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Retinal artery-vein classification via topology
estimation

Rolando Estrada, Michael J. Allingham, Priyatham S. Mettu, Scott W. Cousins, Carlo Tomasi, and Sina Farsiu

Abstract—We propose a novel, graph-theoretic framework
for distinguishing arteries from veins in a fundus image. We
make use of the underlying vessel topology to better classify
small and midsized vessels. We extend our previously proposed
tree topology estimation framework by incorporating expert,
domain-specific features to construct a simple, yet powerful
global likelihood model. We efficiently maximize this model by
iteratively exploring the space of possible solutions consistent
with the projected vessels. We tested our method on four retinal
datasets and achieved classification accuracies of 91.0%, 93.5%,
91.7%, and 90.9%, outperforming existing methods. Our results
show the effectiveness of our approach, which is capable of
analyzing the entire vasculature, including peripheral vessels,
in wide field-of-view fundus photographs. This topology-based
method is a potentially important tool for diagnosing diseases
with retinal vascular manifestation.

Index Terms—artery-vein classification, medical imaging,
graph theory, tree topology, image analysis.

I. INTRODUCTION

VARIOUS diseases affect blood circulation, thereby lead-
ing to either a thickening or a narrowing of arteries

and veins [3], [17]. In particular, asymmetric changes in
retinal arteriolar vs. venular diameter, as measured by the
arteriolar-venular ratio (AVR) [4], have been correlated with
a number of diseases including coronary heart disease and
stroke [52], as well as atherosclerosis [18]. Additionally, a
high AVR has been associated with higher cholesterol levels
[18] and inflammatory markers, including high-sensitivity C-
reactive protein, interleukin 6, and amyloid A levels [25].
Other conditions that can cause an abnormal AVR include high
blood pressure and diseases of the pancreas [27]. Furthermore,
a low AVR is a direct biomarker for diabetic retinopathy (DR),
the leading cause of vision loss in working age individuals in
developed countries [27]. This low AVR is caused by abnormal
widening of the veins due to retinal hypoxia, which arises
secondary to microvascular injury in the setting of chronic
high blood sugar levels. These vascular changes often precede
the onset of symptoms, and if detected, may allow preventive
treatments that can reduce the risk of any vision loss.
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These changes in the retinal vasculature can be captured
using a variety of imaging methods, including fundus pho-
tography, fluorescein angiography, and optical coherence to-
mography. In particular, fundus photography is the preferred
retinal imaging modality for both telemedicine and remote
diagnostics due to its lower cost and ease of use. However, it is
highly challenging to compute the AVR or any other measure
of interest given a fundus image of a patient’s arteries and
veins, even after accurately segmenting the vasculature from
the image. Manually classifying arteries and veins requires
expertise in retinal image interpretation and is a very labor-
intensive process; in a high resolution image we can often
detect over one hundred vessels or vessel segments, many of
which are ambiguous and require careful viewing to classify.
It is perhaps due to these time constraints that the classic AVR
is only calculated using the six largest arteries and veins near
the optic nerve [26]. We propose, however, that calculating a
global AVR using the widths of smaller vessels might yield an
even earlier biomarker of an underlying disease since smaller
vessels are more vulnerable to changes in blood pressure.

However, it is time-prohibitive to manually calculate this
global AVR due to the large number of vessels that need to
be measured. Therefore, automatic or semi-automatic methods
are needed to overcome the time constraints of manual classifi-
cation. Traditionally, most computer-aided vessel analysis has
focused on segmenting the vessels in the image [1], [8], [20],
[21], [30], [44], [47], [54]. Artery-vein (AV) classification, on
the other hand, goes one step further and seeks to classify
the segmented vessels into either arteries or veins. However,
even assuming a perfect segmentation, the aforementioned
ambiguity of small and midsized vessels makes automatically
classifying arteries and veins a very difficult computational
task.

To address this problem, we propose a novel, graph-
theoretic approach for classifying arteries and veins in a fundus
image. Given a semi-automatically extracted planar graph
representing the vasculature, we accurately estimate the label
of each vessel. Two key features of our method are that it
classifies the entire vasculature, not just the most prominent
vessels, and it estimates the underlying topology—how the
different vessels are anatomically connected to each other—
not just the vessel types. A few methods based on graph
theory have been proposed for this problem [5], [22], [29],
[45]. However, these earlier approaches are limited because
they determine the graph’s vessel labels either by relying on
a set of initial hand-labeled edges [45], by using fixed rules
for determining how the original vessels overlap each other
[5], [22], or by constraining the vessels to a small region
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of interest (ROI) [29]. In contrast, we robustly estimate the
most likely vessel labels by efficiently searching the space
of valid labelings. Here, we extend our previous tree topology
estimation work [7] in two ways: we incorporate global model
features that are specifically tailored to arteries and veins
and present a novel, heuristic optimization algorithm to better
explore the space of possible vascular networks. Our features
are based on expert, domain-specific knowledge about how
arteries and veins perfuse the retina. Our proposed framework
represents an important step towards developing a clinically
viable, automatic AV classification method.

The main contributions of this work are as follows:
• A global likelihood model that accurately captures the

structural plausibility of a given set of vessel labels.
• A novel best-first search algorithm that efficiently ex-

plores the space of possible vascular networks.
• A non-metric, random optimization scheme that is able

to avoid getting stuck in local minima.
• The formalization of the artery-vein classification prob-

lem in terms of the underlying network topology.
• A novel online dataset of wide-field retinal color images

annotated for artery-vein classification.
The rest of our paper is organized as follows: in Section II,

we first review prior work on segmenting and classifying
arteries and veins. We provide an overview of our classification
framework in Section III and present our likelihood model
for labeled trees in Section IV. We then detail an efficient
search method for exploring the space of possible solutions in
Section V. Finally, we evaluate our algorithms on four retinal
datasets in Section VI and conclude in Section VII.

II. PRIOR WORK

The problem of classifying arteries and veins is relatively
new. Compared to other vessel analysis tasks such as vessel
segmentation [11], [14], [19], [50], [55] or vessel centerline
extraction [10], [16], [23], [38], [48], there have been only
a few automatic or semi-automatic AV classification methods
proposed. We now review some of the most important existing
approaches for this problem.

AV classification methods generally rely on some combina-
tion of vessel features, primarily pixel color, and connectivity
constraints to assign one of the two labels to each vessel
segment. Mirsharif et al. [32] used a three-step method: they
first enhanced the input image, then they estimated differ-
ent pixel color features and then corrected misclassifications
at bifurcations. Konderman et al. [27] explored using both
support vector machines and neural networks combined with
principal component analysis (PCA) features obtained from
small vessel image patches. Relan et al. [43] used a Gaussian
mixture model on small vessel patches to classify the main
vessels in each optic nerve-centered quadrant, while Vasquez
et al. [51] employed a minimal path approach with which
they connected a set of extracted concentric vessel segments.
Zamperini et al. [57] focused on determining effective features
for AV classification. They compared color, spatial, and size
features and concluded that a mix of color and position
features provided the best results. Other work has focused

specifically on estimating the AVR using either the U.S. [4]
or the Japanese [33] definition.

There has been some work on using graph theory to better
classify arteries and veins. All these methods first establish a
graph that represents the projected vascular network and then
classify different parts of the graph as being either arteries
or veins. Rothaus et al. [45], [46] used a semi-automatic
method in which they propagate some initial manual edge
labels throughout the graph by solving a constraint-satisfaction
problem. Lau et al. [29] constructed their graph over a
restricted ROI around the optic nerve and then assigned the
vessel labels by approximating an optimal forest of subgraphs.
Joshi et al. [22] first separated their vascular graph using
Dijkstra’s shortest-path algorithm to find different subgraphs.
They then labeled each subgraph as either artery or vein using
a fuzzy classifier. Finally, Dashtbozorg et al. [5] also proposed
a two-step graph estimation method for distinguishing arteries
from veins. They first split the vascular graph into subgraphs
based on the local angles between edges and then assigned a
label to each subgraph using linear discriminant analysis.

Our proposed method differs from these earlier approaches
in a number of ways. First, we do not rely on any manually
labeled edges. Second, our vascular graph encompasses the
entire visible retina instead of a narrow ROI. Finally, we do not
assign edge labels based on fixed rules that define when two
vessels cross and when a single vessel branches out. Instead,
we robustly determine the most likely set of edge labels by
efficiently searching through the space of possible labelings.
Our likelihood model is robust and allows for arbitrary ways in
which vessels could overlap each other. Finally, our algorithm
outputs not only the edge labels, but also the undelying topol-
ogy, which is also a clinically significant marker, particularly
for hypertension [31] and diabetic retinopathy [34]. In the next
section, we present an overview of our proposed classification
framework.

