
Homework #3 – Digital Logic Design
Due date: see course website

Directions:

 For short-answer questions, submit your answers in PDF format as a file called <NetID>-hw3.pdf.

Word documents will not be accepted.

o Please type your solutions. If hand-written material must be included, ensure it is

photographed or scanned at high quality and oriented properly so it appears right-side-

up on screen.

o Please include your name on submitted work.

 For Logisim questions:

o Circuits will be tested using an automated system, so you must name the input/output

pins exactly as described, and submit using the specified filename!

o You may only use the basic gates (NOT, AND, OR, NAND, NOR, XOR), D flip-flops,

multiplexers, splitters, and clocks. Everything else you must construct from these.

 A Logisim circuit self-tester has been provided. It works much the same as previous self-test

tools; you just need to have your .circ files in the directory with the tester. The tester is known

to work in the Duke Linux environment, but may possibly work elsewhere. There are a few

things that need to be done for the tester to work correctly:

o Name the files and label the pins as per the directions given. The self tester will NOT

WORK with different names or labels.

o For the FSM question, use the clock available in logisim to run the DFFs.

o Additionally, to run the self tester you will have to place the logisim files in the same

folder as the python script, the jar file and the folder labelled tests.

o You can use the command ./hw3test.py in the following manner:

./hw3test.py <arguments>

The following arguments can be used with that command:

- ALL: Runs all the tests

- CLEAN: Removes all saved test outputs

- circuit1a: Runs tests for circuit1a.circ

- circuit1c: Runs tests for circuit1c.circ

- adder: Runs tests for adder.circ

- fsm: Runs tests for fsm.circ

o Lastly, remember that the tests cases provided are not exhaustive so testing more cases

manually would be recommended.

 You must do all work individually, and you must submit your work electronically via Sakai.

o All submitted circuits will be tested for suspicious similarities to other circuits, and the

test will uncover cheating, even if it is “hidden.”

Q1. Boolean Algebra
(a) [5 points] Write a truth table for the following function: Output=(A+B)∙C +((A∙B)+(C∙B))

(b) [10] Use Logisim to implement and test the circuit from (a). Name this file circuit1a.circ. Your

circuit must have the following pins:

Label Type Bit(s)

A input 1

B input 1

C input 1

out output 1

(c) [5 points] Write a sum-of-products Boolean function for both outputs in the following truth

table and then minimize them using Boolean logic, de Morgan’s laws, etc. (You should use only

AND, OR, and NOT gates.) You do NOT have to have a perfectly optimal circuit, but you must

show some optimizations. You will build and test this circuit in Q3.

A B C out1 out2

0 0 0 0 1

0 0 1 0 0

0 1 0 1 1

0 1 1 1 0

1 0 0 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

(d) [10] Use Logisim to implement and test the circuit from (c). Name this file circuit1c.circ. Your

circuit must have the following pins:

Label Type Bit(s)

A input 1

B input 1

C input 1

out1 output 1

out2 output 1

Q2. Adder/Subtractor Design
[30] Use Logisim to build and test a 16-bit ripple-carry adder/subtractor. You must first create a 1-bit

full adder that you then use as a module in the 16-bit adder. The unit should perform A+B if the sub

input is zero, or A-B if the sub input is 1. The circuit should also output an overflow signal (ovf)

indicating if there was a signed overflow.

Name the file adder.circ. Your circuit must have the following pins:

Label Type Bit(s)

A input 16

B input 16

sub input 1

result output 16

ovf output 1

Note: To split about the 16-bit inputs and to combine the individual outputs of the one-bit adders

together, use Splitters.

Q3. Finite State Machines
Design the following finite state machine (FSM). It has two 1-bit inputs (in1 and in2) and one 1-bit

output (out). The output bit should be equal to one if, on both of the last two cycles, in1 and in2

weren’t equal to each other; otherwise, out should equal zero. For full credit, you must use the

systematic design methodology we covered in class:

(a) [10] Draw a state transition diagram, where each state has a unique “name” that is a string of bits

(e.g., states 00, 01, and 11) as well as the associated value for out. Label all of the arcs between

transitions with the inputs that cause those transitions.

(b) [10] Draw a truth table for the state transition diagram. The inputs are in1, in2, and the current

state bits. The outputs are out and the next state bits.

(c) [30] Use Logisim to implement and test this circuit. Name this file fsm.circ. Your circuit must have

the following pins:

Label Type Bit(s)

in1 input 1

in2 input 1

out output 1

Additionally, to keep this problem from becoming either trivial or troublesome, please adhere to the

following restrictions:

 Do not “pre-process” the inputs in some way, such as by XORing the inputs together to get a

single “are they different right now” input; that’s lame.

 Implement your FSM as a “Moore” machine, meaning that the output should depend exclusively

on the current state. In other words, your output should be written on the state nodes in the

state transition diagram rather than on the edges. When writing the truth table for this, the out

column should just be based on the current state columns.

 Run a “Clock” component to all the clock inputs in the DFFs.

