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I. CONCEPT 
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Motivation (1) 

• I want to run more than one program at once 

• Problem: 

• Program A puts its variable X at address 0x1000 

• Program B puts its variably Q at address 0x1000 

• Conflict! 

• Unlikely solution: 

• Get all programmers on the planet to use different memory addresses 

• Better solution: 

• Allow each running program to have its own “view” of memory 
(e.g. “my address 0x1000 is different from your address 0x1000”) 

 

• How? Add a layer of indirection to memory addressing: 
Virtual memory paging 
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Motivation (2) 

• Hey, while you’re messing with memory addressing... 
can we improve efficiency, too? 

 

• Code/data must be in memory to execute 

• Most code/data not needed at a given instant 

• Wasteful use of DRAM to hold stuff we don’t need 

• Solution: 

• Don’t bother to load code/data from disk that we don’t need 
immediately 

• When memory gets tight, shove loaded stuff we don’t need anymore 
back to disk 

 

• Virtual memory swapping (an add-on to paging) 

 



5 

Benefits 

Paging benefits: 

• Simpler programs:  

• We “virtualize” memory addresses, so every program believes it has 
a full 232 or 264 byte address space 

• Easier sharing: 

• Processes can “share” memory, i.e. have virtual addresses that map 
to the same physical addresses 

Swapping benefits: 

• Bigger programs: 

• Not just bigger than free memory,  
bigger than AVAILABLE memory! 

• More programs: 

• Only part of each program loaded, 
so more can be loaded at once 

• Faster multitasking: 

• Less effort to load or swap processes 
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Figure: caching vs. virtual memory 
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(or SSD) 

Hard disk 

Load if needed 

Drop 

• Faster 

• More expensive 

• Lower capacity 

• Slower 

• Cheaper 

• Higher capacity 

Swap out (RW) or drop (RO) 
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High level operation 

SEGFAULT 

OK (fast) 

OK (fast) 

OK (but slow) 

! 

Virtual memory 

“Page table” 

Physical memory 

HDD/SSD storage 
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Virtual Address Space 

Adapted from Operating System Concepts 

by Silberschatz, Galvin, and Gagne 

(Fluffy academic version) (Real 32-bit x86 view) 

code 

static data 

heap 

shared library 

stack 

kernel space 

0x42000000 
(1,107,296,256) 

0xC0000000 
(3,221,225,472) 

0xFFFFFFFF 
(4,294,967,295) 

Based on Dawn Song’s RISE:  

http://research.microsoft.com/projects/SWSecInstitute/slides/Song.ppt  
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Virtual Address Space 

• Enables sparse address spaces with holes left for growth, 
dynamically linked libraries, etc 

• System libraries shared via mapping into virtual address 
space 

• Shared memory by mapping pages read-write into virtual 
address space 

• Pages can be shared during fork(), speeding process creation 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Shared Library Using Virtual Memory 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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II. MECHANICS 
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Mechanisms and Policies 

• Mechanisms: 

• Demand paging: fixed-size regions 

• Demand segmentation: variable-size regions 

 

• Policies: 

• When and how much to load? 

• How to select data to evict? 

^ Not covered in this lecture 
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Demand Paging 

 

Page 

 
A chunk of memory with its own record in the memory 

management hardware. Often 4kB. 
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Address translation 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Address translation 

00000000000000000111000000000101 

Index Data Valid? 