III. FRAMEWORK OVERVIEW

In this section, we provide an overview of our vessel
classification framework, which relies on estimating the overall
vascular topology in order to classify each individual vessel.
Although arteries and veins are anatomically distinct, they
overlap each other in a two-dimensional retinal image, as
Figure 2 illustrates. In general, it is non-trivial to determine
from a single image which vessels are arteries and which are
veins. To tackle this problem, we build upon the graph-based,
topology estimation approach of [7], which estimates the most
likely topology of a rooted, directed, three-dimensional tree
given a single two-dimensional image of it and a growth model
for that type of tree. We solve this inverse problem through
a combination of greedy approximation and heuristic search
algorithms that explore the space of possible trees.

In our framework, we represent the original vascular net-
work as a directed tree T with a set of artery-vein edge labels
and the projected vascular network as an undirected planar
graph G, respectively, such that the projection P (T ) of T is
G. Given G, we estimate the most likely topology and edge
labels of T based on a parametric likelihood model that defines
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Fig. 1. Estimation pipeline overview: (This Figure is best viewed in color.)
Given a planar graph semi-automatically extracted from a retinal image, we
estimate the most likely AV-labeled tree. The red bubbles correspond to the
steps for estimating the likelihood model’s parameters, while the blue bubbles
indicate the steps needed to estimate an AV-labeled tree given a single planar
graph. The ellipses correspond to processes, while the rectangles denote data
structures. The model parameter estimation steps on the left are computed
beforehand using a training set of graphs.

the functional and structural viability of every possible labeled
tree.

Figure 1 provides a visual summary of the pipeline that we
use to estimate T . The left-hand side, in red, lists the steps
needed to optimize the parameter values of our likelihood
model. We describe this model in detail in Section IV and
explain how to set its parameters by using a training set with
ground-truth labels in Section VI-B4. The right-hand side in
blue, on the other hand, describes the sequence of steps needed
to estimate a labeled tree given an input image, once we have
a trained model and semi-automatically estimated a planar
graph. Our approach has three main steps:

1) We first estimate the most likely direction of flow for
each vessel using the heuristic search algorithm detailed
in [7].

2) We then sample multiple trees consistent with the cho-
sen flow directions by randomly perturbing the feature
values that we use to compute a tree’s likelihood.

3) Finally, we refine the best sampled tree by exploring
the full space of possible labeled trees using best-first
search.

We describe each of these steps in detail in Section V. In the
following sections, however, we present the key concepts be-
hind our approach: we first discuss how to assign anatomically
valid labels to the edges of T and then formally describe the
problem of estimating T from G.

A. Trees and edge labelings

Let T = (VT , ET , rT ) be a three-dimensional, rooted,
directed tree. VT and ET are the vertices and edges of the
tree, respectively, and rT ∈ VT is its root. In this work, T is
a graph that represents the topology of the retinal vessels in a
given eye. That is, the way the edges of T are connected to
each other mirrors how the vessels branch out from the optic
nerve. Thus, different retinal networks correspond to different
directed trees. Anatomically, every edge in T corresponds to
part of either an artery or a vein, but not both. We represent
this relationship between edges and vessel types via a binary
edge labeling that assigns one label to every artery edge (and
assigns the opposite label to every vein edge).

Different edge labels correspond to different ways of classi-
fying the retinal vessels. However, most binary edge labelings
are anatomically implausible. In the retina, all arteries and
veins emanate from the optic nerve (which corresponds to the
root of T ). Thus, all arteries are connected to each other, and so
are all veins. Therefore, in order for a labeling to correspond to
an anatomically plausible distribution of arteries and veins, all
the artery-edges (and all the vein-edges, respectively) must be
connected to each other and to the root. We refer to labelings
that satisfy these adjacency constraints as AV-labelings.

More formally, given a binary edge-labeling ` of a graph
T , let A,B ⊆ ET be the disjoint subsets of artery- and vein-
edges, respectively and let TA and TB be their corresponding
induced subgraphs of T . Also, let ET (rT ) be the edges
adjacent to the root in T . Then, ` is an AV-labeling if and
only if:

• TA (TB respectively) is either empty or has a single
connected component.

• If TA (TB respectively) is non-empty, then A∪E(rT ) 6=
∅. (B ∪ E(rT ) 6= ∅ respectively).

Figure 3 illustrates the difference between an AV- and a non-
AV-labeling. The above definition is not limited to trees, but is
applicable to general graphs. In order for a graph to admit AV-
labelings that include both artery- and vein-edges, the degree
of its root has to be greater than one, so in this work we
assume that the roots of all graphs are adjacent to at least two
edges.

We now show how to map a directed tree to a single
AV-labeling consistent with it. The number of possible AV-
labelings of a tree is given by:

|L(T )| = 2deg(rT ),

where L(T ) is the set of AV-labelings of T and deg(rT ) is
the degree of the tree’s root [6]. The above equation follows
directly from the second constraint: in an AV-labeling there
must be at least one path from the root to every edge such
that every edge along that path has the same label as the final
edge. Since in a tree there is only one path from the root to
each edge, every edge downstream of a root edge has to have
the same label as its ancestor root edge.

In this work, we assume that deg(rT ) is bounded, so we
can list all the AV-labelings consistent with a given tree in
constant time. In this case, given a likelihood function pM over
AV-labeled trees, we can efficiently determine an AV-labeling
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(a) (b) (c)

Fig. 2. Arteries vs. veins: (This Figure is best viewed on-screen.) (a) Retinal arteries and veins overlap each other throughout a wide field-of-view color
fundus image. (b) We construct a planar graph (overlaid in white) that captures the projected vascular topology. (c) Each edge in the graph is either an artery
(in red) or a vein (in blue).

`ML that maximizes the tree’s likelihood:

`ML = argmax
`∈L(T )

pM (T`), (1)

where T` indicates that T has been assigned the labeling `.
We detail our likelihood model in Section IV. Unless otherwise
stated, whenever we refer to an AV-labeled tree, we assume
that the tree has been assigned a labeling that maximizes its
likelihood.

In summary, an AV-labeled tree captures how different
retinal vessels are connected to each other and which vessels
are arteries and which are veins. In the next subsection, we
will detail how a retinal image obscures both the topology and
the edge labels of the vascular network.

B. Tree projection

A retinal image is a projection of the retina onto two
dimensions. In particular, a 2D image of the retinal vessels
corresponds to a projection of T onto the plane. Thus, let
G = (VG, EG, rG) be the undirected planar graph with root
rG ∈ VG that results from projecting T , as detailed in [7].
Figure 2(b) shows a planar graph overlaid over a sample
retinal image. In this work, we assume that G is a faithful
representation of the projected vascular topology, so that any
potential image noise is handled in the preprocessing stage
which extracts a clean graph from the image. We leave more
nuanced models of image formation for future work.

When we project a tree, different branches can overlap with
each other, thereby obscuring both the original connectivity
and the blood flow direction along each edge. Branches can
even overlap each other over extended regions, such as when
one vessel wraps around another or two vessels grow side-by-
side. Therefore, in general many different trees are consistent
with the same planar graph. However, under mild assumptions
[7], projection preserves a one-to-one correspondence between
the edges of the projected tree and the resulting planar graph,
even in the presence of elongated overlaps. In this case, any
AV-labeling of T maps to a unique AV-labeling of G, in which
the corresponding edges have the same labels.

Now, let T ? be the AV-labeled tree that best reflects the true
retinal anatomy. To approximate T ? given G, we construct a
global likelihood model pM that predicts how likely it is for
a given AV-labeled tree to be the true labeled tree. We then

seek the most likely AV-labeled tree TML:

TML = argmax
T∈T (G)

pM (T ), (2)

where T (G) is the set of all directed trees consistent with
G. If pM accurately models the topology and geometry of
retinal vascular networks, then TML ≈ T ?. In general, however,
recovering the most likely tree given G is NP-hard [7]. To
address this, in Section V, we present a novel, efficient search
strategy for approximately optimizing (2). In Section VI, we
show that this search strategy allows us to efficiently estimate
the ground truth labeled trees for four different retinal datasets.
In the following section, we present our likelihood model.

IV. LIKELIHOOD MODEL

In the previous section we defined our estimation problem,
which consists of approximating the true AV-labeled tree T ?

given an input graph G. In this section we define a global
likelihood model to estimate the anatomical plausibility of any
possible AV-labeled tree. Our likelihood model extends our
previous work [7], which defined the quality of each directed
tree via a local likelihood model.

