ECE/CS 250 Computer Architecture

Summer 2018

Basics of Logic Design: Finite State Machines

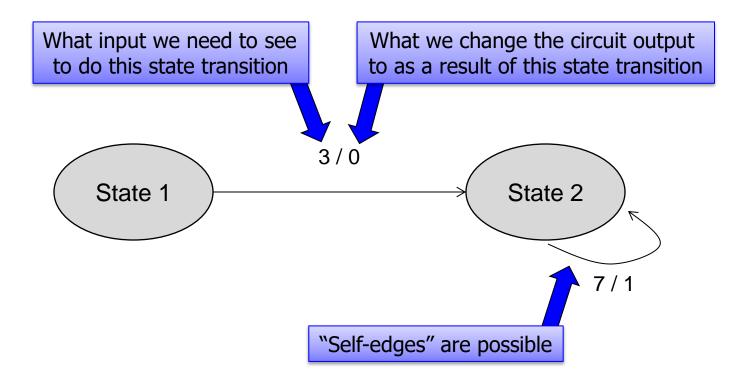
> Tyler Bletsch Duke University

Slides are derived from work by Daniel J. Sorin (Duke), Drew Hilton (Duke), Alvy Lebeck (Duke), Amir Roth (Penn)

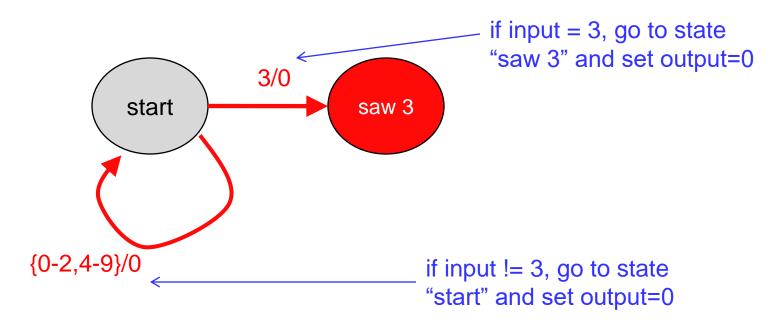
Finite State Machine (FSM)

- FSM = States + Transitions
 - Next state = function (current state, inputs)
 - Outputs = function (current state, inputs)
- What you do depends on what state you're in
 - Think of a calculator ... if you type "+3=", the result depends on what you did before, i.e., the state of the calculator
- Canonical Example: Combination Lock
 - Must enter 3 8 4 to unlock

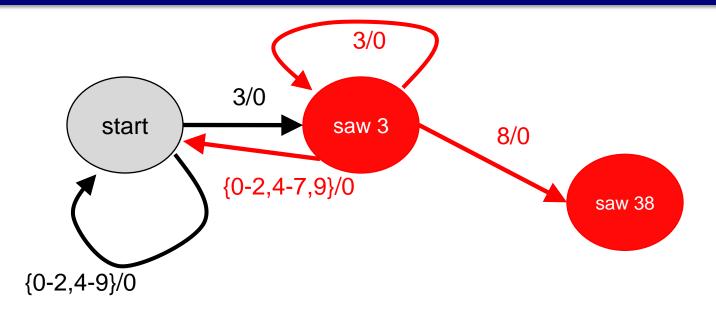
How FSMs are represented



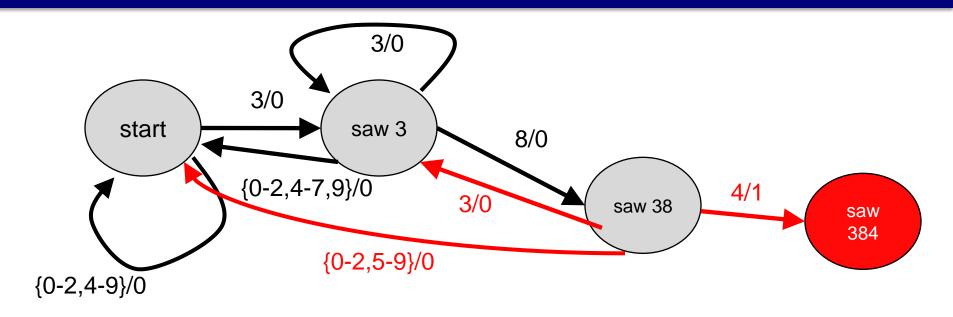
- Combination Lock Example:
 - Need to enter 3 8 4 to unlock
- Initial State called "start": no valid piece of combo seen
 - All FSMs get reset to their start state