0 463 0 

1 116 1 

2 460 1 

3 407 1 

4 727 0 

5 719 1 

6 203 0 

7 12 1 

8 192 1 

   … 

00000000000000001100000000000101 

Virtual address: 

Physical address: 

Virtual page number Page offset 

Physical page number Page offset 

Page table: 
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Address translation 

• Equivalent code (except this is done in hardware, not code!): 

Assume pages are 4096 bytes, so 12 bits for offset, 20 for page number 

 
int page_table[1<<VIRT_PAGE_NUMBER_BITS]; 

 

int virt2phys(int virt_addr) { 

    int offset = virt_addr & 0xFFF; // lower 12 bits 

    int vpn = virt_addr >> 12; // upper 20 bits 

 

    int ppn = page_table[vpn]; // table lookup 

 

    if (ppn == INVALID) DO_SEGFAULT_EXCEPTION(); 

 

    int phys_addr = (ppn<<12) | offset; // combine fields 

    return phys_addr; 

} 
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Address translation 

• Equivalent code (except this is done in hardware, not code!): 

Assume pages are 4096 bytes, so 12 bits for offset, 20 for page number 

 
int P[VIRT_PAGE_NUMBER_BITS]; 

 

int virt2phys(int virt_addr) { 

 return P[v_addr>>12]<<12 | v_addr&0xFFF; 

    //     ^^--HIGH BITS--^^   ^-LOW BITS-^ 

} 
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Demand Paging 

• On process load: 

• Rather than bring entire process into memory,  
bring it in page-by-page as needed 

• Less I/O needed, no unnecessary I/O 

 

 
 

 

 

• The swapper process is called the pager 

Memory 
reference 

Is in physical 
memory? 

Success 

Is page stored on 
disk? 

Load it, success 

Invalid reference, 
abort! 

Y 

N 

N 

Y 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Transfer of a Paged Memory to Contiguous Disk 
Space 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Valid-Invalid Bit 

• With each page table entry a valid–invalid bit is associated 
(v  in-memory – memory resident, i  not-in-memory) 

• Initially valid–invalid bit is set to i on all entries 

• Example of a page table snapshot: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• During address translation, if valid–invalid bit in page table entry is i  page fault 

v 

v 

v 

v 

i 

i 

i 

…. 

Frame # valid-invalid bit 

page table 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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High level operation 

SEGFAULT 

OK (fast) 

OK (fast) 

OK (but slow) 

Virtual memory 

Memory map 

Page table 

Physical memory 

HDD/SSD storage 

Which color(s) correspond to “i“? 
 

Which color(s) correspond to “v”? 

i 
v 
v 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
v 
v 
v 
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Page Fault 

• Reference to a page with bit set to “i”: 
 Page fault 

• OS looks at another table to decide: 

• Invalid reference? Abort. 

• Just not in memory? Load it: 

• Get empty memory frame 

• Swap page into frame via scheduled disk operation 

• Reset tables to indicate page now in memory 
Set validation bit = “v” 

• Restart the instruction that caused the page fault 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Aspects of Demand Paging 

• Extreme case – start process with no pages in memory 

• OS sets instruction pointer to first instruction of process, non-memory-
resident -> page fault 

• And for every other process pages on first access 

• Pure demand paging 

• Actually, a given instruction could access multiple pages -> 
multiple page faults 

• Pain decreased because of locality of reference 

• Hardware support needed for demand paging 

• Page table with valid / invalid bit 

• Secondary memory (swap device with swap space) 

• Instruction restart 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Steps in Handling a Page Fault 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Address Translation Mechanics 

• The six questions 

• What? address translation 

• Why? compatibility, multi-programming, protection 

• How? page table 

• Who performs it? 

• When? 

• Where does page table reside? 

 

• Option I: process (program) translates its own addresses 

• Page table resides in process visible virtual address space 

– Bad idea: implies that program (and programmer)… 

• …must know about physical addresses 

• Isn’t that what virtual memory is designed to avoid? 

• …can forge physical addresses and mess with other programs 

• Translation on L2 miss or always? How would program know? 
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Who? Where? When? Take II 

• Option II: operating system (OS) translates for process 

• Page table resides in OS virtual address space 

+ User-level processes cannot view/modify their own tables 

+ User-level processes need not know about physical addresses 

• Translation on L2 miss 

– Otherwise, OS SYSCALL before any fetch, load, or store 

 

• L2 miss: interrupt transfers control to OS handler 

• Handler translates VA by accessing process’s page table 

• Accesses memory using PA 

• Returns to user process when L2 fill completes 

– Still slow: added interrupt handler and PT lookup to memory access 

– What if PT lookup itself requires memory access? Head spinning… 
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Translation Buffer 

• Functionality problem? Add indirection! 

