and
zc(i) are the radius and height, respectively, and
φc(i) is the azimuth relative to a random reference
plane.

• The vector f(u) captures environmental forces at
u.

2. If u is the root, then δu is chosen uniformly at random.

5.2 Directed Tree Probability

The growth model M can be used to define the
probability pM (T) of a directed tree T consistent with
a projected graph G. This probability is a function of
its topology (the number of children per vertex) and
geometry (the angles between parent and child stubs).

Since there are an uncountably infinite number of
arborescences consistent with a given T and G, we
cannot enumerate the probability of every arbores-
cence that could have projected to G. Instead, we ap-
proximate the probability of a directed tree as follows:

pM (T) ≈
∏

uP∈V (T)

pa(uP |π(uP), c(uP))ps(c(uP)), (5)

where uP is the projection of u and where π(uP) and
c(uP) are the parent and number of children of uP ,
respectively. The probability ps is defined in Eq. 2, and
pa is the probability of the angles between a parent
stub and those of each of its children in the projection,
rather than in the world:

pa(uP) =

∏

viP
∈VuP

VM(δviP ; µ̂iP , κiP) if c(uP) > 0

1 otherwise.
(6)

Here, VM is the Von Mises distribution. The projected
child viP has been assigned the i-th label, the unit
vector µ̂iP is the expected projected direction of growth
of the i-th projected stub, and κiP is the concentration
over the distribution of possible angles between the
actual and expected projected stubs, as detailed fur-
ther in [9].

6 TREE ESTIMATION COMPLEXITY

In this section, we analyze the computational com-
plexity of estimating the most likely tree for a class of
local tree probability models, in which the probability
of a tree is the product of the probability of each set
of incident edges at each vertex. This class includes
our model M .

More specifically, let T = (VT , ET , rT) be a directed
tree rooted at rT . We restrict ourselves to models in
which the probability of each vertex is a function of
its incident edges:

`(T) =
∑
v∈VT

`(v|ET (v), θ) , (7)

where `(T) is the log-probability of the directed tree,
ET (v) is the set of edges in T that are incident to v,
and θ are any additional model parameters, such as
the force field at v’s location. We refer to models that
satisfy Eq. 7 as local models. It is easy to see that Eq. 5
satisfies Eq. 7, so our growth model is local.

Assuming that calculating each vertex log-
probability takes constant time, the overall probability
of a tree can be computed in linear time by

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

determining the probability of each of its vertices
in turn. Given a flow-DAG Gd, we define its
log-probability as

`(Gd) = max
T∈T (Gd)

`(T). (8)

If `(T) is defined in terms of a local model, we
can efficiently maximize this probability over the set
of directed trees consistent with Gd by considering
each crossing x in Gd in turn, evaluating all of its
valid partitions, and picking the maximum-likelihood
partition. Since changing the partition of x does not
change any of the edges that are incident to it, the
choice of a most likely valid partition for x is local;
that is, it affects no vertex other than x, nor does it
depend on any other vertices.

Therefore, if a directed graph Gd is available, we can
find the most likely directed tree consistent with it by
examining each of the vertices of Gd in turn. Since the
degree of the vertices in Gd is assumed to be bounded,
the time complexity at each vertex is constant, and
the overall complexity of estimating the most likely
directed tree is linear in the number of vertices of Gd.

However, if only the undirected graph G is available,
finding an optimal directed tree consistent with G in a
local model is NP-hard. We prove this in the appendix
by reducing the minimum vertex cover problem [13]
to the problem of estimating a tree from an undirected
graph.

7 ALGORITHMS

Since finding an optimal directed tree given an undi-
rected graph is NP-hard, we resort to approximate
methods. Specifically, this section present a two-step
method for estimating a highly likely tree from an
undirected, rooted graph G. The first step finds an ap-
proximate solution greedily, and the second improves
this solution via a heuristic search in the space of
possible flow-DAG orientations of G. The first step
uses the arrival time of a flow sent from the root
to every other vertex as a simple way to find an
initial, reasonable flow-DAG. The second step then
makes use of the prior growth model defined in
Section 5 to establish the likelihood of each candidate
tree. Intuitively, we heuristically search over possible
topologies based on how likely their corresponding
projected geometries (in terms of the prior growth
model) are.

7.1 Greedy Directed Tree Search

Computing a directed tree from an undirected, rooted
graph G = (VG, EG, rG) involves two choices: first
assign a direction to each of the edges of G—which
defines an orientation Gd over G—and then apply
a valid partition to crossing of Gd, as defined in
Section 3.2. If the resulting orientation is a flow-DAG,

(a) (b) (c)

Fig. 8. Valid partition formation: (This Figure is best
viewed in color.) (a) A vertex u and its neighbors. In (b), the
edges incident to u are assigned orientations. Since u has
more than one incoming edge (red and green), it must be
partitioned. In (c), u is split into two vertices v (red) and w
(green), each with a single parent. The dashed oval indicates
that v and w share the same location on the plane. Each of
the outgoing edges of u is then assigned to one of the new
vertices.

any choice of valid partitions will yield a directed tree,
so we restrict our search to these acyclic orientations.

To estimate a high-probability directed tree, we first
obtain a flow-DAG Gd by completing a shortest-path
spanning tree of G rooted at rG. We then apply a valid
partition to each vertex with in-degree ≥ 2 to convert
Gd into a directed tree.

