
ECE/CS 250 – Prof. Bletsch
Recitation #5:

Assembly Programming Conventions

Objective: In this recitation, you will learn how to write MIPS assembly programs that use proper procedure

calling conventions.

Complete as much of this as you can during recitation. If you run out of time, please complete the rest at home.

This is likely to be one of the more challenging recitations—do not panic if you find this material difficult.

1. Calling a Procedure, Passing Args and Return Values
Write a short MIPS program with a main function that calls (using “jal”) another function called foo. The foo

function takes two arguments (both are ints) and returns one value (also an int). You must follow conventions for

arguments and return values: you must pass the arguments through $a0 and $a1 registers and you must return

the value from foo in $v0. For now, let foo simply compute the sum of the two arguments and return that result.

In main, please set $a0=1 and $a1=2.

2. Saving the Caller-Saved Registers, Using the Stack
Copy your work from Task 5 into a new file. Now modify main so that it saves the caller-saved $t registers before

calling foo and then restores them after foo returns. You must modify main to use two $t registers ($t0 and $t1)

to initially hold the values it’s going to pass to foo (but main still must pass them through the $a registers, so they

must be copied from $t to $a). (Instead of setting $a0=1 and $a1=2, set $t0=1 and $t1=2, then copy from the $t

regs to the $a regs.) After foo returns to main, main should then compute the result from foo plus the sum of

these two $t registers into $t5. (main may not use the $a registers for this purpose!) To make room for main to

save these $t registers, main must create space on the stack. You will move $sp to make room for these two $t

regs, copy them there before calling foo, and then copy them back into the $t registers after foo returns. In

summary, your code should look like the following (where the parentheticals show the instructions needed):

main:

 # reserve a stack frame for 2 words (t0,t1) (subu or similar)

 # (note: we're ignoring the need to save $ra for this exercise)

 # set $t0=1 and $t1=2 (li)

 # set $a0=$t0 and $a1=$t1 (move)

 # save t registers to stack (sw)

 # call foo (jal)

 # restore t registers from stack (lw)

 # compute v0+t0+t1 into t5 (add)

foo:

 # add a0+a1, store and store result in v0 (add)

 # return (jr)

Once the program works and you verify you got the right value in t5 at the end of main, let’s break it. Modify foo

such that it sets all of the $t registers to zero right before you compute v0. Comment out the lines of code in

main that save and restore the $t registers (the blue steps above). What happens? Do you still get a correct

program result in t5?

3. Saving the Callee-Saved Registers
Copy your work from Task 2 into a new file. Modify main such that, before it calls foo, it sets two of the callee-

saved $s registers ($s0 and $s1) to the values 5 and 6. After foo returns to main, main should take the result from

foo and add it to $s0 and $s1.

Now modify foo such that it saves the callee-saved $s registers when it begins and restores them just before

returning. You will modify foo to move $sp, etc., just like you did with the caller-saved registers in main in Task 3.

In summary, your code should look like the following (where the parentheticals show the instructions needed):

main:

 # set $s0=1 and $s1=2 (li)

 # set $a0=$s0 and $a1=$s1 (move)

 # call foo (jal)

 # compute v0+s0+s1 into t5 (add)

foo:

 # reserve a stack frame for 2 words (s0,s1) (subu or similar)

 # save s registers to stack (sw)

 # add a0+a1, store and store result in v0 (add)

 # restore s registers from stack (lw)

 # return (jr)

As before, once the program works and you verify you got the right value in t5 at the end of main, let’s break it.

Modify foo such that it sets all of the $s registers to zero right before you compute v0. Comment out the lines of

code in foo that save and restore the $s registers (the blue steps above). What happens? Do you still get a

correct program result in t5?

4. Thought Exercise
Why do we need these register usage conventions? Couldn’t the programmer just manage all of the registers on

his/her own without these conventions? If we know that foo won’t modify any $t registers, can’t we skip

saving/restoring the $t registers in main?

5. A Little Bit of Recursion
Copy your work from Task 7 into a new file. Modify foo such that it uses $t2 to hold the sum of its arguments ($a0

and $a1). If $t2 is greater than 10, then it simply returns that sum (in $v0). Else, it calls itself with its arguments

each incremented by 1 (i.e., $a0 +1, $a1+1).

Now foo is both a callee AND a caller. You’ll have to modify foo to save its caller-saved register ($t2) and $ra on

the stack.