• Performance problem? Add cache! 

 

• Address translation too slow? 

• Cache translations in translation buffer (TB) 

• Small cache: 16–64 entries, often fully assoc 

+ Exploits temporal locality in PT accesses 

+ OS handler only on TB miss 

CPU 

D$ 

L2 

Main 

Memory 

I$ 

TB 

VPN PPN 

VPN PPN 

VPN PPN 

“tag” “data” PA 

VA 

VA 

VA VA 
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TB Misses 

• TB miss: requested PTE not in TB, but in PT 

• Two ways of handling 

 

• 1) OS routine: reads PT, loads entry into TB (e.g., Alpha) 

• Privileged instructions in ISA for accessing TB directly 

• Latency: one or two memory accesses + OS call 

 

• 2) Hardware FSM: does same thing (e.g., IA-32) 

• Store PT root pointer in hardware register 

• Make PT root and 1st-level table pointers physical addresses 

• So FSM doesn’t have to translate them 

+ Latency: saves cost of OS call 
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Page Faults 

• Page fault: PTE not in TB or in PT 

• Page is simply not in memory 

• Starts out as a TB miss, detected by OS handler/hardware FSM 

 

• OS routine 

• OS software chooses a physical page to replace 

• “Working set”: more refined software version of LRU 

• Tries to see which pages are actively being used 

• Balances needs of all current running applications 

• If dirty, write to disk (like dirty cache block with writeback $) 

• Read missing page from disk (done by OS) 

• Takes so long (10ms), OS schedules another task 

• Treat like a normal TB miss from here 
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Virtual Caches 

• Memory hierarchy so far: virtual caches 

• Indexed and tagged by VAs 

• Translate to PAs only to access memory 

+ Fast: avoids translation latency in common case 

 

• What to do on process switches? 

• Flush caches? Slow 

• Add process IDs to cache tags 

 

• Does inter-process communication work? 

• Aliasing: multiple VAs map to same PA 

• How are multiple cache copies kept in sync? 

• Also a problem for I/O (later in course) 

• Disallow caching of shared memory? Slow 

CPU 

D$ 

L2 

Main 

Memory 

I$ 

TB 

PA 

VA 

VA 

VA VA 
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Physical Caches 

• Alternatively: physical caches 

• Indexed and tagged by PAs 

• Translate to PA at the outset 

+ No need to flush caches on process switches 

• Processes do not share PAs 

+ Cached inter-process communication works 

• Single copy indexed by PA 

– Slow: adds 1 cycle to thit 

CPU 

D$ 

L2 

Main 

Memory 

I$ 

TB 

PA 

PA 

VA VA 

PA PA 

TB 
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Virtual Physical Caches 

• Compromise: virtual-physical caches 

• Indexed by VAs 

• Tagged by PAs 

• Cache access and address translation in parallel 

+ No context-switching/aliasing problems  

+ Fast: no additional thit cycles 

 

• A TB that acts in parallel with a cache is a TLB 

• Translation Lookaside Buffer 

 

• Common organization in processors today 

 

CPU 

D$ 

L2 

Main 

Memory 

I$ TLB 

PA 

PA 

VA VA 

TLB 
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Cache/TLB Access 

• Two ways to look at VA 

• Cache: TAG+IDX+OFS 

• TLB: VPN+POFS 

 