In more detail, a shortest-path tree S rooted at rG
is a spanning tree of G such that for any vertex v,
the shortest distance dist (rG, v) between rG and v
is the same in G and in S [23]. When the cost of
each edge is the Euclidean distance between its two
endpoints, then S approximates the arrival time of a
flow sent from rG to every other vertex in the graph.
A (not necessarily unique) shortest-path tree S can be
efficiently estimated in time O(|EG| + |VG| log(|VG|))
using Dijkstra’s shortest-path algorithm [8]. At each
iteration, this algorithm extends the shortest-path tree
by adding the unvisited vertex that is closest to the
set of visited vertices,

v = closest_vertex(G,Vvisit) .

A shortest-path tree induces a topological ordering
of the vertices of G in which u < v if and only if
dist (rG, u) ≤ dist (rG, v).3 Given S, we construct a
flow-DAG Gd by orienting each edge in G according
to this ordering. The resulting directed graph Gd is a
flow-DAG: since it contains the spanning directed tree
S as a sub-graph, it is a flow orientation and since its
edges obey a topological ordering it is a DAG.

As noted in Section 6, we can determine a most
likely directed tree from a flow-DAG in linear time by
choosing a most likely valid partition independently
at each crossing v ∈ VGd

. The function

(`, P) = partition(v,Gd,M)

computes the optimal probability `(v) in model M
by first evaluating the likelihoods of all the valid
partitions of v that can be obtained given the edge
directions of Gd and then picking the partition with

3. Ties are broken arbitrarily.

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Algorithm 1: Greedy directed tree search

Input: Undirected, rooted planar graph
G = (VG, EG, rG), tree growth model M

Output: A high-likelihood directed tree T
/* Obtain a shortest path tree */
Vvisit = {rG}
while |Vvisit| < |VG| do

v =closest_vertex(G,Vvisit)
Vvisit = Vvisit ∪ {v}
d[v] = dist(rG, v)

/* Orient edges to build a flow-DAG */
Ed = ∅
Gd = (VG, Ed, rG)
foreach e = (u, v) ∈ EG do

if d[u] ≤ d[v] then
Ed = Ed ∪ {(u, v)}

else
Ed = Ed ∪ {(v, u)}

/* Convert the flow-DAG to a tree by
optimal valid crossing partitions */

T = Gd

foreach v ∈ VT do
if deg− (v) > 1 then

(`, P) = partition(v, T,M)
T = transform(T, P)

the highest probability. The function partition also
returns a structure

P = (P.v, P.V, P.E, P.J)

that describes the surgery necessary to implement the
partition. This includes the vertex P.v to be replaced,
the set P.V of new vertices that replace P.v, the set
P.E of oriented edges that are incident to P.v, and a
set P.J of indices that for each edge e in P.E tells what
vertex of P.V the edge e connects to. See Figure 8. A
procedure

G = transform(G,P)

transforms the graph G to implement the optimal
partition P : It replaces P.v with the elements of P.V
and replaces the P.v endpoint of each edge in P.E
with the vertex in P.V indicated by P.J . Algorithm 1
summarizes this greedy search.

7.2 Heuristic Directed Tree Search
We now introduce a heuristic search algorithm that
attempts to improve on the greedy solution by ex-
ploring variants of it that may increase its likelihood.

The expression in Eq. 8 in Section 6 defines a like-
lihood for every node of the flow-DAG meta-graph
defined in Section 4.1. To efficiently explore this meta-
graph, we make use of a heuristic that encourages
moving towards an orientation of the input graph G
that is not necessarily a flow orientation but has high
probability and is easy to compute. This orientation
GL is called an anchor, because it is used as a reference
point in the heuristic search. The idea is that although

Algorithm 2: Heuristic directed tree search

Input: Graph G, Greedy flow-DAG Gd, growth model
M , max priority queue q, max number of
iterations imax > 1

Output: Locally optimal directed tree T ?

GL = anchor(M)
`? = `M (Gd)
q = push(Gd,λ`

?)
for i← 1 to imax do

Gd = pop(q)
if `? < `M (Gd) then

`? = `M (Gd)
G?

d = Gd

foreach e ∈ E(Gd) do
if is_crossing(e,Gd) then

G′d = flip_edge(e,Gd)
if not_visited(G′d) & is_dag(G′d) then

q = push(G′d,h(Gd → G′d))

T ? = G?
d

foreach v ∈ VT? do
if deg− (v) > 1 then

(`, P) = partition(v, T ?,M)
T ? = transform(T ?, P)

GL is typically outside the flow-DAG meta-graph, any
region of the meta-graph in the vicinity of GL is worth
exploring.

The anchor orientation GL is defined as fol-
lows. For each crossing of G, find edge orien-
tations that yield the best valid partition. Since
these choices are made independently at each cross-
ing, edges that connect two crossings may end up
with conflicting orientations. In those cases, assign
to that edge the direction of flow that is more
likely given the force field at that location. Specif-
ically, let pu = VM((u, v);µfP (u), κfP (u)) and pv =
VM((v, u);µfP (v), κfP (v)) be the probabilities of two
conflicting orientations (u, v) and (v, u) for an edge.
Here, VM again denotes the Von Mises distributions,
and µfP (v) and κfP (v) are the mean direction and
concentration of the projections of the force field
vectors whose origins lie along v’s line of projection
[9]. Then, the orientation with higher probability is
chosen for that edge.4 The resulting anchor orientation
GL is generally not a flow orientation, but flow-DAGs
that differ from it by a few edge flips are likely to be
good.

