
Homework #5 – Caching and Virtual Memory

Due date: see course website

Directions:

● For short-answer questions, submit your answers in PDF format as a file called <NetID>-hw5.pdf.

Word documents will not be accepted.

● For programming questions, submit your source file using the filename specified in the question.

● You must do all work individually, and you must submit your work electronically via Sakai.

○ All submitted code will be tested for suspicious similarities to other code, and the test will

uncover cheating, even if it is “hidden” (by reordering code, by renaming variables, etc.).

Q1. Cache policies
[5 points] Why are write-back caches usually also write-allocate? Hint: see “Cache Interaction Policies with

Main Memory” linked on the course site.

Q2. Cache performance
[5] Your L1 data cache has an access latency of 1ns, and your L2 cache has an access latency of 10ns.

Assume that 90% of your L1 accesses are hits, and assume that 100% of your L2 accesses are hits. What is

the average memory latency as seen by the processor core?

Q3. Cache layout
[20] You have a 64-bit machine and you bought 4GB of physical memory. Pages are 64KB.

(a) [2] How many virtual pages do you have per process?

(b) [2] How many physical pages do you have?

(c) [2] In the translation from a virtual address to a physical address, how many bits of VPN are you

mapping to how many bits of PPN (assuming you have just enough bits in the physical address for

the amount of physical RAM present)?

(d) [2] How big does a page table entry (PTE) need to be to hold just a single PPN?

(e) [2] How many PTEs fit on a page, assuming PTEs are the size computed in part (d)?

(f) [2] How many pointers fit on a page?

(g) [2] How big would a flat page table be for a single process, assuming PTEs are the size computed in

part (d)?

(h) [2] What are the virtual page offset bits for virtual address 35012? What are the physical page

offset bits for virtual address 35012 after it has been translated?

(i) [4] Does a TLB miss always lead to a page fault? Why or why not?

Q4. TLB Calculator Program
[100 points]

Overview

You will write a C program that takes two inputs on the command line: (1) a file describing a computer and

its memory state (including word size, cache structure, page size, current cache content, and current page

table), and (2) a single memory address. This program will do virtual to physical address translation as well

as a cache lookup and determine, among other things, if the access is a page fault, cache hit, or cache

miss.

See below for an example run:

Input file

The format of the input file is nothing but a whitespace-delimited sequence of numbers (hint: this is a

indicator that you can get by with nothing but fscanf()). The format looks as follows:

<word-size> <cache-capacity> <cache-ways> <cache-block-size> <page-size>

 <tag> <tag> ... <tag> (tags for set 0, as many as the associativity (ways))
 <tag> <tag> ... <tag> (tags for set 1, as many as the associativity (ways))
 ...

 <tag> <tag> ... <tag> (tags for set N-1, as many as the associativity (ways),
 where N is the number of sets)

<ppn> (physical page number for virtual page 0; set to -1 if invalid)

<ppn> (physical page number for virtual page 1; set to -1 if invalid)
 ...

<ppn> (physical page number for virtual page N-1,

 where N is the number of virtual pages; set to -1 if invalid)

All values above are decimal integer numbers. Specifically:

 <word-size>: The word size of the system, in bits.

 <cache-capacity>: Total size of the cache, in bytes.

 <cache-ways>: Associativity of the cache, i.e. the number of ways per set.

 <cache-block-size>: Block size of the cache, in bytes.

 <page-size>: Page size of the virtual memory system, in bytes.

 <tag>: An individual tag of something kept in cache. It’s -1 if invalid.

o Order doesn’t matter. If a cache set has values {2,3,4,-1} it contains tags 2, 3, and 4;
this is equivalent to {2,-1,3,4}, {-1,4,2,3}, etc.

 <ppn>: A physical page number in the page table. Set to -1 for invalid.

Note: while all provided input files will have this structure, your input can simply be a sequence of fscanf()

calls to consume integers; there is no reason to care about line separation or to use fgets().

These files can get large, so to make your debugging easier, we’re also provided a “verbose” variant of

each input file where every value is specifically labeled. This is for your human use only; there is no need

for your program to ever look at, parse, or care about verbose-style input files.

Below is an example input file as well as the equivalent verbose file.