• Can have parallel cache & 
TLB … 

• If address translation 
doesn’t change IDX 

•  VPN/IDX don’t overlap 

1:0 [31:12] 

data 

[11:2] << 

address 

== 

TLB hit/miss 

0 

1 

1022 

1023 

2 

== 

== 

== 

VPN [31:16] POFS[15:0] 

cache 

TLB 

cache hit/miss 
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Cache Size And Page Size 

• Relationship between page size and L1 I$(D$) size 

• Forced by non-overlap between VPN and IDX portions of VA 

• Which is required for TLB access 

• I$(D$) size / associativity ≤ page size 

• Big caches must be set associative 

• Big cache  more index bits (fewer tag bits) 

• More set associative  fewer index bits (more tag bits) 

• Systems are moving towards bigger (64KB) pages 

• To amortize disk latency 

• To accommodate bigger caches 

1:0 [31:12] IDX[11:2] 

VPN [31:16] [15:0] 
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III. DESIGN CHOICES AND 
PERFORMANCE 
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The Table of Time 

39 

Event Picoseconds   ≈ Hardware/target Source 

Average instruction time*                                       30  30 ps Intel Core i7 4770k (Haswell), 3.9GHz https://en.wikipedia.org/wiki/Instructions_per_se
cond 

Time for light to traverse CPU core 
(~13mm) 

                                       44  40 ps Intel Core i7 4770k (Haswell), 3.9GHz 
http://www.anandtech.com/show/7003/the-
haswell-review-intel-core-i74770k-i54560k-
tested/5 

Clock cycle (3.9GHz)                                      256  300 ps Intel Core i7 4770k (Haswell), 3.9GHz Math 

Memory read: L1 hit                                    1,212  1 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: L2 hit                              3,636  4 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: L3 hit                       8,439  8 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: DRAM                         64,485  60 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Process context switch or system call 3,000,000 3 us Intel E5-2620 (Sandy Bridge), 2GHz http://blog.tsunanet.net/2010/11/how-long-does-
it-take-to-make-context.html 

Storage sequential read**, 4kB (SSD)                    7,233,796  7 us SSD: Samsung 840 500GB 
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Storage sequential read**, 4kB (HDD)                  65,104,167  70 us HDD: 2.5" 500GB 7200RPM 
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Storage random read, 4kB (SSD)                   100,000,000  100 us SSD: Samsung 840 500GB 
http://www.samsung.com/global/business/semic

onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Storage random read, 4kB (HDD)             10,000,000,000  10 ms HDD: 2.5" 500GB 7200RPM 
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Internet latency, Raleigh home to  
NCSU (3 mi) 

            21,000,000,000  20 ms courses.ncsu.edu Ping 

Internet latency, Raleigh home to  
Chicago ISP (639 mi) 

             48,000,000,000  50 ms dls.net Ping 

Internet latency, Raleigh home to  
Luxembourg ISP (4182 mi) 

          108,000,000,000  100 ms eurodns.com Ping 

Time for light to travel to  
the moon (average) 

 1,348,333,333,333  1   s The moon http://www.wolframalpha.com/input/?i=distance
+to+the+moon 

* Based on Dhrystone, single core only, average time per instruction  

** Based on sequential throughput, average time per block  
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Performance of Demand Paging 

Stages in Demand Paging: 

• Trap to the operating system 

• Save the user registers and process state 

• Check that the page reference was legal and determine the location of the page on the disk 

• Issue a read from the disk to a free frame: 

• Wait in a queue for this device until the read request is serviced 

• Wait for the device seek and/or latency time 

• Begin the transfer of the page to a free frame 

• While waiting, allocate the CPU to some other process 

• Receive an interrupt from the disk I/O subsystem (I/O completed) 

• Save the registers and process state for the other process 

• Correct the page table and other tables to show page is now in memory 

• Wait for the CPU to be allocated to this process again 

• Restore the user registers, process state, and new page table, and then resume the 
interrupted instruction 

 

us 

ns 

ns 

us 

ms 

ns 

ns 

? 

us 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Performance of Demand Paging (Cont.) 