The purpose of retinal arteries and veins is to distribute oxy-
gen and nutrients to the retinal tissues. As such, the vascular
network evolved to best satisfy the fluid dynamic constraints
involved in transporting blood. To satisfy these constraints,
retinal arteries and veins grow subject to numerous, complex
forces, including a genetic blueprint that directs when different
parts of the vasculature will grow [13], as well as various
feedback mechanisms that balance the growth of arteries and
veins with other parts of the retina such as the nerve fiber layer
or the plexiform layers [12]. The aforementioned forces and
constrains lead most human retinas to display similar structural
properties, such as a roughly 50-50 distribution of arteries and
veins. While much is known about these anatomical processes,
directly estimating these properties is generally not feasible.
Due to image resolution limitations, we can never extract every
artery and vein in the retina, so any flow calculations can
only be approximate. Furthermore, angiogenesis models [39],
[42] are computationally intensive and are not geared towards
the problem of finding the most-likely AV classification in an
existing vascular network.

Instead, in this work we rely on three features—local
growth, overlap, and color—that capture some fluid dynam-
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ics and anatomical properties of arteries and veins, but are
tractable to compute based on the extracted planar graph
G. We developed our likelihood model based primarily on
expert, domain-specific knowledge about how arteries and
veins tend to perfuse the retina. Thus, we only make use of a
small number of highly informative features to estimate the
likelihood of each tree, whose efficacy is demonstrated by
the experimental results in Section VI. We now describe each
feature in turn.

A. Local growth model

We previously proposed a local generative prior model for
the growth of various kinds of trees, including retinal vessels,
plant roots, and lightning [7]. Our growth model defines the
probability of a directed tree T as a function of its topology
(the number of children per vertex) and geometry (the expected
projected angles between the incoming edge of a parent and
those of each of its children). More concretely, the local
growth probability pg(T ) is given by:

pg(T ) =
∏

v∈VT

pa(vP |π(v), n(v))ps(n(v)),

where vP is the projection of vertex v onto the image
plane and π(v) and n(v) are the parent and children of v,
respectively. The probability pa defines the likelihood of the
angles between the incoming edge of v and those of its
children in the projection:

pa(vP |π(v), n(v)) =


∏

wi∈Vv

fVM(eP (v, wi);µi, κi) if n(v) > 0

1 otherwise.

Here, fVM is a Von Mises distribution [24] with expected
direction µi and concentration parameter κi; Vv is the set
of children of v and eP (v, wi) is the projection of the
edge between v and its child wi. The above set of Von
Mises distributions determine what combinations of projected
angles are most likely; in our experiments, we estimate their
parameter values empirically.

The probability ps, on the other hand, defines the likelihood
that v has n(v) children. In our experiments, it is given by a
one-inflated Poisson distribution [28] that behaves as a Poisson
distribution with rate λ at all values except 1:

ps(n(v)) =

{
1

1+α (Pois (1 ;λ) + α) if c = 1
1

1+α Pois (c ;λ) otherwise,

where c = |n(v)|. In retinal vessels, α >> Pois (1 ;λ) to
account for the fact that a growing vessel is much more likely
to continue growing, rather than stopping or splitting into two
or more branches.

This model is local, in the sense that the expected number
of children is the same for every vertex and their expected
locations depend only on the current direction of growth and
local environmental forces. Intuitively, our local growth model
captures how likely it is, both topologically and geometrically,
for blood to flow through the observed vessels in a given way.

(a) (b)

Fig. 3. AV-labelings: (This Figure is best viewed in color.) AV-labelings are
a special subset of binary edge labelings in which the two subsets of edges
induce connected subgraphs. (a) A projected graph assigned an AV-labeling.
The white dot corresponds to the root and the yellow circle indicates the optic
nerve. The arteries are marked in red and the veins in blue. Vertices that are
connected to both vessels types are shown in green. Note that all the edges of
the same label are connected to each other. (b) The same planar graph with
a non-AV-labeling. In this labeling some arteries and veins are not connected
to the root. Two of these disconnected sets of edges are circled in black.

B. Overlap

A given directed tree establishes which vertices of G are
legitimate branch-points and which are crossings, i.e., points
on the image where two different vessels overlap. As Figure 2
illustrates, though, arteries rarely cross other arteries and veins
rarely cross other veins. Thus, we penalize crossings between
vessels of the same type. Let m be the number of crossings
of T and let φ and ψ be two indicator functions for pairs of
crossings, such that:

φ(u, v) =

{
1 if vertices u and v have different labels
0 otherwise.

ψ(u, v) =

{
1 if u and v overlap
0 otherwise.

Then, the overlap value is given by

po(T ) =

∑m
i=1

∑m
j=1 φ(vi, vj)ψ(vi, vj)∑m

i=1

∑m
j=1 ψ(vi, vj)

.

Intuitively, po(T ) is the percentage of crossings of T that
are between an artery and a vein. Note that po(T ) depends
globally on the AV-labeled tree’s topology because an edge is
constrained to have the same label as its ancestors. In other
words, two AV-labeled trees that only differ in their topology
at a single crossing may have vastly different percentages of
artery-vein crossings, which makes overlap a global property
of the tree’s topology.

C. Color

In color fundus images, veins generally appear darker than
arteries because they carry deoxygenated blood back to the
heart [56]. Human observers often make use of this color
difference to differentiate the main arteries from the main
veins when manually labeling an image. We likewise calculate
the difference in color between the artery- and vein-edges, as
follows. Let p be the vector that indexes all the pixels in
the input image I . Now, let ω(e) be a vector of weights that
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define the overlap level between every pixel and the straight
line segment between the two endpoints of edge e. We use
Xiolin Wu’s line drawing algorithm [53] to determine each
ω. Note that, in general, ω(e) is very sparse, i.e. most of the
weights for each edge will be zero. Then, the red channel
difference cr is given by:

cr(T ) =
∑
e∈A

Ir(p)
>ω(e)−

∑
e∈B

Ir(p)
>ω(e),

where Ir(p) are the red channel pixel values for each pixel in
the image and A and B are the sets of artery- and vein-edges
respectively. We similarly calculate cg and cb for the green
and blue channels, respectively. We then calculate the mean
color value of the three channels:

pc(T ) = max

(
cr(T ) + cg(T ) + cb(T )

3
, 0

)
.

Note that if the arteries are darker than the veins, then the
color value is thresholded at 0. As with overlap, color is a
global property of the AV-labeled tree’s topology because two
trees that differ at only one crossing may have dramatically
different color values.

D. Global likelihood

We combine the three features outlined above—local
growth, overlap, and color—to assign the final, global like-
lihood to each possible tree. For simplicity, in this work we
model their joint likelihood as a linear combination of the
three features:

pM (T ) = λgpg(T ) + λopo(T ) + λcpc(T ), (3)

where each λi is the weight, or importance, of its respective
feature. In our experiments, we determined the value of each
λi using a training set of graphs with known edge labels.
Intuitively, we refrain from using more complicated ways
of combining our features because their effects are largely
independent. In other words, the value of one feature does not
affect the preferred values of the other features. For instance,
knowing the local growth likelihood pg(T ) of a tree does not
affect the fact that we wish to maximize the percentage of
artery-vein crossings or have the arteries be brighter than the
veins.

V. SEARCH ALGORITHM

In the previous section, we presented a likelihood model to
estimate the quality of any AV-labeled tree that is consistent
with an input planar graph. As noted in Section III, however,
optimizing this model is NP-hard in general. In this section
we present an efficient three-step heuristic search algorithm for
exploring the space of possible AV-labeled trees. In the next
section, we show empirically that this algorithm efficiently
approximates the ground truth trees for four retinal datasets.

Our algorithm has three steps:
1) We estimate the most likely edge orientations using the

heuristic search algorithm detailed in our previous work
[7].

2) We sample multiple trees consistent with the chosen
orientation by randomly perturbing the local growth
probabilities for each vertex.

3) We refine the best sampled tree by exploring the space
of possible trees using best-first search.

The rationale for this sequence of steps is to first bring
our search to a neighborhood of the correct solution with
step 1, then trade off exploration and exploitation through a
random search in step 2, and finally optimize locally the best
randomly-found solution in step 3. We detail each step in turn
below.

Steps 1 and 3 of our search algorithm iteratively explore
spaces of possible solutions. They take advantage of the fact
that both the space of possible edge orientations of the input
graph G and the space of AV-labeled trees consistent with G
are fully connected under a suitable neighborhood relationship.
That is, given a current solution (orientation or tree) consistent
with G, it is possible to define a simple, local transformation
that will yield a different solution consistent with G. Further-
more, any two possible solutions can be transformed from
one to the other by a series of such local transformations. We
showed this property of edge orientations in [7] and prove that
the same property holds for AV-labeled trees in the Appendix.