Our search algorithm encourages exploring flow-
DAGs that are near GL. To this end, the heuristic value
of exploring a flow-DAG G′d from its neighbor Gd on
the flow-DAG meta-graph is defined as follows:

h(Gd → G′d) = λ`M (G′d) + (1− λ) log (1− ‖G′d, GL‖f)

where λ is a parameter between 0 and 1 and ‖‖f is the
number of flips between the two orientations divided

4. Ties are broken arbitrarily.

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

by the number of edges in EG′
d

(note that |EG′
d
| =

|EGL
|). The first term is the likelihood of G′d and the

second term estimates its nearness to the anchor.
Using this heuristic in a best-first search of the meta-

graph leads to Algorithm 2, which starts from the
graph orientation for the tree found by Algorithm 1
and implement best-first traversal of the flow-DAG
meta-graph with a priority queue. Using best-first
ensures that this Algorithm is more likely to quickly
find locally optimal orientations.

8 EXPERIMENTS

We analyzed three datasets to validate the effective-
ness of our algorithms: retinal vessel systems, roots of
rice plants, and a synthetic leafy tree dataset. These
datasets allowed us to test our algorithms on three
very different types of trees. For each dataset, we
constructed a set of planar graphs and obtained their
ground-truth trees. We then quantified the similarity
between the best trees obtained by our algorithms and
the ground-truth trees, as explained below.

8.1 Materials

We constructed a new retinal vessel dataset (WIDE) of
15 high-resolution, wide-field, RGB images using an
Optos 200Tx ultra-wide-field device (Optos plc, Dun-
fermline, Scotland, UK). All images were acquired at
the Duke University Medical Center between August
2010 and October 2012. Each retinal image was taken
from a different individual and captured as an un-
compressed TIFF file at the widest setting available
for the Optos device (3900×3072 pixels). We manually
cropped out eyelashes and other non-retinal regions
of the image. We downsampled each cropped image
by a factor of 2 to obtain the final images (∼900×1400
pixels).

We also constructed an 18-image rice-root dataset
(RICE) by randomly selecting a subset of images from
an earlier dataset [45], [20]. In the original dataset,
40 rice plants roots were grown in a transparent
medium and imaged in Prof. Philip Benfey’s lab at
Duke University. Each plant was rotated around its
center axis and imaged from 40 different angles and
a three-dimensional tomographic model of each plant
was then obtained from the images. To construct
our RICE dataset, we first obtained 18 of the three-
dimensional model/40 image sets corresponding to
13 different plants. Five plants were imaged twice,
at 7 and 10 days of growth. For each volume, we
randomly selected one of the ∼1300×900 pixel RGB
source images.

Finally, we constructed a synthetic leafy tree dataset
(SKETCH) of 18 arborescences. Each arborescence was
drawn by the first author on the tree modeling soft-
ware developed by Chen et al. [6] using a Wacom

Intuous 3 graphics tablet (Wacom Co. Ltd, Kazo-
shi, Saitama, Japan). This software estimates a three-
dimensional arborescence given a set of input strokes
that represent the tree’s branches. Each vertex in the
resulting graph is assigned a depth based on the
chosen tree template. We used a maple tree template
for all graphs. We then projected each arborescence at
five different angles to obtain 90 planar graphs.

8.2 Methods

8.2.1 Planar graph estimation

For the WIDE and RICE datasets, we obtained each
planar graph semi-automatically: we first computed a
Gabor-enhanced image [11] and then extracted a noisy
graph from it by building a set of tracks over the tree’s
branches [9]. We manually edited each graph using a
graph editing software that we developed to correct
any errors, such as missing or spurious edges due to
low image quality or image artifacts.

For the SKETCH dataset, we first aligned the trunk
of every arborescence with the z-axis. We then defined
each vertex in the arborescence in terms of a cylin-
drical coordinate system. We obtained each planar
graph by rotating an arborescence by a given angle of
rotation φ and then collapsing the y-axis. We used five
evenly spaced angles (0, 72, 144, 216, 288 degrees) per
arborescence to obtain 90 planar graphs in total. To
simulate the limited resolution of an imaging system,
we defined a minimum separation radius r of 5 pixels.
Any cluster of vertices that lied within a circle of
radius r were merged into a single vertex. Then, for
every vertex we determined the Euclidean distance d
to the closest non-adjacent edge. If d < r, we shifted
the vertex to lie directly over the edge with probability
r−d
r ; that is, the closer the vertex, the higher the

probability that it would be merged.

8.2.2 Error quantification

There is no single metric that captures how similar
two trees are because trees have properties at multiple
scales. Thus, we determined the similarity between
each estimated tree and the ground-truth tree using
four weighted scores: the first two measure local
errors in connectivity, while the latter two capture
more global differences.

More specifically, the local similarities are defined
as follows. Let T and T ′ be two directed trees consis-
tent with G and let dc be the sum of the costs of the
edges that are part of an undirected circuit.5 Then, let
dp be the sum of the costs of these circuit edges that
have the same parent edge in both T and T ′. Similarly,
let df be the sum of the costs of the circuit edges that
have the same orientation in the two trees. Then, the

5. We exclude edges with no circuit neighbors because their
respective parents will be the same for all solutions.

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

(a) (b) (c) (d) sp = 0.974, sf = 0.978

(e) (f) (g) (h) sp = 0.969, sf = 0.979

(i) (j) (k) (l) sp = 1, sf = 1

(m) (n) (o) (p) sp = 0.995, sf = 0.998

Fig. 9. WIDE and RICE examples: (This Figure is best viewed on-screen). (a,e,i,m) Four sample test images. (b,f,j,n) The
extracted graph for each image (in blue). (c,g,k,o) The ground-truth tree for each image. Different subtrees are shown in
different colors.(d,h,l,p) The best tree found by our method. The parent and flow similarities for each graph are listed in the
corresponding subcaption. The white ellipses highlight differences between computed and ground-truth trees.

parent sp and flow sf similarities are given by:

sp =
dp
dc

and sf =
df
dc
.

