
ECE/CS 250
Computer Architecture

Summer 2018

Processor Design: Datapath and Control

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Amir Roth (Penn)

2

Where We Are in This Course Right Now

• So far:

• We know what a computer architecture is

• We know what kinds of instructions it might execute

• We know how to perform arithmetic and logic in an ALU

• Now:

• We learn how to design a processor in which the ALU is just one
component

• Processor must be able to fetch instructions, decode them, and execute
them

• There are many ways to do this, even for a given ISA

• Next:

• We learn how to design memory systems

3

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Mapping an ISA to a datapath

• Control

• Exceptions

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

4

Readings

• Patterson and Hennessy

• Chapter 4: Sections 4.1-4.4

• Read this chapter carefully

• It has many more examples than I can cover in class

5

So You Have an ALU…

• Important reminder: a processor is just a big finite state
machine (FSM) that interprets some ISA

• Start with one instruction
 add $3,$2,$4

• ALU performs just a small part of execution of instruction

• You have to read and write registers

• You have have to fetch the instruction to begin with

• What about loads and stores?

• Need some sort of memory interface

• What about branches?

• Need some hardware for that, too

6

Datapath and Control

• Datapath: registers, memories, ALUs (computation)

• Control: which registers read/write, which ALU operation

• Fetch: get instruction, translate into control

• Processor Cycle: Fetch Decode Execute

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch

7

Building a Processor for an ISA

• Fetch is pretty straightforward

• Just need a register (called the Program Counter or PC) to hold the
next address to fetch from instruction memory

• Provide address to instruction memory instruction memory provides
instruction at that address

• Let’s start with the datapath

1. Look at ISA

2. Make sure datapath can implement every instruction

8

Datapath for MIPS ISA

• Consider only the following instructions
add $1,$2,$3

addi $1,$2,<value>

lw $1,4($3)

sw $1,4($3)

beq $1,$2,PC_relative_target

j Absolute_target

• Why only these?

• Most other instructions are similar from datapath viewpoint

• I leave the ones that aren’t for you to figure out

9

Review: A Register

• Register: DFF array with shared clock, write-enable (WE)

• Notice: both a clock and a WE (DFFWE = clock & registerWE)

• Convention I: clock represented by wedge

• Convention II: if no WE, DFF is written on every clock

DFF

DFF

DFF

D0

DN-1

D1

CLK
WE

Q0

Q1

QN-1

D Q

N N

WE

32 bit reg

D Q

E Q

Note: Above is the “classic” register we

learned before; we’re just introducing a

new symbol for the same thing

=

10

Uses of Registers

• A single register is good for some things

• PC: program counter

• Other things which aren’t the ISA registers (more later in semester)

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch

11

What About the ISA Registers?

• Register file: the ISA (“architectural”, ”visible”) registers

• Two read “ports” + one write “port”

• Maximum number of reads/writes in single instruction (R-type)

• Port: wires for accessing an array of data

• Data bus: width of data element (MIPS: 32 bits)

• Address bus: width of log2 number of elements (MIPS: 5 bits)

• Write enable: if it’s a write port

• M ports = M parallel and independent accesses

Register File

RS1VAL

RS2VAL

RDVAL

RD WE RS1 RS2

RD = dest reg

RS = source reg

12

A Register File With Four Registers

13

Add a Read Port for RS1

• Output of each register into 4to1 mux (RS1VAL)

• RS1 is select input of RS1VAL mux

RS1

RS1VAL

14

Add Another Read Port for RS2

• Output of each register into another 4to1 mux (RS2VAL)

• RS2 is select input of RS2VAL mux

RS1

RS1VAL

RS2VAL

RS2

15

Add a Write Port for RD

• Input RDVAL into each register

• Enable only one register’s WE: (Decoded RD) & (WE)

• What if we needed two write ports?

RS1

RS1VAL

RS2VAL

RS2 RD WE

RDVAL

2-to-4 decoder

16

Another Read Port Implementation

• A read port that uses muxes is fine for 4 registers

• Not so good for 32 registers (32-to-1 mux is very slow)

• Alternative implementation uses tri-state buffers
• Truth table (E = enable, D = input, Q = output)

E D Q

1 D D

0 D Z

• Z: “high impedance” state, no current flowing

• Mux: connect multiple tri-stated buses to one output bus

• Key: only one input “driving” at any time, all others must be in “Z”

• Else, all hell breaks loose (electrically)

D Q

E

17

Register File With Tri-State Read Ports

RS2 RS1 RD WE

RDVAL
RS2VAL

RS1VAL

18

Another Useful Component: Memory

• Memory: where instructions and data reside

• One read/write “port”: one access per cycle, either read or write

• One address bus

• One input data bus for writes, one output data bus for reads

• Actually, a more traditional definition of memory is

• One input/output data bus

• No clock asynchronous “strobe” instead

Memory

DATAOUT DATAIN

WE

ADDRESS

19

Let’s Build A MIPS-like Datapath

20

Start With Fetch

• PC and instruction memory

• A +4 incrementer computes default next instruction PC

• Why +4 (and not +1)? What will it be for 16-bit Duke 250/16?

