
Homework #4 – Processor Core Design

 
 

This homework requires you to design and implement the Duke 250/16, a 16-bit MIPS-like, word-
addressed (not byte-addressed) RISC architecture. (A word is 16-bits.) We have specified the 
architecture, and you will use Logisim to design a single cycle implementation of this architecture. The 
architecture’s instructions are specified in Table 1. 

Submission instructions – please read VERY carefully: 

 You must do all work individually, and you must submit your work electronically via Sakai. 

 You will submit a Logisim file called hw4.circ. This file is the circuit for your processor. 

 You will submit a PDF file called hw4.pdf. This file is your description of your processor, and the 
grader will use this description to help assign partial credit. (This file is for your benefit!) The file 
should explain the following issues: 

o What parts of your processor work and which parts do not work. This helps us to find 
partial credit. 

o For subcircuits (e.g., register file or ALU), explain their interfaces so that we can possibly 
test them individually. 

 All submitted circuits will be tested for suspicious similarities to other circuits, and the test will 
uncover cheating, even if it is “hidden.” Plagiarism of Logisim code will be treated as academic 
misconduct. 

 Logisim implementations must use only the components specified in the “Logisim restrictions” 
section later in this document.  

 For successful automated grading, your circuit must meet the requirements specified in the 
“Automated testing” section. 

 You may not use any pre-existing Logisim circuits (i.e., that you could possibly find by searching 
the internet). 

 

Have fun!! 

  



The instruction set 

instruction opcode type usage operation 

add 0000 R add $rd, $rs, $rt $rd=$rs+$rt 

addi 0001 I addi $rt, $rs, Imm $rt=$rs+Imm 

sub 0010 R sub $rd, $rs, $rt $rd=$rs-$rt 

not 0011 R not $rd, $rs $rd = NOT $rs 

xor 0100 R xor $rd, $rs, $rt $rd = $rs  XOR $rt 

sll 0101 R sll $rd, $rs, <shamt> 
$rd = $rs shifted <shamt> to left;   

shamt is unsigned 

srl 0110 R srl $rd, $rs, <shamt> 

$rd = $rs shifted <shamt> to right (logical 

shift: no special treatment of sign bit);  

shamt is unsigned 

lw 0111 I lw $rt, D($rs) $rt = Mem[$rs+D] 

sw 1000 I sw $rt, D($rs) Mem[$rs+D] = $rt 

bne 1001 I bne $rs, $rt, B if ($rs!=$rt) then PC=PC+1+B 

blt 1010 I blt $rs, $rt, B if ($rs<$rt) then PC=PC+1+B 

j 1011 J J L PC = L (upper 4 bits same) 

jr 1100 R jr $rs PC=$rs 

jal 1101 J jal L $r7=PC+1; PC = L 

input 1110 I input $rt $rt = keyboard input 

output 1111 I output $rs print $rs on a TTY display 

Table 1: Duke 250/16 Instructions 

The formats of the R, I, and J type instructions are shown below: number of bits in parenthesis, with the 
specific bit numbers shown in brackets (remember that the least significant or rightmost bit is bit 0).  

R-Type Opcode (4) [12..15] Rs (3) [9..11] Rt (3) [6..8] Rd (3) [3..5] Shamt (3) [0..2] 

I-Type Opcode (4) [12..15] Rs (3) [9..11] Rt(3) [6..8] Immediate (6) [0..5] 

J-Type Opcode (4) [12..15] Address (12) [0..11] 

 

Immediate values are 6-bit signed 2’s complement, so you must ensure that you sign extend it. 

The input instruction is nonblocking, which means it will always complete and write something into the 
destination register.  After a read, bits 15-8 of $rt ($rt[15..8]) should always be zero. If valid data was 
read from the keyboard, $rt[7] should be 0 and $rt[6..0] should be the 7-bit value read. If valid data was 
not available on the keyboard, $rt[7] should be 1 and $rt[6..0] should be 0. This has the effect that $rt 
should be the ASCII code read from the keyboard, or 128 to indicate that no data was available. You will 
use the keyboard input device available in Logisim. 

The output instruction writes the 7-bit ascii character contained in the low 7 bits of $rs ($rs[6..0]) to the 
Logisim TTY output device. Please use the TTY with the following specifications: 13 rows, 80 columns, 
and falling edge. 



Registers 
There are 8 general purpose registers: $r0-$r7. The register $r7 is the link register for the jal 
instruction (similar to $ra in MIPS).  The user of your CPU may write to it with other instructions, but 
that would mess up function call/return for them.  Users of your CPU are also advised to use $r6 as the 
stack pointer.  $r0 is the constant value 0 (i.e., an instruction can specify it as a destination but “writing” 
to $r0 must not change its value).  