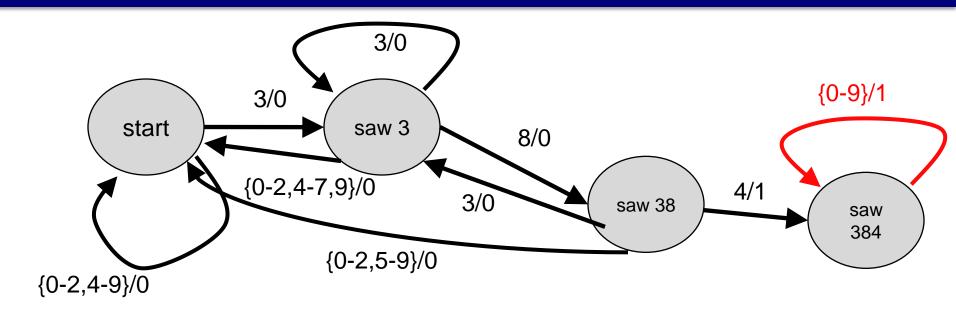
- Combination Lock Example:
 - Need to enter **3** 8 4 to unlock
- Input of 3: transition to new state, output=0
- Any other input: stay in same state, output=0



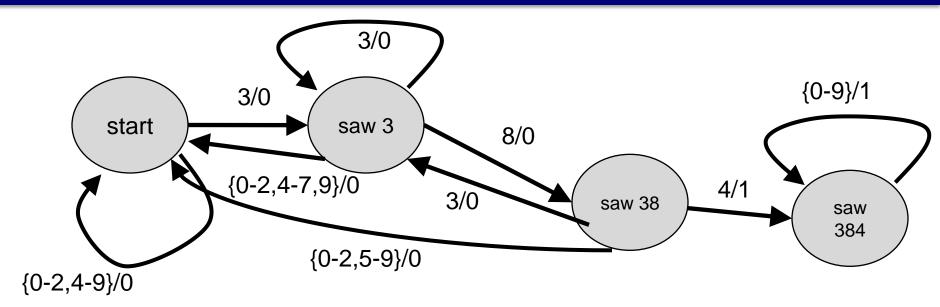
- Combination Lock Example:
 - Need to enter **3 8** 4 to unlock
- If in state "saw 3":
 - Input = 8? Goto state "saw 38" and output=0



- Combination Lock Example:
 - Need to enter **3 8 4** to unlock
- If in state "saw 38":
 - Input = 4? Goto state "saw 384" and set $output=1 \rightarrow Unlock!$



- Combination Lock Example:
 - Need to enter **3 8 4** to unlock
- If in state "saw 384":
 - Stay in this state forever and output=1



In this picture, the circles are states.

The arcs between the states are transitions.

The figure is a state transition diagram, and it's the first thing you make when designing a finite state machine (FSM).

Finite State Machines: Caveats

Do NOT assume all FSMs are like this one!

•A finite state machine (FSM) has at least two states, but can have many, many more. There's nothing sacred about 4 states (as in this example). Design your FSMs to have the appropriate number of states for the problem they're solving.

• Question: how many states would we need to detect sequence 384384?

•Most FSMs don't have state from which they can't escape.