A. Orientation search

In order to be able to explore the space of possible AV-
labeled trees, we need a good starting point. We first estimate
the most likely direction of each edge in the input graph by
using the heuristic search method defined in our previous work
[7]. This method explores the space of possible orientations
of the input graph, instead of the space of possible trees. As
noted above, this space of orientations is fully connected if
we explore it by iteratively making a local change (flipping
the direction of one edge) to our current orientation.

Although multiple trees may be consistent with the same
orientation, we can estimate the most likely tree–in terms of
pg–in linear time for any orientation by selecting the most
likely vertex partition at each of the orientation’s crossings. A
vertex partition specifies which of the edges in the crossing
are actually connected to each other in the original tree. Thus,
it suffices to explore the space of orientations to optimize pg .
Orientations are much fewer than trees, so we can explore
the set of orientations more thoroughly. As suggested above,
in this step we only use pg to estimate the quality of each
potential orientation. This initial search ends up estimating
the correct direction of most edges, so that the subsequent,
full search over the space of trees will start much closer to
the correct solution.

B. Noise sampling

In the previous step, we estimated a single, most likely
topology for each set of possible edge orientations. However,
although the local model pg generally estimates the correct
vertex partition at most crossings, any errors, even at a single
crossing, can lead to a tree that has very low overlap and
color likelihoods. This is because the local model does not
factor in these global, retina-specific properties of a given tree.
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Fig. 4. Vertex contractions and expansions: (This Figure is best
viewed in color.) Expanding and contracting vertices allows us to
change the topology of a graph. (a) A vertex u and its neighbors.
In (b), u is expanded into two vertices v (purple) and w (green).
The dashed oval indicates that v and w share the same location on
the plane. (c) Contracting v and w restores the original vertex u. (d)
Vertex u can be expanded differently, so that v and w are connected
to different sets of vertices than in (b).

Thus, even if we have correctly estimated most of the edge
directions, the most likely tree, as defined by pg , may have a
relatively low likelihood in terms of the global model pM .

Here, we use a random sampling scheme to approximate
the most likely tree, in terms of pM , consistent with the
edge directions obtained in the previous step. As noted above,
there are many trees that are consistent with any fixed ori-
entation. Randomly generating these trees, either uniformly
or proportionally to their likelihood is nontrivial; instead,
here we use a simple, non-metric method, which we refer
to as noise sampling, for drawing weighted samples from a
large combinatorial space. While noise sampling is statistically
biased—that is, some configurations are slightly more likely
to be selected than others—our experiments suggest that this
bias is negligible for many graphs of interest. Furthermore,
there is no need to reject samples; every sample is guaranteed
to be part of the target space by construction.

Noise sampling uses a deterministic algorithm to optimize
a target function, but perturbs the function values randomly,
thereby yielding outputs that are generally different from what
they would be if the original values were used. By repeating
this optimization multiple times with different, independent
realizations of noise, we can sample a large space of pos-
sible values non-metrically. Furthermore, each sampled tree
is drawn independently, so successive samples may differ
arbitrarily in their topologies.

Here, our deterministic optimization algorithm consists of
optimizing pg given the chosen orientation. As noted above,
we can find the most likely tree in terms of our local growth
model in linear time by iteratively selecting the most likely
vertex partition at each crossing. By randomly perturbing these
local likelihoods, we can obtain different trees consistent with
a given orientation.

More concretely, let w be a vector whose i-th entry is
the likelihood of the i-th vertex partition. We can obtain
a perturbed set of partition likelihoods by adding Gaussian
noise:

ŵ = w + ν,

where ν is a vector each of whose entries is drawn from a
zero-mean Gaussian distribution N (0, σ). The most likely tree
based on these perturbed values will likely differ from the
original most likely tree and different noise values will yield

different trees. If σ is small, then we draw trees that are very
similar to the most likely tree, while if σ is large, then we draw
trees more uniformly. In our experiments, we draw sample
trees at different noise levels to both preferentially draw high-
likelihood trees (high exploitation with small σ), as well as
to cover the entire space of possible trees consistent with our
initial orientation (high exploration with large σ). Finally, we
retain the sampled tree that maximizes the global likelihood
pM .

C. Best-first search

The random search in step 2 does not get stuck in local
optima, but will generally return a solution that is itself not
a local optimum. This solution is potentially improved by a
final, deterministic search for a local optimum in the space of
directed trees. We explore this space by iteratively expanding
and contracting the input graph’s vertices.

The contraction of vertices u and v consists of first replacing
the two vertices with a single vertex w and then adding an edge
between w and every vertex that was adjacent to either u or
v. Vertex contraction is a key operation [40] in the theory
of graph minors, and can be applied to any two vertices.
In this paper, however, we only allow contractions between
overlapping vertices, i.e. vertices with the same projection:
P (u) = P (v).

A vertex expansion is the reverse operation: First replace a
vertex w with two new vertices u and v and then assign every
edge that is adjacent to w to either u or v, such that:

ET (w) = E′(u) ∪ E′(v),

E′(u) 6= ∅,
E′(v) 6= ∅,

where ET (w) is the set of edges that were adjacent to w and
E′ is the edge set of the new graph the results from expanding
w. We only allow a vertex expansion if the resulting graph
is fully connected. Figure 4 illustrates how to expand and
contract a given vertex. In general, we can obtain any tree
consistent with a planar graph by expanding a subset of its
vertices such that the resulting graph has a single path from
the root to every other vertex.

Furthermore, as we show in the Appendix, we can transform
any directed tree for a graph G into any other directed tree
for G by iteratively contracting and expanding individual
vertices so that every intermediate graph is also a directed
tree. This property defines a connected meta-graph over the
set of directed trees T (G), where two trees are neighbors if
and only if we can transform one into the other in a single
contraction-expansion step.

In our final optimization step we look for a better solution by
exploring this meta-graph using best-first search (BFS) [37].
We first add all of the neighbors of the sampled tree from the
previous step to a priority queue. We then pop the queue to
obtain the neighbor with the highest likelihood, in terms of the
global model pM , and add all of its neighbors to the priority
queue in turn.

We employ BFS, as opposed to either a simpler or a more
complex search strategy, based on two assumptions. The first
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Fig. 5. The directed tree meta-graph: (This Figure is best viewed
in color.) The meta-graph of AV-labeled trees consistent with a
small graph G. Neighboring trees differ by a single expansion-
contraction step. All pairs of directed trees consistent with a given
planar graph can be converted into each other by one or more
expansion-contraction steps, so the meta-graph, shown in black, is
fully connected. In each tree, arteries are shown in red and veins in
blue; pairs of vertices of different types which overlap are shown in
purple.

is that most of the edge directions in the noise-sampled tree
are correct. Because of this, the sampled and optimal tree
will generally only differ by a few partitions, so we do not
need to stray too far from the current solution. Our second
assumption, however, is that the search space is not convex,
and a simple hill-climbing search will likely converge to a
suboptimal solution. In the next section, we show that our
three-step approach efficiently approximates the ground truth
vascular networks for four different retinal datasets.

VI. EXPERIMENTS

In order to validate the effectiveness of our proposed
algorithms, we tested our method on four different retinal
datasets with ground truth artery-vein labelings: a 30-image
wide-field retinal dataset [7], two AV classification datasets
[5], [41] based on the earlier 40-image DRIVE dataset [49],
and a 40-image dataset which is used to validate algorithms
that estimate the arteriolar-venular ratio (AVR). We have made
the wide field-of-view images and the ground-truth labels for
all four datasets freely available online. For each image, we
constructed a planar graph and determined its ground truth
labeled tree. We then quantified the distance between our
algorithm’s final AV-labeled tree and the ground truth solution,
as explained below.

A. Materials

The WIDE dataset [7] consists of 30 high-resolution, wide-
field, RGB images obtained using an Optos 200Tx ultra-
wide-field device (Optos plc, Dunfermline, Scotland, UK).
This dataset includes both healthy eyes, as well as eyes with
age-related macular degeneration (AMD) which display geo-
graphic atrophy, drusen, or fibrotic scarring from neovascular
AMD. All images were acquired at the Duke University Med-
ical Center, Durham, NC, USA between either August 2010

to October 2012, or November 2013 to July 2014 under Duke
IRB protocols Pro00015512 and Pro00056311. Each retinal
image was taken from a different individual and was captured
as an uncompressed TIFF file at the highest-resolution setting
available for the Optos device (3900×3072 pixels). Each
image was then manually cropped to remove the eyelashes
and other non-retinal regions, and finally downsampled by a
factor of 2.