The global similarities are defined in terms of the
paths from the root. In a tree, there is a unique path
from the root to every one of its edges. Thus, let dt be
the sum of the costs of all the paths from the root to
the circuit edges and let da be the sum of the subset
of these paths that are identical in the two trees. Also,
let r(e) be the sum of the costs of the edges in the
path to edge e in T that are also part of the path to
e in T ′; intuitively r(e) is the percentage of the path to
e that is shared by the two trees. Finally, let dr be the
sum of each r(e) for every circuit edge e. Then, the
absolute sa and relative sr similarities are:

sa =
da
dt

and sr =
dr
dt
.

8.2.3 Ground truth estimation

The SKETCH dataset already includes the ground
truth trees. For the WIDE and RICE datasets, we
manually obtained the ground truth trees using the
aforementioned graph editing software. Our software
allows a user to partition a vertex or undo an existing
partition. To simplify the above process, we first ob-
tained a non-optimized solution using our heuristic
search algorithm and then replaced the invalid parti-
tions with the correct ones. For the RICE dataset, we
used the additional images and the three-dimensional
volume to determine the correct topology.

For the WIDE dataset, on the other hand, our
ground truth trees are based solely on human anal-
ysis. Since even human experts differ on their assess-
ment of vessel topology, we quantified the degree of
inter-observer variability or uncertainty in our ground
truth by comparing the trees produced by two human
raters (the first and last authors) using the two sim-
ilarities defined above. We set the first rater’s trees

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

as ground truth. The similarity values of the second
rater’s trees in the test set of the WIDE dataset are
listed in Table 1.

8.2.4 Directed tree estimation
We randomly split each dataset in half into a training
and a testing set. We approximated the force field
at each location using either a radially symmetric
vector field centered at the root (WIDE) or a vector
field in which every vector was parallel to the z-
axis (RICE, SKETCH). Both vectors fields had constant
magnitude. We then estimated the distributions of
angles pa and of numbers of children ps of Section 5.2,
as follows. For each vertex in each tree in the training
set, we calculated the projected angles between its
outgoing edges, as well as its out-degree (number
of children). Given the empirical distributions of an-
gles, we determined the means and concentration
parameters of each von-Mises distribution defined in
Eq. 6 to obtain pa. We then determined ps by fitting
a one-inflated Poisson distribution to the empirical
distribution of the out-degrees of all the vertices.

We then applied our greedy algorithm and our
heuristic search algorithms to each planar graph. The
number of possible solutions for a planar graph is an
exponential function of the number F of its faces [5].
Accordingly, for each graph we adjusted our search
algorithm to explore 100F trees.6 As we ran our search
algorithm, we also recorded the best tree found after
exploring 10F and 50F trees, and the mean running
time in minutes for each method for each dataset. We
ran our two algorithms on a Toshiba Satellite X870
laptop with a 2.4Ghz Intel I7 quad-core processor and
32GB of RAM.

8.3 Results
The results for each dataset are summarized in Ta-
bles 1-3 and two example results from each dataset
are shown in Figures 9 and 10. In each table, n is
the number of planar graphs in the test set and µ(F)
and σ(F) are the mean and standard deviation of the
number of faces per graph, respectively.

Our proposed methods accurately estimate a highly
likely tree for each of the different input graphs in
the three datasets. The estimated trees have over
95% of the same parent-child relationships and edge
orientations as the correct trees. Our proposed ap-
proach is versatile and robust. The three different
datasets represent three very different types of trees
that vary in their branching behavior, the expected
angles between their offspring, and how strongly
they are influenced by surrounding forces. Also, the
arborescences in the three datasets vary significantly
in how close they are to being planar. Intuitively,
an arborescence is close to being planar if it is very

6. Preliminary experiments indicated that searching beyond 100F
had minimal impact on the results.

(a) (b) (c) sp = 0.967,
sf = 0.999

(d) (e) (f) sp = 0.928,
sf = 0.981

Fig. 10. SKETCH examples: (This Figure is best viewed
on-screen). (a,d) Two sample test graphs (in blue). (b,e)
The ground-truth tree for each image. Different subtrees are
shown in different colors. (c,f) The best tree found by our
method. The parent and flow similarities for each graph are
listed in the corresponding subcaption. The white ellipses
highlight differences between computed and ground-truth
trees.

narrow along one of its axes; in contrast, a radially
symmetric tree is very far from planar. In our case,
the retinal vessels were the most planar, since the
retina consists of a series of flat layers. The synthetic
trees, on the other hand, were the least planar since
the parameters of the tree modeling software favored
radially symmetric trees. In spite of these structural
differences between datasets, after properly tuning
our model’s parameters, our methods were generally
able to accurately approximate the correct solution.
We now discuss results on each dataset in more detail.

8.3.1 WIDE dataset
In this dataset, our algorithm was able to closely
approximate the performance of an expert human
rater on a set of challenging retinal images and with
minimal specialized domain knowledge. That is, aside
from the branching factor and expected angle statis-
tics that we obtained from the training set, we did
not exploit any other image features, such as vessel
dilation or color. We expect that incorporating these
additional features should further improve our results
on traditional fundus images.