Implementation note: Your register file’s read ports must use Tri-state Buffers and a Decoder rather 
than a big Mux (as described in the class notes regarding the register file).  Logically, the two approaches 
are equivalent, but in real implementation, the Tri-state Buffer approach is much faster. Besides, this is a 
great chance to play with Tri-states. Solutions using a Mux within the register file will be penalized up to 
10%. 

The reset input 
The processor has a single input called “reset”; the name must match exactly.  This input resets the 
state of the computer by doing the following: 

1. Reset PC to 0. 
2. Clear the TTY display. 
3. Clear the keyboard input buffer. 
4. Reset the registers in the register file to all-zero. 

NOTE: the Reset input does NOT affect instruction memory or data memory. 

  



Memory layout 

 
Figure 1: The memory model for your CPU. 

The conventions for memory allocation, as performed by the assembler we provide you, are shown in 
Figure 1. This is what’s known as a “Harvard architecture”, which simply means that there is a separate 
memory space for instructions versus data. This maps naturally to the separate “instruction fetch” and 
“load word” facilities in our CPU’s data path. In addition, we reserve the top half of each memory region 
for the kernel, even though no kernel or operating system will exist for this architecture. This means 
that, in instruction memory, user programs can have addresses from 0x0000 to 0x7FFF. In data memory, 
the first 8 Kwords (0x2000 words) are reserved for static data, with the heap starting at address 0x2000 
and growing up. The stack starts at address 0x7FFF and grows down. REMEMBER: this is WORD-
addressed, not BYTE-addressed. 

You should use a Logisim ROM memory block for the instruction memory and a Logisim RAM block for 
data memory.  You can edit the values in these memory blocks manually, but you can also right click 
(control click for Mac users) to open the popup menu that allows you to load an image file.  These image 
files will be generated by the assembler described below. 

Logisim restrictions 
IMPORTANT: On this assignment, you may only use the following Logisim elements: 

1. Anything from the “Wiring” folder 
2. Anything from the “Gates” folder 
3. Anything from the “Plexers” folder 
4. From the “Memory” folder: “D Flip-Flop”, “RAM”, and “ROM” 
5. From the “Input/Output” folder: “Keyboard”, “TTY”, and “Button”. 
6. The “Text” tool 
7. Any sub-circuits you develop from the above 

The penalty for violating these restrictions can be up to 75% of total score! 



Automated testing 
An automated self-test tool has been provided. For the self-test tool to work, your circuit must meet 
the following requirements: 

 Circuit is called hw4.circ and is stored in the same directory as the test tool and associated data. 

 You must name your register file component “RegisterFile” (including capitalization). 

 You must name your reset input “reset” (including capitalization). 

 Testing is based on the Probe component. You must place a Probe on each register in your 

register file named “r0”, “r1”, “r2”, etc. 

 Make sure that the default state of all DFFs is 0 (i.e. that you don’t leave a DFF inside a register 
‘poked’ to a 1 value when you save). Most of the tests toggle the reset line to ignore this issue, 

but the io test cannot, as that would otherwise reset the keyboard buffer. 

 You may use Probes for your own purposes, but only if you leave their label blank. The tester 

filters out unlabeled probes, but any labeled probes other than “r0”, “r1”, etc., will throw off 
the results. 

 Configure the TTY with the following specifications: 13 rows, 80 columns, and falling edge. 

 You may not use a ROM component for any purpose other than your instruction memory, as the 
console automation will overwrite every ROM component in your circuit with the instruction 
data.  

 The tool has been tested on the Duke Linux environment, so that is where we recommend you 
run it. This will mean transferring your circuit to your Duke home directory via SMB (Windows 
share), SFTP, etc. 

The self-test tool is similar to those you’ve used already. You can run “./hw4test.py” to see a usage 
message. It produces “*_actual_*.txt” and “*_diff_*.txt” files so you can see your output and the 
differences between that and what was expected.  If you want to run an individual command line test 
manually, run the hw4test.py tool with the “-v” option to see the exact java command used to execute 
the test, which you can then use yourself. The assembly source files for the tests are provided in the 

assembly-files directory. 

A note on the philosophy behind providing this tester: the goal here is to help you determine any bugs 
you might have missed and supplement your testing effort. Staring at diff files from a test you do not 
understand will generally NOT help you debug your circuit. It is expected that you’ll need to develop 
your own specific tests using the assembler and simulator described below.  

  



The Assembler and Simulator 

We are providing an assembler and a simulator for you to generate test programs and to verify your 
program’s behavior.  The assembler and simulator are posted on the course page (below the link to this 
writeup).  These are very limited tools (e.g., no hex values for constants - only decimal integers).  We 
have tested the assembler on the Duke Linux machines.  You will have to copy the generated memory 
image files to your own machine, or you can port the assembler to whatever machine you have. 

The simulator is useful for debugging your design.  Note that using the verbose flag of the simulator will 
spit out every instruction executed as well as the correct contents of every register—this is very helpful 
during debugging. 