The second dataset, which we refer to as the AV-DRIVE
dataset, consists of 40 artery-vein labeled images (565×584
pixels) [41]. Here, three different human graders manually
classified all the vessel pixels in each segmented image from
the existing DRIVE dataset [49]. The three graders then jointly
compared their classifications to arrive at a consensus labeling.
The third dataset, which we denote as the CT-DRIVE dataset,
consists of 20 artery-vein labeled images [41], corresponding
to the test set of the DRIVE dataset only. For this dataset,
a human expert manually classified the centerline pixels of
all the vessels that were at least 3 pixels thick. Both the
AV-DRIVE and the CT-DRIVE datasets provide ground-truth
labels for the same 20 test images; however, as we show in
Section VI-C, these labels differ somewhat from each other.
These differences between the labels given by different human
experts highlights the difficulty of this classification problem.

Finally, the fourth dataset (AV-INSPIRE) is based on the
INSPIRE-AVR dataset [36], which was developed for validat-
ing methods that estimate the arteriolar-venular ratio, so every
one if its images is centered on the optic nerve. It also consists
of 40 images (2392×2048 pixels). Although each image has
an associated ground-truth AVR, the original INSPIRE-AVR
dataset did not include any ground-truth vessel labels, so we
manually estimated these labels in a similar manner to the
WIDE dataset, as detailed below. Figure 6 shows two sample
images from each dataset.

B. Methods

1) Error quantification: We quantified the error of an
estimated AV-labeled tree relative to the ground truth tree in
terms of three weighted scores: balanced accuracy, sensitivity,
and specificity. The three terms are related as follows:

balanced accuracy =
sensitivity + specificity

2
,

where

sensitivity =
ω(tp)

ω(tp) + ω(fn)
, specificity =

ω(tn)

ω(tn) + ω(fp)
.

Here, tp, tn, fp, and fn are the true positives, true negatives,
false positives, and false negatives, respectively, and ω is
a vector of weights for each element. We interpret arteries
as positives and veins as negatives. Intuitively, sensitivity
defines how well a method can detect arteries, while specificity
determines how well it can detect veins. Finally, the balanced
accuracy quantifies the overall performance of the algorithm.

For the WIDE, AV-DRIVE, AND AV-INSPIRE datasets, we
defined the errors in terms of edge labels; that is, we quantified
what percentage of the edges have the same labels in the
estimated and ground-truth trees. In this case, the weight ω(i)
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 6. Artery-vein datasets: (This Figure is best viewed on-screen.) We tested our algorithms on three different retinal datasets. (a,b) WIDE images with
their corresponding ground truth labelings superimposed. (c,d) AV-DRIVE artery-vein pixel labelings superimposed on the original DRIVE images. (e,f)
CT-DRIVE artery-vein pixel labelings superimposed on the original DRIVE images. The CT-DRIVE images have only the vessel centerline pixels of the main
vessels classified as either artery of vein. (g,h) AV-INSPIRE images with their corresponding ground truth labels superimposed.

is the Euclidean distance between the two vertices adjacent
to the i-th edge. For the CT-DRIVE, on the other hand, we
quantified the error in terms of which pixels were correctly
labeled because prior methods had reported their results on
this dataset in terms of pixel classification. We obtained the
pixel labels by assigning to each pixel the estimated label of
the closest edge in the graph. Here, every ω(i) = 1 for this
dataset.

2) Planar graph estimation: We obtained each planar graph
semi-automatically. For the WIDE and AV-INSPIRE images,
we first obtained a Gabor-enhanced image [9] and then ex-
tracted a noisy graph from it by building a set of tracks over
the tree’s branches [7]. Our algorithm constructed each track
by first setting a starting location based on the Gabor response
(the higher the response, the more likely the pixel was to be

part of a tubular structure such as a vessel). It then moved
along the vessel by iteratively selecting the neighbor of the
current position that was most likely to also be part of the
vessel. Each track stopped when all neighbors fell below a
salience threshold. Finally, it converted the set of tracks into
a single graph by connecting overlapping tracks. We then
manually edited this automatically-extracted graph using a
graph editing software that we developed to correct any errors,
such as missing or spurious edges due to low image quality
or image artifacts. We obtained the planar graphs for the AV-
DRIVE images in a similar fashion. In this case, though, since
we had access to the manual segmentations, we built the initial
set of tracks using only the pixels that were part of a vessel.
We used the same graphs for the CT-DRIVE and AV-DRIVE
datasets.
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(a) (b) Acc = 0.658 (c) Acc = 0.974 (d) Acc = 0.974

(e) (f) Acc = 0.716 (g) Acc = 0.908 (h) Acc = 0.925

(i) (j) Acc = 0.752 (k) Acc = 0.793 (l) Acc = 0.786

Fig. 7. WIDE classification results: (This Figure is best viewed on-screen). Our method was able to accurately classify most arteries and veins in the test
images of the three datasets. The top row is our method’s best result, the middle row is the result that is closest to the mean and the bottom row is the worst
result for this dataset. In the first column is the original image. The second column is the best tree found after our orientation search. The third column is
the best noise sampled tree, while the last column is the final tree after the BFS search. In each image, the correctly labeled arteries are marked in red and
the correct veins in blue. Edges incorrectly labeled as arteries are in yellow, while incorrectly marked veins are shown in green. The corresponding balanced
accuracy is listed below each image.

TABLE I
WIDE DATASET RESULTS

Number of graphs n: 15, Mean number of circuits µ(m): 101.8, Standard dev. σ(m): 23.15

Method Balanced accuracy Sensitivity Specificity Time (sec)

Optimal AV-labeling 0.999 (± 0.01) 0.999 (± 0.01) 1 (± 0.0) –
Second human rater 0.974 (± 0.02) 0.970 (± 0.03) 0.979 (± 0.02) ∼3000
BFS search 0.910 (± 0.06) 0.910 (± 0.06) 0.909 (± 0.06) 777.35 (± 330.52)
Noise sampling 0.888 (± 0.06) 0.857 (± 0.11) 0.919 (± 0.07) 192.04 (± 77.95)
Orientation search 0.776 (± 0.12) 0.733 (± 0.17) 0.819 (± 0.16) 83.10 (± 39.48)

3) Ground truth estimation: As noted above, the AV-
DRIVE images included the ground truth labels for every
pixel in the image. We automatically converted these pixel
labels into edge labels by assigning to each edge the most
common label of its corresponding pixels. For the WIDE
and AV-INSPIRE images, authors one and two independently
classified each image using a graph editing software that
we developed for this task. Our software allows a user to
classify each segment as either artery, vein, unsure, or non-
vessel. Since even human experts differ on their assessment
of vessel topology, we quantified the degree of inter-observer
variability or uncertainty in our ground truth by comparing the
labeled trees produced by our two human raters. We set the
second rater’s trees as ground truth, due to his relevant clinical
expertise as a fellowship-trained medical retina specialist. The
balanced accuracy, sensitivity, and specificity of the first rater’s
trees relative to the second rater’s, for the WIDE and AV-
INSPIRE datasets’ test sets, are listed in Tables I and IV.

For each dataset, human graders assigned one of four
labels to each edge: {artery, vein, unsure, non-vessel}. The
latter two categories capture both the inherent uncertainty
in determining the anatomically correct labeling, as well as
errors in the initial segmentation. Furthermore, graders were
not constrained to use only AV-labelings; they were allowed
to assign a disconnected label if they believed that the input
graph was missing a segment that would have connected that
edge to the rest of the edges with the same label.

Our method, however, used only two categories: artery or
vein. We decided not to allow the algorithm any additional
degrees of freedom because they represent a different, more
complicated inference problem. Devising a method for not
only distinguishing arteries from veins, but also determining
if an edge is a valid vessel would require an augmented
likelihood model, as well as exploring a different space of
possible solutions. While these are interesting avenues for
future work, they are beyond the scope of this paper.
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(a) (b) Acc = 0.435 (c) Acc = 0.997 (d) Acc = 0.997

(e) (f) Acc = 0.409 (g) Acc = 0.871 (h) Acc = 0.939

(i) (j) Acc = 0.299 (k) Acc = 0.835 (l) Acc = 0.835

Fig. 8. AV-DRIVE classification results: (This Figure is best viewed on-screen). The top row is our method’s best result on the AV-DRIVE dataset, the
middle row is the result that is closest to the mean and the bottom row is the worst result for this dataset. In the first column is the original image. The
second column is the best tree found after our orientation search. The second column is the best noise sampled tree, while the last column is the final tree
after the BFS search. In each image, the correctly labeled arteries are marked in red and the correct veins in blue. Edges incorrectly labeled as arteries are in
yellow, while incorrectly marked veins are shown in green. The corresponding balanced accuracy is listed below each image.