However, some novel imaging systems, such as the
optical coherence tomography method described in
[18], are able to capture retinal vasculature images
at a higher resolution that conventional fundus cam-
eras. The vessels in these higher resolution images
often have no color and the smaller vessels in them
have uniform dilation due to the imaging system’s
diffraction limit. Thus, the features described above
are no longer informative. Since our method does not
rely on conventional vessel features, we expect that

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

TABLE 1
WIDE dataset results

(n = 8, µ(F) = 92.7, σ(F) = 25.5)

Method sp sf sa sr Time (min)

Human 0.9881 (± 0.01) 0.9911 (± 0.01) 0.8264 (± 0.13) 0.9398 (± 0.03) ∼90
Heur. (100F) 0.9662 (± 0.02) 0.9719 (± 0.02) 0.7316 (± 0.15) 0.8599 (± 0.09) 1.4 (± 0.74)
Heur. (50F) 0.9518 (± 0.03) 0.9597 (± 0.03) 0.6996 (± 0.14) 0.8521 (± 0.07) 0.72 (± 0.37)
Heur. (10F) 0.9167 (± 0.03) 0.9292 (± 0.04) 0.5246 (± 0.20) 0.7730 (± 0.05) 0.18 (± 0.07)
Greedy 0.9059 (± 0.03) 0.9202 (± 0.03) 0.5071 (± 0.19) 0.7481 (± 0.06) 0.04 (± 0.02)

TABLE 2
RICE dataset results

(n = 9, µ(F) = 30.0, σ(F) = 9.3)

Method sp sf sa sr Time (min)

Heur. (100F) 0.9831 (± 0.02) 0.9918 (± 0.01) 0.8984 (± 0.18) 0.9724 (± 0.05) 0.19 (± 0.08)
Heur. (50F) 0.9817 (± 0.02) 0.9905 (± 0.01) 0.8971 (± 0.18) 0.9717 (± 0.05) 0.10 (± 0.04)
Heur. (10F) 0.9649 (± 0.03) 0.9763 (± 0.03) 0.8625 (± 0.18) 0.9406 (± 0.07) 0.03 (± 0.01)
Greedy 0.9408 (± 0.04) 0.9583 (± 0.03) 0.7952 (± 0.17) 0.8945 (± 0.07) 0.01 (± 0.005)

TABLE 3
SKETCH dataset results

(n = 45, µ(F) = 37.68, σ(F) = 24.37)

Method sp sf sa sr Time (min)

Heur. (100F) 0.9551 (± 0.03) 0.9927 (± 0.01) 0.6837 (± 0.24) 0.9167 (± 0.07) 0.31 (± 0.24)
Heur. (50F) 0.9546 (± 0.03) 0.9920 (± 0.02) 0.6857 (± 0.24) 0.9170 (± 0.07) 0.17 (± 0.12)
Heur. (10F) 0.9516 (± 0.04) 0.9901 (± 0.02) 0.6793 (± 0.24) 0.9127 (± 0.08) 0.06 (± 0.02)
Greedy 0.9354 (± 0.04) 0.9823 (± 0.02) 0.6470 (± 0.24) 0.8736 (± 0.09) 0.03 (± 0.01)

we should also obtain good results with images from
these next-generation imaging systems.

Furthermore, although the WIDE dataset had the
highest mean number of faces, our algorithm obtained
better parent similarity results for this dataset than
for the SKETCH dataset. We speculate that this is
because retinal vessels are very close to being planar.
Thus, there is often very little difference between the
original and the projected angles, which makes the
prior on the angles between siblings very informative.

8.3.2 RICE dataset
We obtained the best results on this dataset relative
to the other two. We speculate that these stronger
results were primarily due to two factors: first, the
graphs corresponding to the rice plants had fewer
faces than the other datasets, particularly compared
to the retinal graphs. Furthermore, although the rice
roots were quite radially symmetric, they also had
a strong tendency to grow downwards towards the
ground, which made the projected angles between
siblings less variable than in the SKETCH dataset.

8.3.3 SKETCH dataset
In this dataset, the difference between the parent and
flow similarities was more pronounced than in the
other two datasets. We speculate that this is because

the graphs in this dataset had more instances of
vertices of degree five or higher than the other two,
due to the simulated limited resolution we imposed
on the projections. For these vertices, it is often easy to
determine the orientation of their adjacent edges if the
edges are well aligned with the expected direction of
growth. However, determining which of the incoming
edges is the parent of which of the outgoing edges
is generally more challenging, because there is often
little difference in the projected angles between edges
that are adjacent in the original tree compared to
edges that are not.

9 CONCLUSIONS

In this work, we formalized the problem of estimat-
ing the topology of a three-dimensional tree from a
single, two-dimensional image of it and presented a
prior tree-growth model to regularize this ill-posed
problem. We showed that estimating the most likely
tree consistent with an undirected graph is NP-hard
even when each tree’s likelihood is defined by a local
growth model. We then presented a heuristic search
method to explore the space of possible trees and
empirically showed that it effectively and efficiently
approximates the most likely tree for various types of
trees.

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

In our future work, we plan to analyze and compare
alternative search methods for finding the most likely
tree, including Markov Chain Monte Carlo, iterated
local search, and stochastic gradient ascent. We also
intend to refine our image formation model to enable
our tree estimation methods to correct small errors in
the estimated graph, including missing or spurious
edges. Finally, we seek to extend our methodology to
images that include incomplete trees.

ACKNOWLEDGMENTS

This research was supported in part by NIH grant
R01-EY022691 and SCS was partially supported by
NIH grant R01-GM090201. The authors thank Prof.
Priyatham S. Mettu for providing the retinal images
of the WIDE dataset, as well as Prof. Philip Benfey and
Dr. Christopher Topp for providing the rice plant im-
ages of the RICE dataset. The authors also thank Prof.
Xuejin Chen for sharing her tree sketching software
and Prof. Vince Conitzer for his valuable comments
on our NP-hardness proof.

REFERENCES

[1] M. Aono and T. Kunii. Botanical tree image generation.
Computer Graphics and Applications, IEEE, 4(5):10–34, May.

