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Where We Are in This Course Right Now 

• So far: 

• We know what a computer architecture is 

• We know what kinds of instructions it might execute 

• We know how to perform arithmetic and logic in an ALU 

• Now: 

• We learn how to design a processor in which the ALU is just one 
component 

• Processor must be able to fetch instructions, decode them, and execute 
them 

• There are many ways to do this, even for a given ISA  

• Next: 

• We learn how to design memory systems 
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This Unit: Processor Design 

• Datapath components and timing 

• Registers and register files 

• Memories (RAMs) 

• Mapping an ISA to a datapath 

• Control 

• Exceptions 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Readings 

• Patterson and Hennessy 

• Chapter 4: Sections 4.1-4.4 

• Read this chapter carefully 

• It has many more examples than I can cover in class 
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So You Have an ALU… 

• Important reminder: a processor is just a big finite state 
machine (FSM) that interprets some ISA 

 

• Start with one instruction 
 add $3,$2,$4 

• ALU performs just a small part of execution of instruction 

• You have to read and write registers 

• You have have to fetch the instruction to begin with 

 

• What about loads and stores? 

• Need some sort of memory interface 

• What about branches? 

• Need some hardware for that, too 
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Datapath and Control 

• Datapath: registers, memories, ALUs (computation) 

• Control: which registers read/write, which ALU operation 

• Fetch: get instruction, translate into control 

• Processor Cycle: Fetch  Decode  Execute 

PC 
Insn 

memory 

Register 

File 

Data 

Memory 

control 

datapath 

fetch 
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Building a Processor for an ISA 

• Fetch is pretty straightforward 

• Just need a register (called the Program Counter or PC) to hold the 
next address to fetch from instruction memory 

• Provide address to instruction memory  instruction memory provides 
instruction at that address  

 

• Let’s start with the datapath 

1. Look at ISA 

2. Make sure datapath can implement every instruction 
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Datapath for MIPS ISA 

• Consider only the following instructions 
add $1,$2,$3 

addi $1,$2,<value> 

lw $1,4($3) 

sw $1,4($3) 

beq $1,$2,PC_relative_target 

j Absolute_target 

 

• Why only these? 

• Most other instructions are similar from datapath viewpoint 

• I leave the ones that aren’t for you to figure out 
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Review: A Register 

• Register: DFF array with shared clock, write-enable (WE) 

• Notice: both a clock and a WE (DFFWE = clock & registerWE) 

• Convention I: clock represented by wedge 

• Convention II: if no WE, DFF is written on every clock 

DFF 

DFF 

DFF 

D0 

DN-1 

D1 

CLK 
WE 

Q0 

Q1 

QN-1 

D Q 

N N 

WE 

32 bit reg 

D Q 

E Q 

Note: Above is the “classic” register we 

learned before; we’re just introducing a 

new symbol for the same thing 

= 
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Uses of Registers 

• A single register is good for some things 

• PC: program counter 

• Other things which aren’t the ISA registers (more later in semester) 
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What About the ISA Registers? 

• Register file: the ISA (“architectural”, ”visible”) registers 

• Two read “ports” + one write “port” 

• Maximum number of reads/writes in single instruction (R-type) 

• Port: wires for accessing an array of data 

• Data bus: width of data element (MIPS: 32 bits) 

• Address bus: width of log2 number of elements (MIPS: 5 bits) 

• Write enable: if it’s a write port 

• M ports = M parallel and independent accesses 

Register File 

RS1VAL 

RS2VAL 

RDVAL 

RD WE RS1 RS2 

RD = dest reg 

RS = source reg 
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A Register File With Four Registers 
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Add a Read Port for RS1 

• Output of each register into 4to1 mux (RS1VAL) 

• RS1 is select input of RS1VAL mux 

RS1 

RS1VAL 
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Add Another Read Port for RS2 

• Output of each register into another 4to1 mux (RS2VAL) 

• RS2 is select input of RS2VAL mux 

RS1 

RS1VAL 

RS2VAL 

RS2 



15 

Add a Write Port for RD 

• Input RDVAL into each register 

• Enable only one register’s WE: (Decoded RD) & (WE)  

• What if we needed two write ports? 

RS1 

RS1VAL 

RS2VAL 

RS2 RD WE 

RDVAL 

2-to-4 decoder 
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Another Read Port Implementation 

• A read port that uses muxes is fine for 4 registers 

• Not so good for 32 registers (32-to-1 mux is very slow) 

 

• Alternative implementation uses tri-state buffers 
• Truth table (E = enable, D = input, Q = output) 

E D  Q 

1 D  D  

0 D  Z           

• Z: “high impedance” state, no current flowing 

 
• Mux: connect multiple tri-stated buses to one output bus 

• Key: only one input “driving” at any time, all others must be in “Z” 

• Else, all hell breaks loose (electrically) 

D Q 

E 
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Register File With Tri-State Read Ports 

RS2 RS1 RD WE 

RDVAL 
RS2VAL 

RS1VAL 
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Another Useful Component: Memory 

• Memory: where instructions and data reside 

• One read/write “port”: one access per cycle, either read or write 

• One address bus 

• One input data bus for writes, one output data bus for reads 

 

• Actually, a more traditional definition of memory is 

• One input/output data bus 

• No clock  asynchronous “strobe” instead  

Memory 

DATAOUT DATAIN 

WE 

ADDRESS 
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Let’s Build A MIPS-like Datapath 
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Start With Fetch 

• PC and instruction memory 

• A +4 incrementer computes default next instruction PC 

• Why +4 (and not +1)?  What will it be for 16-bit Duke 250/16? 