Input file Verbose file
8 16 2 2 32

 -1 24

 4 -1

 -1 5

 21 -1

1

6

-1

4

2

0

-1

3

word_size=8 cache_capacity=16 cache_assoc=2 cache_blk_size=2 page_size=32

[set 0] -1 24

[set 1] 4 -1

[set 2] -1 5

[set 3] 21 -1

[vpage 0] 1

[vpage 1] 6

[vpage 2] -1

[vpage 3] 4

[vpage 4] 2

[vpage 5] 0

[vpage 6] -1

[vpage 7] 3

** This is a verbose version of this test input to help with debugging;

your program will never be fed this file. **

This file indicates:

 The word size is 8 bits (1 byte)

 The cache size in total is 16 bytes

 The cache is 2-way (i.e. a set-associative cache, each set can hold two things)

 The cache block size is 2 bytes

 The page size is 32 bytes

 The cache has the following tags:

o Set 0: tag 24 (plus an invalid entry)

o Set 1: tag 4 (plus an invalid entry)

o Set 2: tag 5 (plus an invalid entry)

o Set 3: tag 21 (plus an invalid entry)

 The page table has the following entries:

o Virtual page 0 maps to physical page 1

o Virtual page 1 maps to physical page 6

o Virtual page 2 is invalid

o Virtual page 3 maps to physical page 4

o Virtual page 4 maps to physical page 2

o Virtual page 5 maps to physical page 0

o Virtual page 6 is invalid

o Virtual page 7 maps to physical page 1

To facilitate testing, we have provided 8 test cases:

 mem8a.txt – A tiny 8-bit system with a direct-map cache

 mem8b.txt – A tiny 8-bit system with a 2-way set associative cache

 mem8c.txt – A tiny 8-bit system with a fully-associative cache

 mem16a.txt – A medium-sized 16-bit system with a 2-way cache

 mem16b.txt – A medium-sized 16-bit system with a 4-way cache

 mem16c.txt – A medium-sized 16-bit system with a smaller direct-map cache

 mem32a.txt – A big 32-bit system with a big cache with big pages

 mem32b.txt – A big 32-bit system with a reasonable cache and 4k pages

As mentioned previously, each file above has a corresponding “-verbose.txt” file with the same values but

explicit labeling to ease debugging.

Files fed to your program will always meet the following rules:

 Files will always be of valid format and fully specify the cache and page table content

 Word size will always be 8, 16, or 32 bits

 Numbers will always be appropriate, e.g. no tag will never be larger than the maximum possible

tag

 The system will always be possible and reasonable, e.g. we’ll never have a cache bigger than

memory.

 The cache and virtual memory parameters will always be such that the VPN field will never

intersect with the cache index field (i.e. the system will always be compatible with the concept of

a TLB).

Program output

For a memory access that’s not a page fault, the output of your program should be as follows; grey

comments have been added for clarity. All numbers printed should be decimal (base 10). This output

should basically be computed in the order it’s printed.

Word size: 8 (First value of file)
Cache capacity: 16 (Second value of file)
Cache associativity: 1 (Third value of file)
Cache block size: 2 (Fourth value of file

Page size: 32 (Fifth value of file)

Cache frames: 8 (Derived from params)
Cache sets: 8 (Derived from params)

Virtual pages: 8 (Derived from params)

Bits for cache block offset: 1 (Derived from above)
Bits for cache index: 3 (Derived from above)
Bits for cache tag: 4 (Derived from above)
Bits for page offset: 5 (Derived from above)
Bits for page number: 3 (Derived from above)

Virtual address: 0 (Given on command line)

Address page offset: 0 (Computed from address)

Address virtual page number: 0 (Computed from address)
Address physical page number: 6 (Looked up in page table)

Physical address: 192 (Computed from above)

Address cache block offset: 0 (Computed from phys addr)
Address cache index: 0 (Computed from phys addr)

Address cache tag: 12 (Computed from phys addr)

Address hit/miss/fault: miss (Looked up in cache tags)

System
params

Cache/page
stats

Address bit
breakdowns

From input

Virtual to
physical
translation

Cache
lookup

In the event of a page fault, the lines shown in red above will not be printed (as there is no physical page

to base them on). Instead, output will look like this:

Word size: 8

Cache capacity: 16

Cache associativity: 1

Cache block size: 2

Page size: 32

Cache frames: 8

Cache sets: 8

Virtual pages: 8

Bits for cache block offset: 1

Bits for cache index: 3

Bits for cache tag: 4

Bits for page offset: 5

Bits for page number: 3

Virtual address: 64

Address page offset: 0

Address virtual page number: 2

Address hit/miss/fault: fault

Spacing doesn’t matter, but everything else does. To help, here’s an example printf that produces a line of

output above; note the use of the padded format specifier to provide nice spacing:

printf("%-40s %d\n","Word size:",word_size);

Restriction

In this assignment, you may NOT use the modulus (%) operator. You must use bitwise operations to

determine the components of the address. Penalty: 50% off overall score.