• Page Fault Rate 0  p  1 

• if p = 0 no page faults  

• if p = 1, every reference is a fault 
 

• Effective Access Time (EAT) 

  EAT = (1 – p) x memory access 

   + p (page fault overhead 

              + swap page out 

              + swap page in 

              + restart overhead 

                                           ) 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Demand Paging Example 

• Memory access time = 60 nanoseconds 

• Average page-fault service time = 10 milliseconds 
 

• EAT  = 60(1 – p) + (10 milliseconds)(p) 
 = 60(1 – p) + 10,000,000p 
 = 60 + 9,999,940p 

• If one access out of 1,000 causes a page fault, then EAT ≈ 10 microseconds! 
• This is a slowdown factor of 166!! 

• If want performance degradation < 10%: 

(110%)(60) > 60 + 9,999,940p 
        6 > 9,999,940p 

     p < .0000006 

• Less than one page fault in every 1.6 million memory accesses! 

 

• Luckily, we can do this: just don’t have programs that do regular memory access patterns 
larger than the size of memory. 

• Alternately, if you *do* try to use more RAM than you have, it works, it’s just very, very 
slow. 

  

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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What Happens if There is no Free Frame? 

• Page replacement – find some page in memory, but not 
really in use, page it out 

• Algorithm? 

• Want an algorithm which will result in minimum number of page faults 

 

• Optimization: use “dirty” bit in page table to track pages 
modified since loading; only modified pages are written to disk 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Basic Page Replacement 

1. Find the location of the desired page on disk 
 

2. Find a free frame: 
• If there is a free frame, use it 

• If there is no free frame, use a page replacement algorithm to select a victim frame 

• Write victim frame to disk if dirty 
 

3. Bring  the desired page into the (newly) free frame; update the page and 
frame tables 
 

4. Continue the process by restarting the instruction that caused the trap 

 

Note now potentially 2 page transfers for page fault – increasing EAT 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Page Replacement Algorithms 

• Frame-allocation algorithm determines  

• How many frames to give each process 

• Which frames to replace 

• Page-replacement algorithm 

• Want lowest page-fault rate on both first access and re-access 

• This decision is just like choosing the caching replacement algorithm! 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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First-In-First-Out (FIFO) Algorithm 

• Reference string: 
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 

• 3 frames 

 

 

 

 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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FIFO Illustrating Belady’s Anomaly 

• What if we add more frames? 

• Adding more frames can cause more page faults! This is 
Belady’s Anomaly. 

• Solution: use a better algorithm… 

 

Expectation 

(behavior of optimal algorithm) 

Reality 

(behavior of FIFO algorithm) 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Optimal Algorithm 

• Replace page that will not be used for longest period of time 

• How do you know this? 

• Read the future using magic/witchcraft (cheat) 

• Used for measuring how well your algorithm performs 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Least Recently Used (LRU) Algorithm 

• Use past knowledge rather than future 

• Replace page that has not been used in the most amount of time 

• Associate time of last use with each page 

 

 

 

 

 

 

 

• 12 faults – better than FIFO but worse than OPT 

• Generally good algorithm and frequently used 

• But how to implement? 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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LRU Algorithm (Cont.) 

• Counter implementation 

• Every page entry has a counter; every time page is referenced through 
this entry, copy the clock* into the counter 

• When a page needs to be changed, find the smallest counter value 

• Stack implementation 

• Keep a stack of page numbers in a double link form 

• Page referenced: 

• move it to the top 

• requires 6 pointers to be changed 

• But each update more expensive 

• No search for replacement 

• LRU and OPT are cases of stack algorithms that don’t have 
Belady’s Anomaly 

* “Clock” can just be number of cycles since boot, etc. 
Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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LRU Approximation Algorithms 

• LRU needs special hardware and still slow 

• Reference bit for each page 

• When page is referenced bit set to 1 

• Replace any with reference bit = 0 (if one exists) 