[2] L. R. Band, J. A. Fozard, C. Godin, O. E. Jensen, T. Pridmore,
M. J. Bennett, and J. R. King. Multiscale systems analysis of
root growth and development: Modeling beyond the network
and cellular scales. The Plant Cell Online, 24(10):3892–3906,
2012.

[3] A. Bejan and S. Lorente. The constructal law of design and
evolution in nature. Philosophical Transactions of the Royal
Society B: Biological Sciences, 365(1545):1335–1347, 2010.

[4] F. Benmansour and L. Cohen. Tubular structure segmentation
based on minimal path method and anisotropic enhancement.
International Journal of Computer Vision, pages 1–19, 2011.

[5] K. Buchin and A. Schulz. On the number of spanning
trees a planar graph can have. In M. Berg and U. Meyer,
editors, Algorithms – ESA 2010, volume 6346 of Lecture Notes in
Computer Science, pages 110–121. Springer Berlin Heidelberg,
2010.

[6] X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang.
Sketch-based tree modeling using Markov random field. ACM
Trans. Graph., 27(5):109:1–109:9, Dec. 2008.

[7] B. Dashtbozorg, A. Mendonca, and A. Campilho. An auto-
matic graph-based approach for artery/vein classification in
retinal images. Image Processing, IEEE Transactions on, (99):1–1,
2013.

[8] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[9] R. Estrada. Tree Topology Estimation. PhD thesis, Duke Univer-
sity, July 2013.

[10] R. Estrada, C. Tomasi, M. Cabrera, D. Wallace, S. Freedman,
and S. Farsiu. Exploratory Dijkstra forest based automatic
vessel segmentation: applications in video indirect ophthal-
moscopy (VIO). Biomedical Optics Express, 3:327–339, 2012.

[11] R. Estrada, C. Tomasi, M. Trager, D. Wallace, S. Freedman, and
S. Farsiu. Enhanced video indirect ophthalmoscopy (VIO) via
robust mosaicing. Biomedical Optics Express, 2:2871–2887, 2011.

[12] O. Friman, M. Hindennach, C. Kuhnel, and H. Peitgen. Multi-
ple hypothesis template tracking of small 3D vessel structures.
Medical image analysis, 14(2):160–171, 2010.

[13] M. R. Garey and D. S. Johnson. Computers and intractability,
volume 174. Freeman San Francisco, CA, 1979.

[14] G. González, E. Türetken, F. Fleuret, and P. Fua. Delineating
trees in noisy 2D images and 3D image-stacks. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 2799–2806, 2010.

[15] X. Gou, M. Chen, Y. Zhang, W. Dong, and X. Qie. Wavelet
multiresolution based multifractal analysis of electric fields by
lightning return strokes. Atmospheric Research, 91(2):410–415,
2009.

[16] M. Graham, J. Gibbs, and W. Higgins. Robust system for
human airway-tree segmentation. In Proceedings of SPIE,
volume 6914, page 69141J, 2008.

[17] M. Gülsün and H. Tek. Robust Vessel Tree Modeling. Medical
Image Computing and Computer-Assisted Intervention–MICCAI
2008, pages 602–611, 2008.

[18] H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu,
and J. A. Izatt. Automated non-rigid registration and mosaic-
ing for robust imaging of distinct retinal capillary beds using
speckle variance optical coherence tomography. Biomed. Opt.
Express, 4(6):803–821, Jun 2013.

[19] H. Ishikawa, D. Geiger, and R. Cole. Finding tree structures
by grouping symmetries. Computer Vision, IEEE International
Conference on, 2:1132–1139, 2005.

[20] A. Iyer-Pascuzzi, P. Zurek, and P. Benfey. High-throughput,
noninvasive imaging of root systems. In I. De Smet, editor,
Plant Organogenesis, volume 959 of Methods in Molecular Biol-
ogy, pages 177–187. Humana Press, 2013.

[21] S. Kapoor and H. Ramesh. An algorithm for enumerating all
spanning trees of a directed graph. Algorithmica, 27:120–130,
2000.

[22] C. Khatri and K. Mardia. The von Mises-Fisher matrix distri-
bution in orientation statistics. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):95–106, 1977.

[23] S. Khuller, B. Raghavachari, and N. Young. Balancing min-
imum spanning trees and shortest-path trees. Algorithmica,
14(4):305–321, 1995.

[24] R. Koene, B. Tijms, P. Hees, F. Postma, A. Ridder, G. Ramakers,
J. Pelt, and A. Ooyen. Netmorph: A framework for the
stochastic generation of large scale neuronal networks with
realistic neuron morphologies. Neuroinformatics, 7:195–210,
2009.

[25] D. Lambert. Zero-inflated Poisson regression, with an appli-
cation to defects in manufacturing. Technometrics, 34(1):1–14,
1992.

[26] P. Lo, J. Sporring, H. Ashraf, J. J. Pedersen, and M. de Bruijne.
Vessel-guided airway tree segmentation: A voxel classification
approach. Medical Image Analysis, 14(4):527 – 538, 2010.

[27] L. D. López, Y. Ding, and J. Yu. Modeling complex unfoliaged
trees from a sparse set of images. Computer Graphics Forum,
29(7):2075–2082, 2010.

[28] P. L. López-Cruz, C. Bielza, P. Larrañaga, R. Benavides-
Piccione, and J. DeFelipe. Models and simulation of 3D
neuronal dendritic trees using Bayesian networks. Neuroin-
formatics, 9:347–369, 2011.

[29] B. H. Lynn, Y. Yair, C. Price, G. Kelman, and A. J. Clark. Pre-
dicting cloud-to-ground and intracloud lightning in weather
forecast models. Weather and Forecasting, 27:1470–1488, 2012.