Building and testing

You can simply build your program as per usual with g++:

g++ -g -o tlb tlb.c

It takes two arguments:

./tlb <memory-state-file.txt> <address>

The provided input files are in the input subdirectory, and you can specify any decimal address you wish

(≤ 2word_size), e.g.:

./tlb inputs/mem8a.txt 200

A suite of tests with expected results has been provided; these are in the tests subdirectory. For each

test, we’ve provided the expected output. The tests themselves are listed in an appendix at the end of this

document.

An automated testing tool, hw5test.py, has also been provided. It works much like the tool from

homework 1.

Auto-tester for Duke CS/ECE 250, Homework 5, Summer 2017

Usage: hw5test.py [options] <suite>

Options:

 -h, --help show this help message and exit

 -v, --verbose Print extra info.

Where <suite> is one of:

 ALL : Run all program tests

 CLEAN : Remove all the test output produced by this tool

 tlb : Run tests for tlb

You can run the tests as follows:

./hw5test.py tlb

These tests are not guaranteed to be exhaustive – you may wish to test additional addresses or even

develop new machine files to find any corner-case bugs in your tool.

If you fail a test case, you can see your actual output as tests/tlb_actual_##.txt, and you can

see the diff (a comparison between the actual vs. expected output) in tests/tlb_diff_##.txt.

Tips for success

 The input format is simple; don’t overthink it. It’s nothing but fscanf(): read the system

parameters, use them to figure out the number of cache and page table entries, then read those.

 You should compute the outputs in the order they’re printed. As a side effect, you can develop

your program iteratively, adding additional output as you go until you have the full program.

 Copy/paste the field labels into the printf() code shown earlier to ensure your labels match

perfectly so you pass the automated tests. Retyping them is needless, error-prone work.

 The cache can simply be a 2D array; the page table simply a 1D array.

 You do NOT have to worry about memory leaks on this assignment.

 Bit manipulation tips:

o You can get a bit string of N ones with the expression: ((1<<N)-1)

o Here’s a simple implementation of base-2 log using only integer math, that way you don’t

have to mess with the math library:

int log2(int n) {

int r=0;

while (n>>=1) r++;

return r;

}

 With regard to the “verbose” files: the lines numbers match between the two, so you can scan

through the verbose file to find something, then see the corresponding value on the same line of

the actual input file. This is their primary purpose.

 You can represent every number in this assignment as a 32-bit integer, but potentially large values

(such as addresses) must be unsigned; you can printf unsigned decimal values using the “%u”

specifier.

 All integer inputs and outputs are expressed as decimal numbers.

 Have fun !!