P

C

Insn

Mem

+

4

21

First Instruction: add $rd, $rs, $rt

• Add register file and ALU

P

C

Insn

Mem

Register

File

Op(6) rs(5) rt(5) rd(5) Sh(5) Func(6) R-type

s1 s2 d

+

4

rs

rt

rs + rt

22

Second Instruction: addi $rt, $rs, imm

• Destination register can now be either rd or rt

• Add sign extension unit and mux into second ALU input

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

+

4

rs

Extended(imm)

sign extension (sx) unit

23

Third Instruction: lw $rt, imm($rs)

• Add data memory, address is ALU output (rs+imm)

• Add register write data mux to select memory output or ALU output

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

Data

Mem

a

d

+

4

24

Fourth Instruction: sw $rt, imm($rs)

• Add path from second input register to data memory data input

• Disable RegFile’s WE signal

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

Data

Mem

a

d

+

4

?

25

Fifth Instruction: beq $1,$2,target

• Add left shift unit (why?) and adder to compute PC-relative branch target

• Add mux to do what?

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

Data

Mem

a

d

+

4

<<

2

+

z

26

Sixth Instruction: j

• Add shifter to compute left shift of 26-bit immediate

• Add additional PC input mux for jump target

P

C

Insn

Mem

Register

File

S

X

Op(6) J-type Immed(26)

s1 s2 d

Data

Mem

a

d

+

4

<<

2

+

<<

2

27

Seventh, Eight, Ninth Instructions

• Are these the paths we would need for all instructions?
sll $1,$2,4 // shift left logical

• Like an arithmetic operation, but need a shifter too

slt $1,$2,$3 // set less than (slt)

• Like subtract, but need to write the condition bits, not the result

• Need zero extension unit for condition bits

• Need additional input to register write data mux

jal absolute_target // jump and link

• Like a jump, but also need to write PC+4 into $ra ($31)

• Need path from PC+4 adder to register write data mux

• Need to be able to specify $31 as an implicit destination

jr $31 // jump register

• Like a jump, but need path from register read to PC write mux

28

Clock Timing

• Must deliver clock(s) to avoid races

• Can’t write and read same value at same clock edge

• Particularly a problem for RegFile and Memory

• May create multiple clock edges (from single input clock) by
using buffers (to delay clock) and inverters

• For Homework 4 (the Duke 250/16 CPU):

• Keep the clock SIMPLE and GLOBAL

• You may need to do the PC on rising edge and everything else on
falling edge

• Changing clock edges in this way will separate PC++ from logic

• Otherwise, if the PC changes while the operation is occurring, the
instruction bits will change before the answer is computed ->
non-deterministic behavior

• Note: A cheap way to make something trigger on the other clock
edge is to NOT the clock on the way in to that component

29

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Clocking strategies

• Mapping an ISA to a datapath

• Control

• Exceptions

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

30

What Is Control?

• 9 signals control flow of data through this datapath

• MUX selectors, or register/memory write enable signals

• Datapath of current microprocessor has 100s of control signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

31

Example: Control for add

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

BR=0

JP=0

Rwd=0

DMwe=0 ALUop=0

ALUinB=0 Rdst=1

Rwe=1

32

Example: Control for sw

• Difference between a sw and an add is 5 signals

• 3 if you don’t count the X (“don’t care”) signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe=0

ALUinB=1

DMwe=1

JP=0

ALUop=0

BR=0

Rwd=X

Rdst=X

33

Example: Control for beq $1,$2,target

• Difference between a store and a branch is only 4 signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe=0

ALUinB=0

DMwe=0

JP=0

ALUop=1

BR=1

Rwd=X

Rdst=X

34

How Is Control Implemented?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control?

35

Implementing Control

• Each instruction has a unique set of control signals

• Most signals are function of opcode

• Some may be encoded in the instruction itself

• E.g., the ALUop signal is some portion of the MIPS Func field

+ Simplifies controller implementation

– Requires careful ISA design

• Options for implementing control

1. Use instruction type to look up control signals in a table

2. Design FSM whose outputs are control signals

• Either way, goal is same: turn instruction into control signals

36

Control Implementation: ROM

• ROM (read only memory): like a RAM but unwritable

• Bits in data words are control signals

• Lines indexed by opcode

• Example: ROM control for our simple datapath

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd

add 0 0 0 0 0 1 1 0

addi 0 0 1 0 0 1 0 0

lw 0 0 1 0 0 1 0 1

sw 0 0 1 0 1 0 0 0

beq 1 0 0 1 0 0 0 0

j 0 1 0 0 0 0 0 0

opcode

37

ROM vs. Combinational Logic

• A control ROM is fine for 6 insns and 9 control signals

• A real machine has 100+ insns and 300+ control signals

• Even “RISC”s have lots of instructions

• 30,000+ control bits (~4KB)

– Not huge, but hard to make fast

• Control must be faster than datapath

• Alternative: combinational logic

• It’s that thing we know how to do! Nice!