[30] M. Pechaud, R. Keriven, and G. Peyre. Extraction of tubular
structures over an orientation domain. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
336–342. IEEE, 2009.

[31] H. Perfahl, H. M. Byrne, T. Chen, V. Estrella, T. Alarcón,
A. Lapin, R. A. Gatenby, R. J. Gillies, M. C. Lloyd, P. K. Maini,
et al. Multiscale modelling of vascular tumour growth in 3d:
the roles of domain size and boundary conditions. PloS one,
6(4):e14790, 2011.

[32] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty
of plants (The Virtual Laboratory). Springer, 1991.

[33] M. Quinas-Guerra, T. Ribeiro-Rodrigues, J. C. Rodrı́guez-
Manzaneque, and R. D. Travasso. Understanding the dynam-
ics of tumor angiogenesis: A systems biology approach. In
A. S. Azmi, editor, Systems Biology in Cancer Research and Drug
Discovery, pages 197–227. Springer Netherlands, 2012.

[34] P. Reffye, M. Kang, J. Hua, and D. Auclair. Stochastic mod-
elling of tree annual shoot dynamics. Annals of Forest Science,
69:153–165, 2012.

[35] K. Rothaus, P. Rhiem, and X. Jiang. Separation of the retinal
vascular graph in arteries and veins. In F. Escolano and
M. Vento, editors, Graph-Based Representations in Pattern Recog-
nition, volume 4538 of Lecture Notes in Computer Science, pages
251–262. Springer Berlin Heidelberg, 2007.

[36] M. Schaap, I. Smal, C. Metz, T. van Walsum, and W. Niessen.
Bayesian tracking of elongated structures in 3D images. In In-
formation Processing in Medical Imaging, pages 74–85. Springer,

A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

2007.
[37] J. Soares, J. Leandro, R. Cesar Jr, H. Jelinek, and M. Cree.

Retinal vessel segmentation using the 2-D Gabor wavelet and
supervised classification. IEEE Transactions on Medical Imaging,
25(9):1214–1222, 2006.

[38] P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. Single image tree
modeling. ACM Trans. Graph., 27(5):108:1–108:7, Dec. 2008.

[39] R. Tarjan. Edge-disjoint spanning trees and depth-first search.
Acta Informatica, 6(2):171–185, 1976.

[40] E. Türetken, G. González, C. Blum, and P. Fua. Automated
reconstruction of dendritic and axonal trees by global opti-
mization with geometric priors. Neuroinformatics, 9(2-3):279–
302, 2011.

[41] S. Willard. General topology. Dover Publications, 2004.
[42] C. Xiao, M. Staring, Y. Wang, D. Shamonin, and B. Stoel.

Multiscale bi-Gaussian filter for adjacent curvilinear structures
detection with application to vasculature images. Image Pro-
cessing, IEEE Transactions on, 22(1):174–188, 2013.

[43] T. Yedidya and R. Hartley. Tracking of blood vessels in
retinal images using Kalman filter. In Digital Image Computing:
Techniques and Applications (DICTA), 2008, pages 52–58, 2008.

[44] J. Zeng, Y. Zhang, and S. Zhan. 3D tree models reconstruc-
tion from a single image. In Intelligent Systems Design and
Applications, 2006. ISDA ’06. Sixth International Conference on,
volume 2, pages 445–450, 2006.

[45] Y. Zheng, S. Gu, H. Edelsbrunner, C. Tomasi, and P. Benfey.
Detailed reconstruction of 3D plant root shape. In Proceedings
of the 2011 International Conference on Computer Vision, ICCV ’11,
pages 2026–2033, Washington, DC, USA, 2011. IEEE Computer
Society.

Rolando Estrada received a BS degree
in computer science (magna cum laude) in
2005 and a BA degree in English (summa
cum laude) in 2006, both from Louisiana
State University. He then received a PhD
degree in computer science, an MS degree
in biomedical engineering, and a graduate
certificate in cognitive neuroscience, all from
Duke University in 2013. He completed a
postdoctoral fellowship at the Department of
Ophthalmology at the Duke University Medi-

cal Center in 2014 and is currently a research scientist at Teledyne
Scientific Company. His research interests include computer vision,
medical imaging, graph theory, and computational complexity.

Carlo Tomasi received a degree in Com-
puter Science from Carnegie Mellon Univer-
sity in 1991. He was assistant professor at
Cornell and Stanford, and is currently full pro-
fessor of computer science at Duke Univer-
sity. He teaches undergraduate and graduate
courses in computer vision and mathematics,
and supervises students in computer vision
research. His work emphasizes video analy-
sis, image retrieval, and medical imaging.

Scott C. Schmidler received the BA degree
in computer science from UC Berkeley in
1995, and the PhD degree in Biomedical
Informatics from Stanford University in 2002.
He joined Duke University in 2000 where
he is currently an Associate Professor of
Statistics and Computer Science. His re-
search interests include Bayesian statistics,
Monte Carlo algorithms, statistical shape
analysis, computational biology, and compu-
tational statistical mechanics.

Sina Farsiu received the B.Sc. degree in
electrical engineering from Sharif University
of Technology, Tehran, Iran, in 1999, the
M.Sc. degree in biomedical engineering from
the University of Tehran, Iran, in 2001, and
the Ph.D. degree in electrical engineering
from the University of California, Santa Cruz
in 2005. He is currently an Assistant Profes-
sor in the Departments of Biomedical Engi-
neering, Ophthalmology, Electrical and Com-
puter Engineering, and Computer Science at

Duke University, Durham, NC. He is the principal investigator of
NIH R01 and R21 grants and is the director of the Vision and
Image Processing (VIP) laboratory at Duke University. He is an
Associate Editor of the IEEE Transactions on Image Processing and
his technical interests include ocular imaging and image analysis,
computer aided diagnosis of ocular and neurological diseases, pho-
tonics, image enhancement and reconstruction, and statistical signal
processing.

