
ECE/CS 250 – Summer 2017 – Prof. Bletsch
Recitation #5

Advanced Logic Design with Logisim

Objective: In this recitation, you will learn how to design more sophisticated digital logic and use Logisim

for the design and simulation of digital circuits.

Complete as much of this as you can during recitation. If you run out of time, please complete the rest

at home.

1. Design a Small Sequential Circuit
Design and simulate a sequential circuit with one input (and a clock input) and the following behavior. If

the input has been equal to 1 for the three previous cycles, then the output is 1. Otherwise, the output

is 0. Use D flip-flops from the logisim library. You must simulate your circuit to test that it behaves as

expected.

Please use the systematic methodology for developing the FSM. Start with a state transition diagram,

write out the truth table, then implement it. Make it a Moore machine (meaning the output depends

solely on the current state, not on inputs; i.e., output can be written on states in the state transition

diagram).

2. Useful Features in Logisim
Logisim has many features that can be very handy. Please experiment with as many of these features

now as you can. They could prove useful on your homeworks.

1) Sub-circuits: If you have not yet created sub-circuits (which was part of the previous recitation),

this is an extremely useful feature. Hierarchy is your friend. It’ll keep your schematics from

becoming unreadable messes.

2) Tunnels: You can “connect” point A to point B with a tunnel. Effectively, you’re saying that

these two points are wired together, but without having to draw the wire. Tunnels can enable

you to keep your schematics much less messy and easier to read.

3) Probes: A probe allows you to observe the value on an internal wire. For debugging, this is very

helpful!

4) Flipping gate orientation: To keep your schematics clean, it can be handy to flip the orientation

of a gate so that it faces one way instead of another. This can be done with the “facing”

attribute, or by using the arrow keys are a shortcut while placing.

3. Using Buses, Splitters, and Wide Gates
Buses and Splitters: Logisim has support for “buses”, groups of 1-bit wires that are bundled together for

convenience (and to make the schematics less messy). Each wire/bus has an attribute that is its width.

Create a bus with a width of 16. Connect it to an input pin, and set the width of the pin to be 16 bits, so

they match. Logisim will show you width mis-matches if you have any. To then use the bus, it is often

helpful to split it later. Use a splitter to pick out all 16 wires of the bus and run each one through a 1-bit

wide NOT gate. Then take the outputs of the NOT gates and bundle them together to create a 16-bit

bus that you connect to a 16-wide output pin.

Wide gates: As with wires, you can specify gates that are wider than 1 bit. For example, you can put in a

NOT gate and then change its attributes to change its width. If it has a width of 4-bits, say, then all 4 bits

into it get inverted, and the output of the NOT gate is a 4-bit bus. During placement of a gate, you can

change its number of data bits by holding Alt and entering a number.

4. Build a (simplistic) Instruction Decoder
For your next homework, you’ll be building a processor in Logisim. One aspect of processor design is

building an instruction decoder that takes a 6-bit opcode (bits x5…x0) and generates signals to control

the processor’s datapath. For this recitation, assume that you have 4 control signals: RWE (1-bit), ALUop

(2-bit), DWE (1-bit), and MuxA (1-bit). Assume that there are the following instructions with their

opcodes in parentheses: add (000001), sub (000011), lw (100100), sw (111100), and beq (100001).

Implement logic to decode the instructions such that each one produces the signals as specified in the

table below. Remember: your circuit has 6 bits of input and 5 bits of output.

 RWE ALUop DWE MuxA

add 1 00 0 0

sub 1 10 0 0

lw 1 00 0 1

sw 0 00 1 1

beq 0 11 0 0

