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Finite State Machine (FSM) 

• FSM = States + Transitions 

• Next state = function (current state, inputs) 

• Outputs = function (current state, inputs) 

• What you do depends on what state you’re in 

• Think of a calculator … if you type “+3=“, the result depends on 
what you did before, i.e., the state of the calculator 

 

• Canonical Example: Combination Lock 

• Must enter 3 8 4  to unlock 
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How FSMs are represented 

State 1 State 2 

3 / 0 

What input we need to see 
to do this state transition 

What we change the circuit output  
to as a result of this state transition 

7 / 1 

“Self-edges” are possible 
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Finite State Machines: Example 

• Combination Lock Example: 

• Need to enter 3 8 4 to unlock 

 

• Initial State called “start”: no valid piece of combo seen 

• All FSMs get reset to their start state 

Start 
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Finite State Machines: Example 

• Combination Lock Example: 

• Need to enter 3 8 4 to unlock 

 

• Input of 3: transition to new state, output=0 

• Any other input: stay in same state, output=0 

start saw 3 

3/0 

{0-2,4-9}/0 

if input = 3, go to state 

“saw 3” and set output=0 

if input != 3, go to state  

“start” and set output=0 
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Finite State Machines: Example 

• Combination Lock Example: 

• Need to enter 3 8 4 to unlock 

• If in state “saw 3”:  

• Input = 8?  Goto state “saw 38” and output=0 

 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 38 

8/0 

3/0 

{0-2,4-7,9}/0 
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Finite State Machines: Example 

• Combination Lock Example: 

• Need to enter 3 8 4 to unlock 

• If in state “saw 38”:  

• Input = 4?  Goto state “saw 384” and set output=1  Unlock! 

 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 
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Finite State Machines: Example 

• Combination Lock Example: 

• Need to enter 3 8 4 to unlock 

• If in state “saw 384”:  

• Stay in this state forever and output=1 

 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 

{0-9}/1 
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Finite State Machines: Example 

In this picture, the circles are states.   

The arcs between the states are transitions. 

 

The figure is a state transition diagram, and it’s the first thing you 

make when designing a finite state machine (FSM). 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 

{0-9}/1 
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Finite State Machines: Caveats 

Do NOT assume all FSMs are like this one! 

 

•A finite state machine (FSM) has at least two states, but can have many, many 

more.  There’s nothing sacred about 4 states (as in this example).  Design your 

FSMs to have the appropriate number of states for the problem they’re solving.   

• Question: how many states would we need to detect sequence 384384? 

 

•Most FSMs don’t have state from which they can’t escape. 
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FSM Types: Moore and Mealy 

• Recall: FSM = States + Transitions 

• Next state = function (current state, inputs) 

• Outputs = function (current state, inputs) 

• Write the output on the edges 

• This is the most general case 

• Called a “Mealy Machine”  

• We will assume Mealy Machines in this lecture 

 

• A more restrictive FSM type is a “Moore Machine” 

• Outputs = function (current state) 

• Write the output in the states 

• More often seen in software implementations 

“Mealy Machine” 

developed in 1955  

by George H. Mealy 

“Moore Machine” 

developed in 1956 

by Edward F. Moore 
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Mealy vs Moore 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 

{0-9}/1 

start 

0 

saw 3 

0 

3 

{0-2,4-9} 

saw 38 

0 

8 

{0-2,5-9} 

3 

3 

{0-2,4-7,9} 
saw 384 

1 

4 

{0-9} 

Moore machine: outputs on STATES in red 

Mealy machine: outputs on TRANSITIONS in red 
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State Transition Diagram  Truth Table 

Current State Input Next state Output 

Start 3 Saw 3 0 (closed) 

Start Not 3 Start 0 

Saw 3 8 Saw 38 0 

Saw 3 3 Saw 3 0 

Saw 3 Not 8 or 3 Start 0 

Saw 38 4 Saw 384 1 (open) 

Saw 38 3 Saw 3 0 

Saw 38 Not 4 or 3 Start 0 

Saw 384 Any Saw 384 1 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 

38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 

{0-9}/1 
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State Transition Diagram  Truth Table 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 

38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 

{0-9}/1 

Digital logic  must represent everything in binary, including state names.  

But mapping is arbitrary! 

 

We’ll use this mapping: 

start  = 00 

saw 3  = 01 

saw 38  = 10 

saw 384 = 11 



15 

State Transition Diagram  Truth Table 

Current State Input Next state Output 

00 (start) 3 01 0 (closed) 

00 Not 3 00 0 

01 8 10 0 

01 3 01 0 

01 Not 8 or 3 00 0 

10 4 11 1 (open) 

10 3 01 0 

10 Not 4 or 3 00 0 

11 Any 11 1 

4 states  2 flip-flops to hold the current state of the FSM 

inputs to flip-flops are D1D0 

outputs of flip-flops are Q1Q0 
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State Transition Diagram  Truth Table 

Q1 Q0 Input D1 D0 Output 

0 0 3 0 1 0 (closed) 

0 0 Not 3 0 0 0 

0 1 8 1 0 0 

0 1 3 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 4 1 1 1 (open) 

1 0 3 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

Input can be 0-9  requires 4 bits 

input bits are in3, in2, in1, in0 
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State Transition Diagram  Truth Table 

Q1 Q0 In3 In2 In1 In0 D1 D0 Output 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 
(all binary combos other than 0011) 

0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 
(all binary combos other than 1000 & 0011) 

0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 
(all binary combos other than 0100 & 0011) 

0 0 0 

1 1 Any 1 1 1 

From here, it’s just like combinational logic design! 

Write out product-of-sums equations, optimize, and build. 
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State Transition Diagram  Truth Table 

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

 

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

 

D0 = do the same thing 

Q1 Q0 In3 In2 In1 In0 D1 D0 Output 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 
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State Transition Diagram  Truth Table 

Q1 Q0 In3 In2 In1 In0 D1 D0 Output 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

Remember, these represent DFF outputs …and these are the DFF inputs 

The DFFs are how we store the state. 
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Truth Table  Sequential Circuit 

D1      Q1  

FF1 
!Q1 

D0      Q0  

FF0 
!Q0 

Start with 2 FFs and 4 input bits.  FFs hold current state of FSM. 

(not showing clock/enable inputs on flip flops) 

in3 

in2 

in1 

in0 
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Truth Table  Sequential Circuit 

D1      Q1  

FF1 
!Q1 

D0      Q0  

FF0 
!Q0 

 

output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

in3 

in2 

in1 

in0 



22 

Truth Table  Sequential Circuit 

D1      Q1  

FF1 
!Q1 

D0      Q0  

FF0 
!Q0 

 

output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

in3 

in2 

in1 

in0 

output 
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Truth Table  Sequential Circuit 

D1      Q1  

FF1 
!Q1 

D0      Q0  

FF0 
!Q0 

 

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

in3 

in2 

in1 

in0 

output 

Not pictured 
Follow a similar procedure for D0… 
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FSM Design Principles 

• Systematic approach that always works: 

• Start with state transition diagram 

• Make truth table 

• Write out product-of-sums logic equations 

• Optimize logic equations (optional) 

• Implement logic in circuit 

• Sometimes can do something non-systematic 

• Requires cleverness, but tough to do in general 

 

• Do not do any of the following! 

• Use clock as an input (D input of FF) 

• Perform logic on clock signal 

(except maybe a NOT gate to go from rising to falling edge triggered) 