• We do not know the order, however 

• Second-chance algorithm 

• Generally FIFO, plus hardware-provided reference bit 

• If page to be replaced has  

• Reference bit = 0 -> replace it 

• reference bit = 1 then: 

• set reference bit 0, leave page in memory 

• replace next page, subject to same rules 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Counting Algorithms 

• Keep a counter of the number of references that have been 
made to each page 

• Not common 
 

• LFU Algorithm:  replaces page with smallest count 
 

• MFU Algorithm: based on the argument that the page with 
the smallest count was probably just brought in and has yet to 
be used 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Page Replacement Algorithms Summary 

• FIFO: Too stupid 

 

• OPT: Too impossible 

 

• LRU: Great, but can be expensive 

 

• Reference bit, second-chance:  
  Tradeoff between LRU and FIFO 

• LFU/MFU:  
  Seldom-used counter-based algorithms 
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Page-Buffering Algorithms 

• Keep a pool of free frames, always 

• Then frame available when needed, not found at fault time 

• Instead of fault→evict→load, do fault→load→queue for eviction 

• When convenient, evict victim 

• Possibly, keep list of modified pages 

• When backing store is idle, write pages there and set to non-dirty 

• Then the “evict” becomes “drop” instead of “store” 

• Possibly, keep free frame contents intact 

• If referenced again before evicted, no need to reload it from disk 

• Reduces penalty if wrong victim frame selected 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Global vs. Local Allocation 

• Global replacement – process selects a 
replacement frame from the set of all frames; one 
process can take a frame from another 

• But then process execution time can vary greatly 

• But greater throughput so more common 

 

• Local replacement – each process selects from 
only its own set of allocated frames 

• More consistent per-process performance 

• But possibly underutilized memory 

 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Thrashing 

• If a process does not have “enough” pages, the page-fault 
rate is very high 

• Page fault to get page 

• Replace existing frame 

• But quickly need replaced frame back 

• This leads to: 

• Low CPU utilization 

• Operating system thinking that it needs to increase the degree of 
multiprogramming 

• Another process added to the system 
 

• Thrashing  a process is busy swapping pages in and out 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Thrashing (Cont.) 

(do less or buy more RAM) 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Demand Paging and Thrashing  

• Why does demand paging work? 
Locality model 

• Process migrates from one locality to another 

• Localities may overlap 

 

• Why does thrashing occur? 
 size of locality > total memory size 

• Limit effects by using local or priority page replacement 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Locality In A Memory-Reference Pattern 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Working-set model 

•   working-set window  a fixed number of page references  
Example:  10,000 instructions 
 

• WSSi (working set of Process Pi) = 
total number of pages referenced in the most recent  (varies in time) 

• if  too small will not encompass entire locality 

• if  too large will encompass several localities 

• if  =   will encompass entire program 
 

• D =  WSSi  total demand frames  

• Approximation of locality 
 

• if D > m  Thrashing 
 

• Policy if D > m, then suspend or swap out one of the processes 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Page-Fault Frequency 

• More direct approach than WSS 

• Establish “acceptable” page-fault frequency rate and use local 
replacement policy 

• If actual rate too low, process loses frame 

• If actual rate too high, process gains frame 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Copy-on-Write 

• Side-note: a useful trick made possible by paging: 

 

Copy-on-Write (COW) 

 

• Allows both parent and child processes to initially share the 
same pages in memory 

• If either process modifies a shared page, only then is the page copied 

• Allows more efficient process creation 

• In general, free pages are allocated from a pool of zero-fill-on-
demand pages 

• Why zero-out a page before allocating it? 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Before Process 1 Modifies Page C 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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After Process 1 Modifies Page C 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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IV. OS EXAMPLES 
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Windows XP 

• Uses demand paging with clustering. Clustering brings in 
pages surrounding the faulting page 