P 
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First Instruction: add $rd, $rs, $rt 

• Add register file and ALU 

P 

C 
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+ 
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Second Instruction: addi $rt, $rs, imm 

• Destination register can now be either rd or rt 

• Add sign extension unit and mux into second ALU input 

P 

C 

Insn 

Mem 

Register 

File 

S 

X 

Op(6) rs(5) rt(5) I-type Immed(16) 

s1 s2 d 

+ 

4 

rs 

Extended(imm) 

sign extension (sx) unit 



23 

Third Instruction: lw $rt, imm($rs) 

• Add data memory, address is ALU output (rs+imm) 

• Add register write data mux to select memory output or ALU output 
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Fourth Instruction: sw $rt, imm($rs) 

• Add path from second input register to data memory data input 

• Disable RegFile’s WE signal 
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Fifth Instruction: beq $1,$2,target 

• Add left shift unit (why?) and adder to compute PC-relative branch target 

• Add mux to do what? 
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Sixth Instruction: j 

• Add shifter to compute left shift of 26-bit immediate 

• Add additional PC input mux for jump target 
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Seventh, Eight, Ninth Instructions 

• Are these the paths we would need for all instructions? 
sll $1,$2,4  // shift left logical 

• Like an arithmetic operation, but need a shifter too 

slt $1,$2,$3  // set less than (slt) 

• Like subtract, but need to write the condition bits, not the result 

• Need zero extension unit for condition bits 

• Need additional input to register write data mux 

jal absolute_target   // jump and link 

• Like a jump, but also need to write PC+4 into $ra ($31) 

• Need path from PC+4 adder to register write data mux 

• Need to be able to specify $31 as an implicit destination 

jr $31   // jump register 

• Like a jump, but need path from register read to PC write mux 
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Clock Timing 

• Must deliver clock(s) to avoid races 

• Can’t write and read same value at same clock edge 

• Particularly a problem for RegFile and Memory 

• May create multiple clock edges (from single input clock) by 
using buffers (to delay clock) and inverters 

 

• For Homework 4 (the Duke 250/16 CPU): 

• Keep the clock SIMPLE and GLOBAL 

• You may need to do the PC on rising edge and everything else on 
falling edge 

• Changing clock edges in this way will separate PC++ from logic 

• Otherwise, if the PC changes while the operation is occurring, the 
instruction bits will change before the answer is computed ->  
non-deterministic behavior  

• Note: A cheap way to make something trigger on the other clock 
edge is to NOT the clock on the way in to that component 
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This Unit: Processor Design 

• Datapath components and timing 

• Registers and register files 

• Memories (RAMs) 

• Clocking strategies 

• Mapping an ISA to a datapath 

• Control 

• Exceptions 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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What Is Control? 

• 9 signals control flow of data through this datapath 

• MUX selectors, or register/memory write enable signals 

• Datapath of current microprocessor has 100s of control signals  
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Example: Control for add 

 

P 

C 

Insn 

Mem 

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

a 

d 

+ 

4 

<< 

2 
<< 

2 

BR=0 

JP=0 

Rwd=0 

DMwe=0 ALUop=0 

ALUinB=0 Rdst=1 

Rwe=1 



32 

Example: Control for sw 

• Difference between a sw and an add is 5 signals 

• 3 if you don’t count the X (“don’t care”) signals 
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Example: Control for beq $1,$2,target 

• Difference between a store and a branch is only 4 signals 
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How Is Control Implemented? 
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Implementing Control 

• Each instruction has a unique set of control signals 

• Most signals are function of opcode 

• Some may be encoded in the instruction itself 

• E.g., the ALUop signal is some portion of the MIPS Func field 

+ Simplifies controller implementation 

– Requires careful ISA design 

 

• Options for implementing control 

1. Use instruction type to look up control signals in a table 

2. Design FSM whose outputs are control signals 

• Either way, goal is same: turn instruction into control signals 
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Control Implementation: ROM 

• ROM (read only memory): like a RAM but unwritable 

• Bits in data words are control signals 

• Lines indexed by opcode 

 

• Example: ROM control for our simple datapath 

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd 

add 0 0 0 0 0 1 1 0 

addi 0 0 1 0 0 1 0 0 

lw 0 0 1 0 0 1 0 1 

sw 0 0 1 0 1 0 0 0 

beq 1 0 0 1 0 0 0 0 

j 0 1 0 0 0 0 0 0 

opcode 
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ROM vs. Combinational Logic 

• A control ROM is fine for 6 insns and 9 control signals 

• A real machine has 100+ insns and 300+ control signals 

• Even “RISC”s have lots of instructions 

• 30,000+ control bits (~4KB) 

– Not huge, but hard to make fast 

• Control must be faster than datapath 

 

• Alternative: combinational logic 

• It’s that thing we know how to do! Nice! 