• Exploits observation: many signals have few 1s or few 0s

38

ALUinB

Control Implementation: Combinational Logic

• Example: combinational logic control for our simple datapath

opcode add

addi

lw

sw

beq

j

BR JP DMwe Rwd Rdst ALUop Rwe

39

Datapath and Control Timing

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

Control (ROM or combinational logic)

Read IMem Read Registers

(Read Control ROM)

Read DMEM Write DMEM
Write Registers

Write PC

How do we sub-divide timing like this? Pipelining! (Covered later)

40

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Clocking strategies

• Mapping an ISA to a datapath

• Control

• Exceptions

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

41

Exceptions

• Exceptions and interrupts

• Infrequent (exceptional!) events

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer

• Handling requires intervention from operating system

• End program: divide-by-0, protection fault, illegal insn, ^C

• Fix and restart program: I/O, page fault, ^Z, timer

• Handling should be transparent to application code

• Don’t want to (can’t) constantly check for these using insns

• Want “Fix and restart” equivalent to “never happened”

42

Exception Handling

• What does exception handling look like to software?

• When exception happens…

• Control transfers to OS at pre-specified exception handler address

• OS has privileged access to registers user processes do not see

• These registers hold information about exception

• Cause of exception (e.g., page fault, arithmetic overflow)

• Other exception info (e.g., address that caused page fault)

• PC of application insn to return to after exception is fixed

• OS uses privileged (and non-privileged) registers to do its “thing”

• OS returns control to user application

• Same mechanism available programmatically via SYSCALL

43

MIPS Exception Handling

• MIPS uses registers to hold state during exception handling

• These registers live on “coprocessor 0”

• $14: EPC (holds PC of user program during exception handling)

• $13: exception type (SYSCALL, overflow, etc.)

• $8: virtual address (that produced page/protection fault)

• $12: exception mask (which exceptions trigger OS)

• Exception registers accessed using two privileged
instructions mfc0, mtc0

• Privileged = user process can’t execute them

• mfc0: move (register) from coprocessor 0 (to user reg)

• mtc0: move (register) to coprocessor 0 (from user reg)

• Privileged instruction rfe restores user mode

• Kernel executes this instruction to restore user program

44

MIPS Exception Handling

• MIPS uses registers to hold state during exception handling

• These registers live on “coprocessor 0”

• $14: EPC (holds PC of user program during exception handling)

• $13: exception type (SYSCALL, overflow, etc.)

• $8: virtual address (that produced page/protection fault)

• $12: exception mask (which exceptions trigger OS)

• Exception registers accessed using two privileged
instructions mfc0, mtc0

• Privileged = user process can’t execute them

• mfc0: move (register) from coprocessor 0 (to user reg)

• mtc0: move (register) to coprocessor 0 (from user reg)

• Privileged instruction rfe restores user mode

• Kernel executes this instruction to restore user program

45

Implementing Exceptions

• Why do architects care about exceptions?

• Because we use datapath and control to implement them

• More precisely… to implement aspects of exception handling

• Recognition of exceptions

• Transfer of control to OS

• Privileged OS mode

• Later in semester, we’ll talk more about exceptions (b/c we
need them for I/O)

46

Datapath with Support for Exceptions

• Co-processor register (CR) file needn’t be implemented as RF

• Independent registers connected directly to pertinent muxes

• PSR (processor status register): in privileged mode?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

I

R
B

A

O

D

Co-procesor

Register File

P

S

R

ALUinAC

PCwC

CRwd CRwe

PSRs

PSRr

47

Summary

• We now know how to build a fully functional processor

• But …

• We’re still treating memory as a black box (actually two green boxes, to
be precise)

• Our fully functional processor is slow. Really, really slow.

48

“Single-Cycle” Performance

• Useful metric: cycles per instruction (CPI)

+ Easy to calculate for single-cycle processor: CPI = 1

• Seconds/program = (insns/program) * 1 CPI * (N seconds/cycle)

• ICQ: How many cycles/second in 3.8 GHz processor?

– Slow!

• Clock period must be elongated to accommodate longest operation

• In our datapath: lw

• Goes through five structures in series: insn mem, register file
(read), ALU, data mem, register file again (write)

• No one will buy a machine with a slow clock

• Not even your grandparents!

• Later in semester: faster processor cores

49

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Clocking strategies

• Mapping an ISA to a datapath

• Control

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Next up: Memory Systems