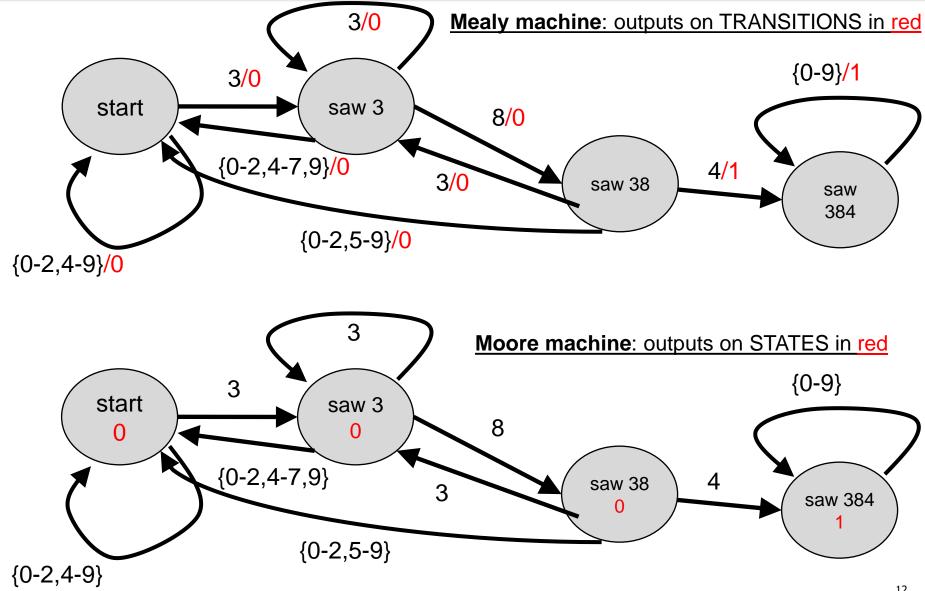
FSM Types: Moore and Mealy

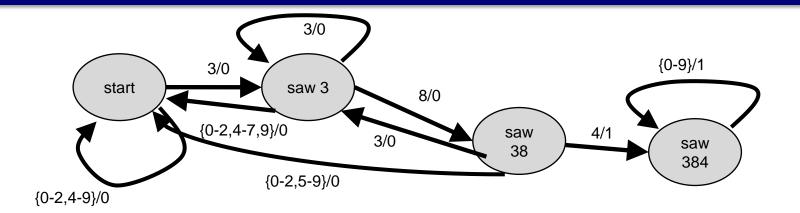
- Recall: FSM = States + Transitions
 - Next state = function (current state, inputs)
 - Outputs = function (current state, inputs)
 - Write the output on the edges
 - This is the most general case
 - Called a "Mealy Machine"
 - We will assume Mealy Machines in this lecture
- A more restrictive FSM type is a "Moore Machine"
 - Outputs = function (current state)
 - Write the output in the states
 - More often seen in software implementations

"Mealy Machine" developed in 1955 by George H. Mealy

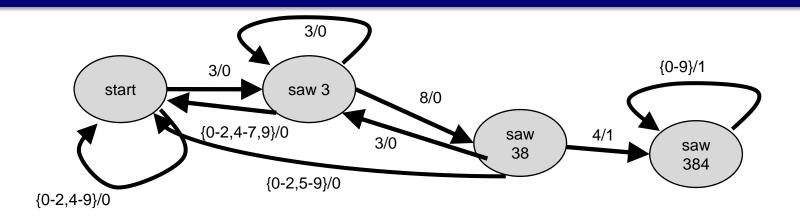
"Moore Machine" developed in 1956 by Edward F. Moore

Mealy vs Moore





Current State	Input	Next state	Output
Start	3	Saw 3	0 (closed)
Start	Not 3	Start	0
Saw 3	8	Saw 38	0
Saw 3	3	Saw 3	0
Saw 3	Not 8 or 3	Start	0
Saw 38	4	Saw 384	1 (open)
Saw 38	3	Saw 3	0
Saw 38	Not 4 or 3	Start	0
Saw 384	Any	Saw 384	1



Digital logic \rightarrow must represent everything in binary, including state names. But mapping is arbitrary!

```
We'll use this mapping:

start = 00

saw 3 = 01

saw 38 = 10

saw 384 = 11
```