There are two pseudo-instructions available for use in your programs:  

1. la $rd, label   # load address 

2. halt 

The la pseudo-instruction is converted into multiple actual machine instructions that have the effect of 

loading a 16-bit address into the specified register (specifically, a series of addi  and sll 
instructions).  Specifically, the transformation is that: 

la $rd, ADDR 

 

Will become the following, where the bracket notation indicates bits within ADDR: 

addi $rd, $r0, ADDR[15..11] 

sll  $rd, $rd, 5 

addi $rd, $rd, ADDR[10..6] 

sll  $rd, $rd, 5 

addi $rd, $rd, ADDR[5..1] 

sll  $rd, $rd, 1 

addi $rd, $rd, ADDR[0] 

 

The halt instruction is actually a branch that simply branches back to itself, creating an infinite loop 
(though when run with the simulator, this special branch is detected and causes the simulator to 
terminate). Of course, branches are conditional, so to guarantee we loop, a sequence of three 
instructions is emitted, where one of the branches is guaranteed to be taken: 

bne  $r0, $r7, -1 

addi $r7, $r7, 1 

bne  $r0, $r7, -1 

 

For information on using these tools, see the readme.txt included with it! 



Below is a screenshot of these tools being used to assemble and test an included example program: 
 

 



What you don’t need to worry about 
There are many aspects listed above that don’t actually affect your job as the CPU architect. As a result, 

you don’t need to worry about: 

 Stack management – the stack is a convention maintained by programmers writing code for 

your CPU; you don’t have to do anything to make it exist. This means that even though we’ve 

said that $r6 is the stack pointer, you as the CPU designer don’t have to do anything special to 

allow or enforce this. 

 Heap management – same as the stack; it’s maintained by the programmers so you don’t have 

to do anything to make it exist. This means that even though the heap is supposed to start at 

0x2000, you as the CPU designer don’t have to do anything special to allow or enforce this. 

 The kernel – there’s no OS kernel for your CPU, and user programs running on your CPU will 

have direct access to the I/O devices (keyboard+TTY), so you don’t need to worry about 

inventing syscalls, protected instructions, exceptions, etc. 

 The “Harvard architecture” (separate instruction and data memory spaces) will happen naturally 

if you simply design the CPU in the way we described in class. If this were a “von Neumann 

architecture” (a single flat memory space for code+data), then you’d just add some multiplexers 

to choose between the instruction ROM and the data RAM based on the high bits of the 

address. 

Tips for carrying out this project 
 You should break this project into smaller manageable chunks.  You may want to design 

separate subcircuits (use the ADD Circuit option from the Project menu) for 1) ALU, 2) 
Instruction Decode, 3) Register File, 4) Next PC computation, and 5) I find it useful to have a sign 
extender.  Logisim has some documentation for subcircuits.  Note that for subcircuits with many 
inputs and outputs it gets tedious and Logisim is a little buggy sometimes (this will manifest 
when you try to connect to the subcircuit input/output within the main circuit). 

 Write some very simple test programs that test each instruction or incrementally include more 
instructions.  Start with ALU ops, then memory, then branch and jumps. This will make 
debugging much easier. 

 www.asciitable.com is your very good friend. 
 Use the “probe” feature to see what values wire bundles have at different points during 

execution.  You can also use HEX displays to make it very easy to see values (but the circuit area 
gets large with those…) 

 Think carefully about how you route wires around the circuit, keep things as neat as possible 
else debugging gets very difficult. 

 You will use a lot of the splitter wiring component, it can be used to both split off wires and to 
bring wires together to create a bundle. 

 The constant wiring element is your friend, use it where you can… 

 There will be a lot of multiplexers.  No MUXes should need an enable in your design, so you can 
set the properties of the MUX to disable that. 

 Instruction memory ROM should be set to have 16 address bits and a data width of 16 bits.  
 Data memory RAM should be set to have 16 address bits and a data width of 16 bits.  (Note, this 

will actually give you more memory than what the above memory allocation says, but that’s 
currently an assembler limitation.) 



 The data memory RAM should be set to have separate load and store ports.  You will use the 
write enable signal, but you can leave the select and load unconnected, that will make it behave 
as a combinational delay for load instructions. 

 Remember that nearly all Logisim components have properties that allow you to change the 
input and/or output widths, etc.  Use that to your advantage.   

 There should only be a five clocked items in your design (PC register, register file, data memory, 
keyboard and TTY).  Strong recommendation: clock the register file, data memory, and TTY on 
the falling edge of the clock. 

 When debugging, use the single Tick feature or “Poke” the clock to cause it to transition (note: 
you need two pokes for a full clock cycle).   

 When you execute programs with many instructions you can use the simulate feature to have 
the clock tick at a specified frequency.  You’ll want to do this for the sample program provided 
since it executes over 1000 instructions. 

 


