
ECE/CS 250
Computer Architecture

Summer 2018

Basics of Logic Design:
Finite State Machines

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Drew Hilton (Duke), Alvy Lebeck (Duke), Amir Roth

(Penn)

2

Finite State Machine (FSM)

• FSM = States + Transitions

• Next state = function (current state, inputs)

• Outputs = function (current state, inputs)

• What you do depends on what state you’re in

• Think of a calculator … if you type “+3=“, the result depends on
what you did before, i.e., the state of the calculator

• Canonical Example: Combination Lock

• Must enter 3 8 4 to unlock

3

How FSMs are represented

State 1 State 2

3 / 0

What input we need to see
to do this state transition

What we change the circuit output
to as a result of this state transition

7 / 1

“Self-edges” are possible

4

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• Initial State called “start”: no valid piece of combo seen

• All FSMs get reset to their start state

Start

5

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• Input of 3: transition to new state, output=0

• Any other input: stay in same state, output=0

start saw 3

3/0

{0-2,4-9}/0

if input = 3, go to state

“saw 3” and set output=0

if input != 3, go to state

“start” and set output=0

6

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• If in state “saw 3”:

• Input = 8? Goto state “saw 38” and output=0

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

3/0

{0-2,4-7,9}/0

7

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• If in state “saw 38”:

• Input = 4? Goto state “saw 384” and set output=1 Unlock!

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

8

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• If in state “saw 384”:

• Stay in this state forever and output=1

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

9

Finite State Machines: Example

In this picture, the circles are states.

The arcs between the states are transitions.

The figure is a state transition diagram, and it’s the first thing you

make when designing a finite state machine (FSM).

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

10

Finite State Machines: Caveats

Do NOT assume all FSMs are like this one!

•A finite state machine (FSM) has at least two states, but can have many, many

more. There’s nothing sacred about 4 states (as in this example). Design your

FSMs to have the appropriate number of states for the problem they’re solving.

• Question: how many states would we need to detect sequence 384384?

•Most FSMs don’t have state from which they can’t escape.

11

FSM Types: Moore and Mealy

• Recall: FSM = States + Transitions

• Next state = function (current state, inputs)

• Outputs = function (current state, inputs)

• Write the output on the edges

• This is the most general case

• Called a “Mealy Machine”

• We will assume Mealy Machines in this lecture

• A more restrictive FSM type is a “Moore Machine”

• Outputs = function (current state)

• Write the output in the states

• More often seen in software implementations

“Mealy Machine”

developed in 1955

by George H. Mealy

“Moore Machine”

developed in 1956

by Edward F. Moore

12

Mealy vs Moore

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

start

0

saw 3

0

3

{0-2,4-9}

saw 38

0

8

{0-2,5-9}

3

3

{0-2,4-7,9}
saw 384

1

4

{0-9}

Moore machine: outputs on STATES in red

Mealy machine: outputs on TRANSITIONS in red

13

State Transition Diagram Truth Table

Current State Input Next state Output

Start 3 Saw 3 0 (closed)

Start Not 3 Start 0

Saw 3 8 Saw 38 0

Saw 3 3 Saw 3 0

Saw 3 Not 8 or 3 Start 0

Saw 38 4 Saw 384 1 (open)

Saw 38 3 Saw 3 0

Saw 38 Not 4 or 3 Start 0

Saw 384 Any Saw 384 1

start saw 3

3/0

{0-2,4-9}/0

saw

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

14

State Transition Diagram Truth Table

start saw 3

3/0

{0-2,4-9}/0

saw

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

Digital logic must represent everything in binary, including state names.

But mapping is arbitrary!

We’ll use this mapping:

start = 00

saw 3 = 01

saw 38 = 10

saw 384 = 11

15

State Transition Diagram Truth Table

Current State Input Next state Output

00 (start) 3 01 0 (closed)

00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)

10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states 2 flip-flops to hold the current state of the FSM

inputs to flip-flops are D1D0

outputs of flip-flops are Q1Q0

16

State Transition Diagram Truth Table

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Input can be 0-9 requires 4 bits

input bits are in3, in2, in1, in0

17

State Transition Diagram Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Output

0 0 0 0 1 1 0 1 0

0 0 Not 3
(all binary combos other than 0011)

0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3
(all binary combos other than 1000 & 0011)

0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3
(all binary combos other than 0100 & 0011)

0 0 0

1 1 Any 1 1 1

From here, it’s just like combinational logic design!

Write out product-of-sums equations, optimize, and build.

18

State Transition Diagram Truth Table

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D0 = do the same thing

Q1 Q0 In3 In2 In1 In0 D1 D0 Output

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

19

State Transition Diagram Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Output

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Remember, these represent DFF outputs …and these are the DFF inputs

The DFFs are how we store the state.

20

Truth Table Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

Start with 2 FFs and 4 input bits. FFs hold current state of FSM.

(not showing clock/enable inputs on flip flops)

in3

in2

in1

in0

21

Truth Table Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

22

Truth Table Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

23

Truth Table Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

Not pictured
Follow a similar procedure for D0…

24

FSM Design Principles

• Systematic approach that always works:

• Start with state transition diagram

• Make truth table

• Write out product-of-sums logic equations

• Optimize logic equations (optional)

• Implement logic in circuit

• Sometimes can do something non-systematic

• Requires cleverness, but tough to do in general

• Do not do any of the following!

• Use clock as an input (D input of FF)

• Perform logic on clock signal

(except maybe a NOT gate to go from rising to falling edge triggered)