TABLE II
AV-DRIVE DATASET RESULTS

Number of graphs n: 19, Mean number of circuits µ(m): 36.8, Standard dev. σ(m): 6.3

Method Balanced accuracy Sensitivity Specificity Time (sec)

Optimal AV-labeling 0.973 (± 0.03) 0.967 (± 0.03) 0.978 (± 0.04) –
BFS search 0.935 (± 0.05) 0.93 (± 0.06) 0.941 (± 0.07) 131.32 (± 33.40)
Noise sampling 0.901 (± 0.07) 0.881 (± 0.12) 0.922 (± 0.1) 62.39 (± 14.37)
Orientation search 0.537 (± 0.19) 0.513 (± 0.26) 0.56 (± 0.24) 12.29 (± 4.12)

4) Parameter estimation: For the WIDE dataset, we ran-
domly chose 15 images as the testing set and kept the remain-
ing 15 as the training set. We randomly split the images of the
AV-INSPIRE dataset in a similar manner, with 20 images in
the training set and 20 images in the test set. The AV-DRIVE
dataset already had training and testing sets; the former had
20 images and the latter 19 images.1 Since the CT-DRIVE
dataset did not include a training set, we used the parameter
values that we estimated from the AV-DRIVE dataset for this

1We excluded test image 11 from our experiments because its field-of-view
was too narrow, so a significant proportion of the vessels were disconnected
from the optic nerve.

dataset as well.

Our global likelihood model relies on three features: local
growth, overlap, and color. The latter two are parameter-free;
they use fixed formulas to determine the feature value of an
estimated tree. Our local growth feature, on the other hand,
required setting the parameters of two distributions, pa and
pc: the former defines the probability of observing a given
set of angles between a parent vertex’s and its children (local
geometry), while the latter defines the probability that a vertex
will have a given number of children (abstract topology). As
noted in Section IV-A, pa is defined in terms of a set of von-
Mises distributions. We estimated the most likely mean and
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(a) (b) Acc = 0.431 (c) Acc = 0.994 (d) Acc = 0.994

(e) (f) Acc = 0.414 (g) Acc = 0.894 (h) Acc = 0.918

(i) (j) Acc = 0.306 (k) Acc = 0.809 (l) Acc = 0.809

Fig. 9. CT-DRIVE classification results: (This Figure is best viewed on-screen). The top row is our method’s best result on the CT-DRIVE dataset, the
middle row is the result that is closest to the mean and the bottom row is the worst result for this dataset. In the first column is the original image. The second
column is the best tree found after our orientation search. The second column is the best noise sampled tree, while the last column is the final tree after the
BFS search. In each image, the correctly labeled artery pixels are marked in red and the correct vein pixels in blue. Pixels incorrectly labeled as arteries are
in yellow, while incorrectly marked vein pixels are shown in green. The corresponding balanced accuracy is listed below each image.

variance parameters for this set using the angles of the ground-
truth trees in the training set. We empirically determined pc,
on the other hand, by tallying the numbers of children for each
vertex of the ground-truth trees in the training set.

In addition to these two distributions, we estimated the
three λ weights in (3) based on how informative each of
the three features was for the corresponding training dataset.
We estimate these three values through a simple grid search.
We did not use a least-squares fit because we required that
all weights be non-negative. Our WIDE feature weights were
λg = 0.43, λo = 0.29, and λc = 0.29, and our AV-INSPIRE
weights were λg = 0.76, λo = 0.1, and λc = 0.14, while our
AV-DRIVE and CT-DRIVE weights were λg = 0.3, λo = 0.3,
and λc = 0.4.

5) Tree estimation: We applied our tree search algorithm to
each planar graph and recorded the current solution after each
of the three steps listed in Section V. The number of possible
solutions for a planar graph is an exponential function of how
many circuits it has. Thus, we ran both our initial orientation
search until we explored 100m orientations, where m is the
number of circuits in G. Then, in the noise sampling step, we
sampled 1000 trees per graph. Finally, we ran our BFS search
for another 100m steps to obtain our final estimated tree.

We recorded the cumulative mean running time in seconds
for each of our method’s three steps on each dataset; that is,
the running time for the noise sampling is the sum of the time
needed to run this step plus the orientation search time. The
best-first search time represents the total time needed to run all
three steps. We ran our two algorithms on a Toshiba Satellite
X870 laptop with a 2.4Ghz Intel I7 quad-core processor and
32GB of RAM.

C. Results

Our results are summarized in Tables I, II, III, and IV. In
each table, n is the number of planar graphs in the test set and
µ(m) and σ(m) are the mean and standard deviation of the
number of circuits per graph, respectively. As noted above, we
recorded the current solution at each of the three steps of our
algorithm: Orientation search refers to the most likely tree,
based only on our local growth model, found by exploring the
space of possible orientations, while Noise sampling records
the chosen sampled tree given the orientation found in the
previous step. Finally, BFS search indicates our method’s final
output, after refining the sampled tree using a local best-first
search on the space of possible trees. The last column lists the
cumulative mean running times for each step.
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TABLE III
CT-DRIVE DATASET RESULTS

Number of graphs n: 19, Mean number of circuits µ(m): 36.8, Standard dev. σ(m): 6.3

Method Balanced accuracy Sensitivity Specificity Time (sec)

AV-DRIVE ground truth 0.962 (± 0.03) 0.959 (± 0.06) 0.965 (± 0.03) –
BFS search 0.917 (± 0.05) 0.917 (± 0.07) 0.917 (± 0.07) 131.32 (± 33.40)
Noise sampling 0.893 (± 0.08) 0.883 (± 0.1) 0.903 (± 0.09) 62.39 (± 14.37)
Dashtbozorg et al. [5] 0.874 0.9 0.84 –
Niemeijer et al. [35] N/A 0.8 0.8 –
Orientation search 0.559 (± 0.2) 0.58 (± 0.22) 0.538 (± 0.22) 12.29 (± 4.12)

TABLE IV
AV-INSPIRE DATASET RESULTS

Number of graphs n: 20, Mean number of circuits µ(m): 44.0, Standard dev. σ(m): 10.3

Method Balanced accuracy Sensitivity Specificity Time (sec)

Optimal AV-labeling 1 (± 0.0) 1 (± 0.0) 1 (± 0.0) –
Second human rater 0.971 (± 0.03) 0.972 (± 0.03) 0.970 (± 0.02) ∼1800
BFS search 0.909 (± 0.1) 0.915 (± 0.11) 0.902 (± 0.1) 117.68 (± 34.1)
Noise sampling 0.883 (± 0.11) 0.887 (± 0.13) 0.879 (± 0.13) 55.14 (± 10.33)
Orientation search 0.793 (± 0.14) 0.831 (± 0.16) 0.754 (± 0.22) 12.57 (± 3.49)

For the WIDE and AV-INSPIRE datasets, we have also
included the results for the second human rater. Furthermore,
for the WIDE, AV-DRIVE, and AV-INSPIRE datasets, we in-
cluded the results for the optimal AV-labeling. Due to reduced
field-of-view or ambiguity near the optic nerve, the ground
truth labeling provided by the human experts might not exactly
be an AV-labeling. Nevertheless, we restricted our algorithm
to only consider AV-labelings, since they are anatomically
correct. Intuitively, the optimal AV-labeling values are an
upper-bound on how well an estimation algorithm can do on
that dataset.

Figures 7, 8, 9, and 10 show three sample results from each
dataset. In each of these figures, the top row is the graph on
which our algorithm obtained the best result, the bottom row
is the one on which it had the worst performance, and the
middle row is the one whose accuracy is closest to the mean
accuracy for that dataset.

Overall, our proposed estimation framework correctly es-
timated over 90% of the vessel labels, including those for
small vessels, on all four datasets. On the WIDE dataset, our
algorithm obtained a classification accuracy on the test set of
91.0%, compared to 97.4% for the second human rater. Our
algorithm performance on the AV-DRIVE and AV-INSPIRE
datasets was 93.5% and 90.9%, respectively. Note that the
results were computed in terms of edge labels for these three
datasets.

We computed the accuracy in terms of pixel labels for
the CT-DRIVE, in order to compare our results to prior
methods, as reported in [5]. In this case, Niemeijer et al. [35]
had achieved sensitivity and specificity values of around 0.8,
while Dashtbozorg et al. [5] obtained values of 0.9 and 0.84,
respectively, as well as an accuracy of 87.4%. In contrast,

our algorithm obtained an accuracy of 91.7%, with identical
sensitivity and specificity values of 91.7% each.