Current State	Input	Next state	Output
00 (start)	3	01	0 (closed)
00	Not 3	00	0
01	8	10	0
01	3	01	0
01	Not 8 or 3	00	0
10	4	11	1 (open)
10	3	01	0
10	Not 4 or 3	00	0
11	Any	11	1

4 states \rightarrow 2 flip-flops to hold the current state of the FSM inputs to flip-flops are D₁D₀ outputs of flip-flops are Q₁Q₀

Q1	Q0	Input	D1	D0	Output
0	0	3	0	1	0 (closed)
0	0	Not 3	0	0	0
0	1	8	1	0	0
0	1	3	0	1	0
0	1	Not 8 or 3	0	0	0
1	0	4	1	1	1 (open)
1	0	3	0	1	0
1	0	Not 4 or 3	0	0	0
1	1	Any	1	1	1

Input can be 0-9 \rightarrow requires 4 bits input bits are in3, in2, in1, in0

Q1	Q0	In3	In2	In1	In0	D1	D0	Output
0	0	0	0	1	1	0	1	0
0	0	Not 3 (all binary combos other than 0011)				0	0	0
0	1	1	0	0	0	1	0	0
0	1	0	0	1	1	0	1	0
0	1	Not 8 or 3 (all binary combos other than 1000 & 0011)				0	0	0
1	0	0	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	Not 4 or 3 (all binary combos other than 0100 & 0011)				0	0	0
1	1	Any				1	1	1

From here, it's just like combinational logic design! Write out product-of-sums equations, optimize, and build.

Q1	Q0	In3	In2	In1	In0	D1	D0	Output
0	0	0	0	1	1	0	1	0
0	0	0	0	1	1	0	1	0
0	0			Not 3		0	0	0
0	1	1	0	0	0	1	0	0
0	1	0	0	1	1	0	1	0
0	1		Not 8 or 3			0	0	0
1	0	0	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	Not 4 or 3				0	0	0
1	1	Any			1	1	1	

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

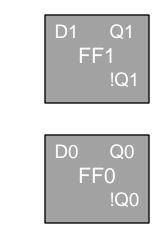
D0 = do the same thing

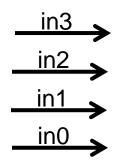
Q1	Q0	In3	In2	In1	In0	D1	DO	Output
0	0	0	0	1	1	0	1	0
0	0			Not 3		0	0	0
0	1	1	0	0	0	1	0	0
0	1	0	0	1	1	0	1	0
0	1	Not 8 or 3				0	0	0
1	0	0	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	Not 4 or 3				0	0	0
1	1	Any				1	1	1
L	γ/						γ)	

Remember, these represent **DFF outputs**

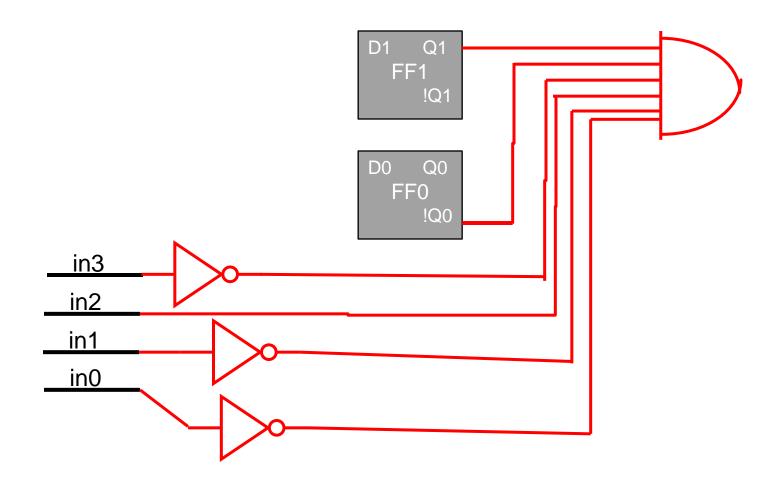
...and these are the DFF inputs

The DFFs are how we store the **state**.