Appendix A: Provided test cases

input file hit/miss/fault? expected output

00 mem8a.txt miss tests/tlb_expected_00.txt

01 mem8a.txt miss tests/tlb_expected_01.txt

02 mem8a.txt hit tests/tlb_expected_02.txt

03 mem8a.txt hit tests/tlb_expected_03.txt

04 mem8a.txt hit tests/tlb_expected_04.txt

05 mem8a.txt hit tests/tlb_expected_05.txt

06 mem8a.txt miss tests/tlb_expected_06.txt

07 mem8a.txt miss tests/tlb_expected_07.txt

08 mem8a.txt fault tests/tlb_expected_08.txt

09 mem8a.txt fault tests/tlb_expected_09.txt

10 mem8a.txt miss tests/tlb_expected_10.txt

11 mem8a.txt fault tests/tlb_expected_11.txt

12 mem8a.txt miss tests/tlb_expected_12.txt

13 mem8b.txt miss tests/tlb_expected_13.txt

14 mem8b.txt miss tests/tlb_expected_14.txt

15 mem8b.txt hit tests/tlb_expected_15.txt

16 mem8b.txt hit tests/tlb_expected_16.txt

17 mem8b.txt hit tests/tlb_expected_17.txt

18 mem8b.txt hit tests/tlb_expected_18.txt

19 mem8b.txt miss tests/tlb_expected_19.txt

20 mem8b.txt miss tests/tlb_expected_20.txt

21 mem8b.txt fault tests/tlb_expected_21.txt

22 mem8b.txt fault tests/tlb_expected_22.txt

23 mem8b.txt miss tests/tlb_expected_23.txt

24 mem8b.txt fault tests/tlb_expected_24.txt

25 mem8b.txt miss tests/tlb_expected_25.txt

26 mem8c.txt miss tests/tlb_expected_26.txt

27 mem8c.txt miss tests/tlb_expected_27.txt

28 mem8c.txt hit tests/tlb_expected_28.txt

29 mem8c.txt hit tests/tlb_expected_29.txt

30 mem8c.txt hit tests/tlb_expected_30.txt

31 mem8c.txt hit tests/tlb_expected_31.txt

32 mem8c.txt miss tests/tlb_expected_32.txt

33 mem8c.txt miss tests/tlb_expected_33.txt

34 mem8c.txt fault tests/tlb_expected_34.txt

35 mem8c.txt fault tests/tlb_expected_35.txt

36 mem8c.txt miss tests/tlb_expected_36.txt

37 mem8c.txt fault tests/tlb_expected_37.txt

38 mem8c.txt miss tests/tlb_expected_38.txt

39 mem16a.txt miss tests/tlb_expected_39.txt

40 mem16a.txt miss tests/tlb_expected_40.txt

41 mem16a.txt fault tests/tlb_expected_41.txt

42 mem16a.txt hit tests/tlb_expected_42.txt

43 mem16a.txt hit tests/tlb_expected_43.txt

44 mem16a.txt fault tests/tlb_expected_44.txt

45 mem16a.txt miss tests/tlb_expected_45.txt

46 mem16a.txt hit tests/tlb_expected_46.txt

47 mem16a.txt miss tests/tlb_expected_47.txt

48 mem16a.txt hit tests/tlb_expected_48.txt

49 mem16b.txt fault tests/tlb_expected_49.txt

50 mem16b.txt miss tests/tlb_expected_50.txt

51 mem16b.txt hit tests/tlb_expected_51.txt

52 mem16b.txt fault tests/tlb_expected_52.txt

53 mem16b.txt hit tests/tlb_expected_53.txt

54 mem16b.txt miss tests/tlb_expected_54.txt

55 mem16b.txt hit tests/tlb_expected_55.txt

56 mem16b.txt fault tests/tlb_expected_56.txt

57 mem16c.txt fault tests/tlb_expected_57.txt

58 mem16c.txt miss tests/tlb_expected_58.txt

59 mem16c.txt miss tests/tlb_expected_59.txt

60 mem16c.txt hit tests/tlb_expected_60.txt

61 mem16c.txt miss tests/tlb_expected_61.txt

62 mem16c.txt hit tests/tlb_expected_62.txt

63 mem16c.txt miss tests/tlb_expected_63.txt

64 mem16c.txt miss tests/tlb_expected_64.txt

65 mem16c.txt fault tests/tlb_expected_65.txt

66 mem32a.txt miss tests/tlb_expected_66.txt

67 mem32a.txt miss tests/tlb_expected_67.txt

68 mem32a.txt miss tests/tlb_expected_68.txt

69 mem32a.txt miss tests/tlb_expected_69.txt

70 mem32a.txt miss tests/tlb_expected_70.txt

71 mem32a.txt miss tests/tlb_expected_71.txt

72 mem32a.txt miss tests/tlb_expected_72.txt

73 mem32a.txt fault tests/tlb_expected_73.txt

74 mem32a.txt miss tests/tlb_expected_74.txt

75 mem32a.txt fault tests/tlb_expected_75.txt

76 mem32a.txt hit tests/tlb_expected_76.txt

77 mem32a.txt hit tests/tlb_expected_77.txt

78 mem32b.txt fault tests/tlb_expected_78.txt

79 mem32b.txt fault tests/tlb_expected_79.txt

80 mem32b.txt fault tests/tlb_expected_80.txt

81 mem32b.txt fault tests/tlb_expected_81.txt

82 mem32b.txt miss tests/tlb_expected_82.txt

83 mem32b.txt fault tests/tlb_expected_83.txt

84 mem32b.txt miss tests/tlb_expected_84.txt

85 mem32b.txt miss tests/tlb_expected_85.txt

86 mem32b.txt miss tests/tlb_expected_86.txt

87 mem32b.txt miss tests/tlb_expected_87.txt

88 mem32b.txt hit tests/tlb_expected_88.txt

89 mem32b.txt hit tests/tlb_expected_89.txt