We now discuss each dataset in detail below, as well as
analyze our algorithm’s performance in more depth.

D. Discussion

1) WIDE dataset: In this dataset, our algorithm achieved a
performance of 91% on a set of challenging, high-resolution
retinal images. On average, this dataset had over 100 circuits
per graph, due to the wide field-of-view and high image reso-
lution, so the set of possible trees consistent with each graph
was extremely large (on the order of Ω(2100)). Nevertheless,
our method was able to correctly approximate the vast majority
of the edge labels by relying on the topological constraint that
an edge must share its label with all its downstream edges.

2) AV-DRIVE dataset: We were also able to achieve very
good results (93.5%) on this larger dataset, suggesting that our
approach is applicable to a wide variety of retinal images. It is
worth noting that the optimal accuracy that can be achieved by
an AV-labeling on this dataset (97.3%) is considerably lower
than that for the WIDE dataset (99.9%). This is due to the
skewed and more narrow field-of-view of the DRIVE images.
Nevertheless, since these images show a smaller region of
the vascular network, their corresponding graphs have signif-
icantly fewer circuits than those of the WIDE images, so our
method was able to achieve slightly better results on these
graphs.

3) CT-DRIVE dataset: For the CT-DRIVE dataset, we were
also able to achieve a high accuracy (91.7%), in spite of
optimizing our parameters values using the training set of the
AV-DRIVE dataset. It is worth noting that we already surpass
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(a) (b) Acc = 0.497 (c) Acc = 1.0 (d) Acc = 1.0

(e) (f) Acc = 0.908 (g) Acc = 0.908 (h) Acc = 0.908

(i) (j) Acc = 0.619 (k) Acc = 0.782 (l) Acc = 0.782

Fig. 10. AV-INSPIRE classification results: (This Figure is best viewed on-screen). The top row is our method’s best result on the AV-INSPIRE dataset,
the middle row is the result that is closest to the mean and the bottom row is the worst result for this dataset. In the first column is the original image. The
second column is the best tree found after our orientation search. The second column is the best noise sampled tree, while the last column is the final tree
after the BFS search. In each image, the correctly labeled arteries are marked in red and the correct veins in blue. Edges incorrectly labeled as arteries are in
yellow, while incorrectly marked veins are shown in green. The corresponding balanced accuracy is listed below each image.

prior methods in overall accuracy after noise sampling, which
is only the second step of our algorithm.

We also note that if we compare the ground truth pixel
values of the AV-DRIVE dataset to the CT-DRIVE dataset,
they only agree ∼96% of the time. Interestingly, this inter-
observer agreement between these two sets of experts is close
to the agreement between our two experts on both the WIDE
and AV-INSPIRE datasets. While more data would be needed
to draw firm conclusions, these results suggest that 96-97%
is close to the best expected level of agreement that two
independent observers, be it a human or an algorithm, can
have with each other.

4) AV-INSPIRE dataset: Finally, we achieved a balanced
accuracy of 90.9% on this fourth dataset, further validating
the general applicability of our approach. This was the most
challenging dataset for our algorithm, which we attribute pri-
marily to the narrow field-of-view of these images. In this case,
the vascular network has fewer branch-points–particularly far
away from the optic nerve–so on average the label of one edge
constrains fewer other edges downstream. Furthermore, most
of the branch-points are clustered near the optic nerve, which
is very difficult to classify, even for expert human graders.

On the other hand, the graphs in this dataset are considerably
smaller than the WIDE graphs (44 vs 102 average number
of circuits), which allowed our algorithm to explore a larger
portion of the search space for each graph and thus compensate
for some of these ambiguities.

5) Analysis of each optimization step: Our three-step opti-
mization scheme accurately approximated the most likely AV-
labeling for a large number of graphs from different datasets.
In Section V, we suggested how each of the three steps
contributed to progressively yield a more accurate solution.
Our experimental results empirically confirm this view, since
each step markedly improves upon the previous one.

In more detail, the largest gain in accuracy occurred between
the orientation search and noise sampling steps. On average,
the balanced accuracy improved between 18% (WIDE) and
68% (AV-DRIVE) from the first to the second step. We believe
that the main reason behind this drastic improvement—as
we noted in Section V—is that the orientation search step
estimates the vast majority of the edge directions correctly;
however, relying solely on the local likelihood model may
lead to local partitioning errors that may have a large impact
on the resulting vessel labels. These large-impact errors arise
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because the local model is agnostic about vessel labels. The
noise-sampling step, on the other hand, does make use of the
global likelihood model; thus, it can more accurately predict
the quality of each potential tree. The fact that the noise-
sampled tree has a consistently high accuracy is given by the
fact that the edge directions are mostly correct, so it only needs
to determine the best way of partitioning the crossings defined
by the chosen orientation.

The improvement between the noise sampling and best-
first search steps is more modest, ranging from 2.5% (WIDE)
to 3.8% (AV-DRIVE). However, it is important to note that
for all datasets the BFS step consistently improved upon the
best noise-sampled tree. This consistent performance strongly
suggests that our global likelihood model accurately quantifies
the plausibility of a given AV-labeling, especially considering
that our search algorithm visited between 2500 and 14600
possible trees per graph, so it had to assess the quality a large
number of solutions.

6) Current limitations: Although our AV classification
pipeline generally yields good results, its performance is not
optimal, since human graders are better able to estimate the
vascular labels. Thus, we analyzed our algorithm’s results in
detail in order to better understand its current limitations and
outline ways of overcoming these weaknesses.

Currently, the main limitation of our optimization strategy
is that the best-first step is myopic: it only estimates the
value of exploring a possible tree based on the likelihood
of the tree itself. Thus, this search strategy makes the tacit
assumption that changes in likelihood are largely monotonic
and independent. Unfortunately, this is not the case if the
labels of a large region of the graph are switched (i.e. most
arteries are labeled as veins and vice versa). Depending on the
topology of the input graph it may take several contraction-
expansion steps to switch this region to its correct labels.
However, in this case correcting any one error will likely
lead to a lower likelihood tree because the overlap likelihood
will go down; it is only after multiple corrections that this
likelihood will bounce back up. Since our search algorithm
cannot forecast this likelihood increase down the road, it will
tend to avoid changing large regions that are switched, unless
its vessel labels can be reversed in a couple of steps.

It is worth noting that the orientation search step does make
use of a heuristic—based on the fact that edges tend to grow
away from the optic nerve—to better guide its search through
the space of possible orientations. A similar heuristic for AV-
labeled trees is less trivial to devise, however, and it represents
an important avenue of future work.

Another minor current limitation is that our color likelihood
is not context-dependent. Depending on the focus and lighting
of the retinal image, vessels in one part of the image may
appear consistently darker than in a different part of the
image. Darker regions will bias the algorithm to label more
of its vessels as veins (and conversely for arteries in light
regions). We are currently exploring the use of local histogram
equalization methods to minimize this bias.

VII. CONCLUSIONS

In this work, we developed a comprehensive, semi-
automatic method for distinguishing arteries from veins in a
retinal image. Our approach combines graph-theoretic methods
with domain-specific knowledge to accurately estimate the
correct vessel types on four different retinal datasets, outper-
forming existing methods. Moreover, this method is capable
of analyzing vasculature in wide field-of-view fundus pho-
tographs, which is a potentially important tool for diagnosing
diseases with peripheral retinal vascular manifestations includ-
ing diabetic retinopathy, retinal vein occlusion, and sickle cell
retinopathy.

Our future work will focus on using our classification
method to better determine diagnostically relevant properties
of arteries and veins, such as the arteriolar-venular ratio. We
will also refine our automatic planar graph extraction step
and extend our algorithm to handle noisy graphs that contain
missing or spurious vessels in order to fully automate our
framework, which we will then validate in a clinical setting.
This robust algorithm will not only distinguish arteries from
veins, but also determine if a given edge is a valid vessel,
that is, it will also apply unsure and non-vessel categories.
If available, we will take advantage of an existing vessel
segmentation to constraint our extraction step. We also intend
to focus on applying our vessel classification framework to
other problems, including identifying the retinal layer in which
a capillary lies [15] and distinguishing retinal from choroidal
vessels.
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APPENDIX
AV-LABELED TREE SPACE

Our heuristic tree search algorithm explores the space of
possible AV-labeled trees consistent with a planar graph by
iteratively expanding and contracting vertices. Here, we first
prove that given a tree T consistent with an input graph
G, we can obtain a different tree T ′ by a single expansion-
contraction step. We then use this result to prove that the space
of possible trees T (G) consistent with G is connected in terms
of vertex expansion-contraction operations. To the best of our
knowledge, all the results and proofs are novel and may be of
independent interest.