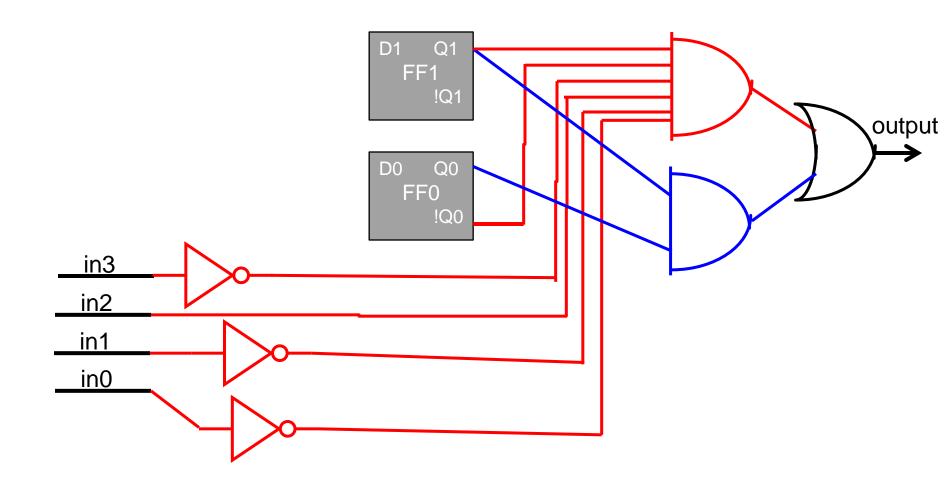




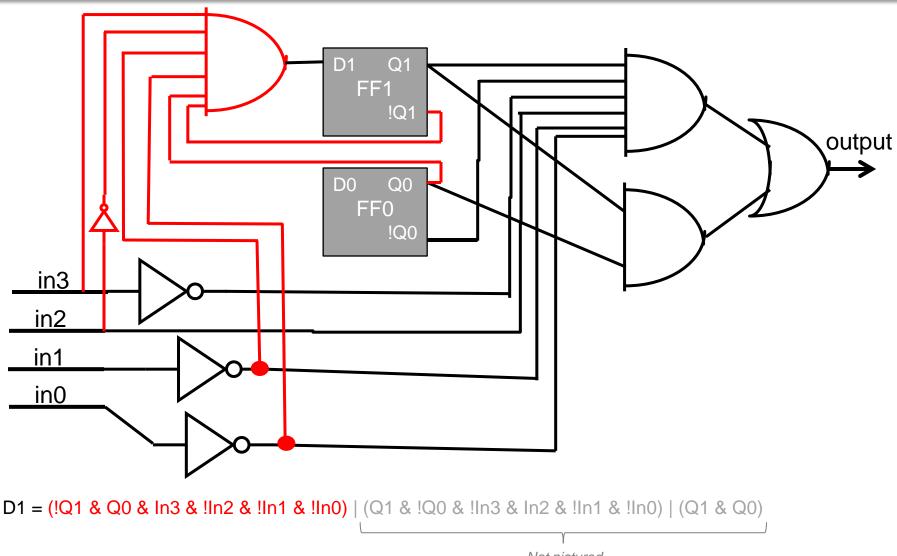
Start with 2 FFs and 4 input bits. FFs hold current state of FSM. (not showing clock/enable inputs on flip flops)



output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)



output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)



Follow a similar procedure for D0...

Not pictured

FSM Design Principles

- Systematic approach that always works:
 - Start with state transition diagram
 - Make truth table
 - Write out product-of-sums logic equations
 - Optimize logic equations (optional)
 - Implement logic in circuit
- Sometimes can do something non-systematic
 - Requires cleverness, but tough to do in general
- Do not do any of the following!
 - Use clock as an input (D input of FF)
 - Perform logic on clock signal

(except maybe a NOT gate to go from rising to falling edge triggered)