AN APPENDIX TO A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Tree Topology Estimation
Rolando Estrada, Carlo Tomasi, Scott C. Schmidler, and Sina Farsiu

F

APPENDIX
OPTIMAL ESTIMATION FROM UNDIRECTED
GRAPHS IS NP-HARD

We show that finding an optimal directed tree T ∈
T (G) is NP-hard by reducing the minimum vertex
cover (MVC, [14]) problem to a directed-tree estima-
tion (DTE) problem. MVC is NP-complete even for
graphs with bounded degree [2].

A vertex cover of a graph H = (VH , EH) is a subset
C ⊆ VH such that every edge of EH is incident to at
least one vertex in C. The bounded-degree version
of MVC is defined as follows: Given a connected
graph H with bounded degree, find a vertex cover
of smallest possible size.

Let G be an undirected graph with root rG. DTE is
defined as follows: Find

T ? = argmax
T∈T (G)

`(T)

where `(T) is defined in terms of a local model (see
Eq. 7), and T (G) is the set of directed trees–for which
every edge is directed away from the root–that project
to G and P (rT) = rG. In this reduction, we assume,
without loss of generality, that θ = ∅; that is, a tree’s
probability does not depend on any additional model
parameters.

In order to construct a polynomial-time transforma-
tion from MVC to DTE, we first give a way to interpret
a graph orientation as a vertex cover. Let Hd be an
orientation of the undirected graph H and define

C = {v ∈ VH | deg+Hd
(v) > 0} (9)

where deg+Hd
(v) is the out-degree of v in Hd. The set

C is a vertex cover of H , because every edge starts at
some vertex, and that vertex is in C by construction.

We now show a way to use DTE to find a minimum
vertex cover for a given graph H , thereby reducing
MVC to DTE. Let G = (VG, EG, rG) be the rooted
graph obtained from H by adding a new root vertex
rG and new edges to connect rG to every vertex in
VH , and let T (G) be the set of directed trees consistent
with G.

We will now define a local model over T (G). Let
T ∈ T (G) be a directed tree consistent with G. Then,
we define the log-probability of each of its vertices as

follows:

`(v|ET (v)) =

{
−1 if deg+T (v) > 0 and v 6= rT

0 otherwise.
(10)

By definition of T (G), the root rT of T has in-degree
zero. In short, each vertex, other than the root, that
has at least one child makes the tree less likely.

Every directed tree in T (G) projects to a unique
flow orientation of G rooted at rG. Conversely, given
a flow orientation Gd of G rooted at rG, we can obtain
the most likely tree consistent with it by maximizing
Eq. 10 at each node as follows.

We divide the nodes of Gd into four types: the root
rG, non-root nodes with out-degree zero, non-root
nodes with positive out-degree and in-degree one,
and non-root nodes with positive out-degree and in-
degree greater than one. Nodes in the last category
(and possibly some in the second) are crossings.

The maximum possible log-probability achievable
at each node type is as follows. The root has in-degree
zero because we do not allow roots to be crossings
(see Section 3.2), and we show in [9] that under this
assumption the root cannot have positive in-degree.
Because of this, the root has a log-likelihood of zero
by Eq. 10. Non-root nodes with out-degree zero can
only be partitioned into tree leaves, and these have
likelihood zero by Eq. 10 as well. Non-root nodes
with positive out-degree and in-degree one are not
split, and they get log-likelihood −1 by Eq. 10. Finally,
any crossing v with positive out-degree in Gd must be
split into a number of nodes equal to its in-degree in
Gd. Since the out-degree of v is positive, its outgoing
edges must be assigned to at least one of the nodes in
the partition. Each such assignment results into a log-
probability term of −1 by Eq. 10. As a consequence,
the overall log-probability at this node is at most −1,
because log-probabilities add up according to Eq. 7.
This upper bound on the log-probability can be made
tight by assigning all the outgoing edges of v to the
same node of the partition.

To summarize, the maximum possible log-
probability at each node of Gd given Eq. 10 is given

AN APPENDIX TO A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

by:

`(v|EGd
(v)) =

{
−1 if deg+Gd

(v) > 0 and v 6= rG

0 otherwise.

Every possible orientation Hd of H corresponds to a
unique flow orientation Gd of G rooted at rG, because
every vertex in VH is reachable from rG through
at least one directed path in Gd. Furthermore, each
vertex in VH which has an outgoing edge in EHd

(and
consequently in EGd

) makes the flow orientation less
likely. Therefore, a flow orientation of G with max-
imum probability has a minimal number of vertices
in VH with non-zero out-degree in EHd

. The set C
resulting from the interpretation in Eq. 9 of Hd is a
minimum vertex cover of H , so MVC reduces to DTE.

The above result holds even if the orientations of
G are restricted to be flow-dags because, for every
minimum vertex cover C, there always exists at least
one flow orientation of G, rooted at rG, consistent with
C that is acyclic. To construct a flow-dag given C, first
assign a topological ordering to the vertices in G such
that:

rG < v, ∀v ∈ VH
v < u, ∀v ∈ C, u ∈ VH \ C.

In other words, all the vertices in VH that are part of
the vertex cover of H come before those not in the
cover. Then, orient every edge in G according to the
topological ordering. The resulting flow orientation is
acyclic and a vertex in VH has at least one outgoing
edge in EHd

if and only if it is part of C.

	tree_topology_estimation_v14_1
	tree_topology_estimation_appendix_REVISION