A. Switching between directed trees

Here we show how to obtain different tree T ′ given a current
tree T using vertex expansion and contraction. Let H be the
graph that results from contracting two overlapping vertices of
T . We will show that H contains exactly one simple circuit;
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that is, H is a pseudo-tree or unicyclic graph. We first note
that the circuit rank ρ of a graph G is given by:

ρ = |EG| − |VG|+ |NG|,

where |NG| is the number of connected components of G [2].
The circuit rank is the minimum number of edges that we
need to remove from G to remove all its circuits. The circuit
rank of any connected tree is 0, since |VT | = |ET | + 1 and
|NT | = 1. However, a vertex contraction reduces the number
of vertices by one, keeps the number of edges the same, and, in
the case of trees in T (G), also keeps the number of connected
components the same. Thus, ρ(H) = 1, which implies that H
has exactly one circuit.

We will now show how to obtain a new directed tree T ′

from H , such that T 6= T ′. An example of this process is
shown in Figure 11. First, let CH ⊂ VH \ {rH} be the set
of vertices, excluding the root, that are part of the sole circuit
of H . By definition, |CH | ≥ 2.2 Also, w ∈ CH , since w is
adjacent to all the vertices that were adjacent to either u or v.
Thus, we can reach w from rH by either the path that used to
connect v and rT or the one that used to connect u and rT .
Furthermore, each vertex x ∈ CH has exactly two adjacent
edges which are part of the circuit. To obtain a directed tree
T ′ from H , we have to expand one x ∈ CH such that each
of two circuit edges of x is assigned to a new vertex. We
can see this by noting that we can reach any such x from
the root by two different paths: one that uses the first edge
that is part of the circuit and another which uses the second
circuit edge. Since the two edges are reachable from the root
through different paths, then expanding x such that the two
circuit edges are assigned to different vertices will not affect
the reachability of any other vertex in H . Thus, the resulting
graph T ′ is a tree. On the other hand, if we expand x such that
the two circuit edges are assigned to the same new vertex, then
the resulting graph will not be a tree because the new graph
still has a circuit. Finally, we note that T ′ will be different
from T , if either x 6= w or if we partition the edges incident
to w differently than how they were partitioned in T .

B. Directed tree meta-graph

Here, we prove that all directed trees consistent with a
given input graph are connected by vertex expansions and
contractions. A pair of contraction-expansion steps allow us
to convert a directed tree T into a different tree T ′ that is
also consistent with the same planar graph. We refer to pairs
of directed trees that differ by a single contraction-expansion
pair as neighbors of each other. Thus, the pairs of vertex
contraction and expansion operations induce a meta-graph
over T (G) in which every tree is a node in the meta-graph
and there is an edge between two trees if and only if they are
neighbors. Figure 5 illustrates a portion of the meta-graph for
a small graph. We will now show that this meta-graph is fully
connected. That is, we can convert any directed tree T into
any other directed tree T ′ such that each intermediate tree is
also a directed tree.

2|CH | ≥ 3 if the circuit does not include the root.

(a) (b)

(c) (d)

Fig. 11. Switching between directed trees: (This Figure is best-viewed
in color.) A directed tree can be converted to different directed tree by
contracting two overlapping vertices and then expanding one of the vertices in
the resulting circuit. (a) A small planar graph. The root is marked in white. (b)
A directed tree consistent with the planar graph. Its overlapping vertices are
shown in small light blue circles. The dotted oval around them indicates that
the pairs of vertices overlap each other when projected. (c) The intermediate
graph that results from contracting the lower two overlapping vertices into
one. Note how the contraction creates an undirected circuit (shown in green).
Every vertex in this circuit can be potentially expanded to obtain a new tree.
(d) A new directed tree obtained by expanding the left-most green vertex.
The overlapping vertices are again shown in light blue. Note how this second
tree defines a different orientation for the edge highlighed in orange.

We prove this statement by constructing an algorithm that,
given starting and target trees T and T ′, converts the former
into the latter by traversing the meta-graph; that is, it iteratively
eliminates any differences between the two trees.

More concretely, there are three ways in which two trees
in the meta-graph can differ. The first possible difference is
that the sets of crossings that they induce on the planar graph
may be different. In this case, there is at least one vertex in G
that is a crossing with respect to one tree, but not the other.
For instance, note how the vertices that we have to partition
to obtain the trees in Figures 11(b) and 11(d) are different.

The second way in which two trees can differ is in their
edge orientations. As Figures 11(b) and 11(d) illustrate, the
edge highlighted in orange is assigned a different orientation
in the two trees, such that in 11(b) an upper vertex is the parent
of a lower vertex, while in 11(d) these roles are reversed. It
is important to note that even if two trees induce identical
crossings on G, their edges may be oriented differently.

The third way in which two trees can differ is by defining
a different parent for one or more of their vertices. As
Figures 4(b) and 4(d) illustrate, there is often more than
one way to partition the same vertex and different ways of
partitioning a vertex give rise to different trees. Finally, we
note that two trees which induce identical crossings and edge
orientations may still differ in their vertex partitions.

Our algorithm for converting the starting tree T into the
target tree T ′ systematically eliminates these three kinds of
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differences. It thus consists of three steps:
1) First, we shift the location of every crossing to match

the target.
2) Then, we flip any induced edge orientations to match

the target.
3) Finally, we ensure that each edge has the same parent

as in the target.
The first step forces all the crossings to be the same, while
the second step ensures that every pair of corresponding edges
is oriented in the same direction. Finally, the last step adjusts
the partition at each crossing to match the target tree.

We will first detail the initial step: shifting the locations of
the crossings to match T ′. Let u ∈ VG be a vertex which
is a crossing with respect to T , but not T ′. Since u is not
a crossing for T ′, we first contract two of the vertices of T
that project down to u to obtain a pseudo-tree H . T ′ does
not have any circuits, in spite of not having a partition at u;
therefore, there exists some other vertex v ∈ VH which is part
of the sole circuit of H and whose projection is a crossing
with respect to T ′ (but not T ). Thus, let T ′′ be any tree that
results from applying a valid expansion at v. By construction,
T ′′ has one more crossing in common with T ′ than T did.
Furthermore, note that the above operation did not modify any
vertices other than u and v. Thus, we can iteratively apply the
above procedure to each subsequent tree to converge to a tree
T̂ that induces the same set of crossings as T ′.

We will now detail the second step: adjusting the induced
edge directions so that they match T ′. Although T̂ has the
same set of crossings as T ′, some of the edges may be
oriented differently in the two trees. In order to modify the
edge directions without changing the set of crossings, we have
to flip the orientations of entire paths between crossings en
masse. More concretely, let EP ∈ EG be a path between two
crossings u and v that is oriented differently in the two trees
and which is not incident to any other crossings. Note that, by
construction, EP has only two possible orientations. Without
loss of generality, assume that EP is oriented from u to v
with respect to T̂ . Since both u and v are crossings regardless
of the orientation of EP , then each vertex has at least two
other incident edges and there are at least three vertices in T̂
that project down to v. To change the orientation of EP , we
first contract the vertex in T̂ which projects down to v and is
incident to EP with one of the other vertices that project down
to v. This creates a pseudo-tree H , which we then convert to
a tree by expanding the vertex in H that projects down to u
and is incident to EP . Clearly, both u and v remain crossings
after this contraction-expansion step, but now EP is oriented
in the opposite direction. Since this operation only affects u,
v, and EP , we can iteratively flip the edge orientations of all
the edges on which T̂ and T ′ differ.

We will now detail the final step: adjusting the parent of
each edge to match T ′. Let T̃ be the tree that results from
adjusting all the edge orientations of T̂ to match T ′. In other
words, T̃ and our target T ′ have the same crossings and
edge orientations, but may differ in how their crossings are
partitioned. Thus, let u be a crossing which is partitioned
differently for the two trees. To correct this partition, first
contract two of the vertices of T̃ which project down to u

and then expand them again, such that their incident edges
are partitioned as defined by T ′. Figures 4(b) - 4(d) illustrate
this procedure. Since each contraction-expansion step only
modifies the two target vertices, we can iteratively repeat the
above procedure to ensure all the partitions match T ′.

In summary, we can convert any two directed trees con-
sistent with G into each other by iteratively contracting and
expanding their vertices such that every intermediate graph is
itself a directed tree. Thus, the contraction-expansion operation
induces a connected meta-graph over the space of directed
trees T (G).
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