• Exploits observation: many signals have few 1s or few 0s 
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ALUinB 

Control Implementation: Combinational Logic 

• Example: combinational logic control for our simple datapath 

 

opcode add 

addi 

lw 

sw 

beq 

j 

BR JP DMwe Rwd Rdst ALUop Rwe 
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Datapath and Control Timing 
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Control (ROM or combinational logic) 

Read IMem Read Registers 

(Read Control ROM) 

Read DMEM Write DMEM 
Write Registers 

Write PC 

How do we sub-divide timing like this? Pipelining! (Covered later) 
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This Unit: Processor Design 

• Datapath components and timing 

• Registers and register files 

• Memories (RAMs) 

• Clocking strategies 

• Mapping an ISA to a datapath 

• Control 

• Exceptions 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Exceptions 

• Exceptions and interrupts 

• Infrequent (exceptional!) events 

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer 

 

• Handling requires intervention from operating system 

• End program: divide-by-0, protection fault, illegal insn, ^C 

• Fix and restart program: I/O, page fault, ^Z, timer 

 

• Handling should be transparent to application code 

• Don’t want to (can’t) constantly check for these using insns 

• Want “Fix and restart” equivalent to “never happened” 
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Exception Handling 

• What does exception handling look like to software? 

• When exception happens… 

 

• Control transfers to OS at pre-specified exception handler address 

• OS has privileged access to registers user processes do not see 

• These registers hold information about exception 

• Cause of exception (e.g., page fault, arithmetic overflow) 

• Other exception info (e.g., address that caused page fault) 

• PC of application insn to return to after exception is fixed 

• OS uses privileged (and non-privileged) registers to do its “thing” 

• OS returns control to user application 

 

• Same mechanism available programmatically via SYSCALL 
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MIPS Exception Handling 

• MIPS uses registers to hold state during exception handling 

• These registers live on “coprocessor 0” 

•  $14: EPC  (holds PC of user program during exception handling) 

•  $13: exception type (SYSCALL, overflow, etc.) 

•  $8: virtual address (that produced page/protection fault) 

•  $12: exception mask (which exceptions trigger OS) 

• Exception registers accessed using two privileged 
instructions mfc0, mtc0 

• Privileged = user process can’t execute them 

• mfc0: move (register) from coprocessor 0 (to user reg) 

• mtc0: move (register) to coprocessor 0 (from user reg) 

• Privileged instruction rfe restores user mode 

• Kernel executes this instruction to restore user program 
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MIPS Exception Handling 

• MIPS uses registers to hold state during exception handling 

• These registers live on “coprocessor 0” 

•  $14: EPC  (holds PC of user program during exception handling) 

•  $13: exception type (SYSCALL, overflow, etc.) 

•  $8: virtual address (that produced page/protection fault) 

•  $12: exception mask (which exceptions trigger OS) 

• Exception registers accessed using two privileged 
instructions mfc0, mtc0 

• Privileged = user process can’t execute them 

• mfc0: move (register) from coprocessor 0 (to user reg) 

• mtc0: move (register) to coprocessor 0 (from user reg) 

• Privileged instruction rfe restores user mode 

• Kernel executes this instruction to restore user program 



45 

Implementing Exceptions 

• Why do architects care about exceptions? 

• Because we use datapath and control to implement them 

• More precisely… to implement aspects of exception handling 

• Recognition of exceptions 

• Transfer of control to OS 

• Privileged OS mode 

• Later in semester, we’ll talk more about exceptions (b/c we 
need them for I/O) 
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Datapath with Support for Exceptions 

• Co-processor register (CR) file needn’t be implemented as RF 

• Independent registers connected directly to pertinent muxes 

• PSR (processor status register): in privileged mode? 
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Summary 

• We now know how to build a fully functional processor 

• But … 

• We’re still treating memory as a black box (actually two green boxes, to 
be precise) 

• Our fully functional processor is slow.  Really, really slow. 
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“Single-Cycle” Performance 

• Useful metric: cycles per instruction (CPI) 

+ Easy to calculate for single-cycle processor: CPI = 1 

• Seconds/program = (insns/program) * 1 CPI * (N seconds/cycle) 

• ICQ: How many cycles/second in 3.8 GHz processor? 

– Slow! 

• Clock period must be elongated to accommodate longest operation 

• In our datapath: lw 

• Goes through five structures in series: insn mem, register file 
(read), ALU, data mem, register file again (write) 

• No one will buy a machine with a slow clock 

• Not even your grandparents! 

• Later in semester: faster processor cores 
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This Unit: Processor Design 

• Datapath components and timing 

• Registers and register files 

• Memories (RAMs) 

• Clocking strategies 

• Mapping an ISA to a datapath 

• Control 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 

Next up: Memory Systems 