• Processes are assigned working set minimum and 
maximum 

• When free memory falls below a threshold, automatic 
working set trimming removes pages from processes that 
have pages in excess of their working set minimum, thus 
restoring the amount of free memory 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 



67 

Solaris  

• Maintains a list of free pages to assign faulting processes 

• Paging is performed by pageout process 
• Scans pages using modified clock algorithm 

• Parameters: 
• Lotsfree – threshold parameter (amount of free memory) to begin paging 

• Desfree – threshold parameter to increasing paging 

• Minfree – threshold parameter to being swapping 

• Scanrate is the rate at which pages are scanned. This ranges 
from slowscan to fastscan 

• Pageout is called more frequently depending upon the amount of free memory 
available 

• Priority paging gives priority to process code pages 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 



68 

V. BUT WHAT’S RAM MADE OF? 
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Remember Static RAM (SRAM)? 

• SRAM: static RAM 

• Bits as cross-coupled inverters 

• Four transistors per bit 

• More transistors for ports 

 

• “Static” means 

• Inverters connected to power/ground 

• Bits naturally/continuously “refreshed” 

• Bit values never decay 

 

• Designed for speed 
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Dynamic RAM (DRAM) 

• DRAM: dynamic RAM 

• Bits as capacitors (if charge, bit=1) 

• “Pass transistors” as ports 

• One transistor per bit/port 

 

• “Dynamic” means 

• Capacitors not connected to power/gnd 

• Stored charge decays over time 

• Must be explicitly refreshed 

 

• Designed for density 

• Moore’s Law … 
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Moore’s Law (DRAM chip capacity) 

• Commodity DRAM parameters 

• 16X increase in capacity every 8 years = 2X every 2 years 

• Not quite 2X every 18 months (Moore’s Law) but still close 

Year Capacity $/MB Access time 

1980 64Kb $1500 250ns 

1988 4Mb $50 120ns 

1996 64Mb $10 60ns 

2004 1Gb $0.5 35ns 

2008 2Gb ~$0.15 20ns 

2013 8Gb ~$0 <10ns 
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Access Time and Cycle Time 

• DRAM access much slower than SRAM 

• More bits  longer wires 

• SRAM access latency: 2–3ns 

• DRAM access latency: 20-35ns 

 

• DRAM cycle time also longer than access time 

• Cycle time: time between start of consecutive accesses 

• SRAM: cycle time = access time 

• Begin second access as soon as first access finishes 

• DRAM: cycle time = 2 * access time 

• Why? Can’t begin new access while DRAM is refreshing row 
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Memory Access and Clock Frequency 

• Computer’s advertised clock frequency applies to CPU and 
caches 

• DRAM connects to processor chip via memory “bus” 

• Memory bus has its own clock, typically much slower 

 

• Another reason why processor clock frequency isn’t perfect 
performance metric 

• Clock frequency increases don’t reduce memory or bus latency 

• May make misses come out faster 

• At some point memory bandwidth may become a bottleneck 

• Further increases in (core) clock speed won’t help at all 
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DRAM Packaging 

• DIMM = dual inline memory module 

• E.g., 8 DRAM chips, each chip is 4 or 8 bits wide 
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DRAM: A Vast Topic 

• Many flavors of DRAMs 

• DDR3 SDRAM, RDRAM, etc. 

• Many ways to package them 

• SIMM, DIMM, FB-DIMM, etc. 

• Many different parameters to characterize their timing 

• tRC, tRAC, tRCD, tRAS, etc. 

• Many ways of using row buffer for “caching” 

• Etc. 

• There’s at least one whole textbook on this topic! 

• And it has ~1K pages 

• We could, but won’t, spend rest of semester on DRAM 
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Virtual memory summary 

• Address translation via page table 

• Page table turns VPN to PPN (noting the valid bit) 

• Page is marked ‘i’? Page fault. 

• If OS has stored page on disk, load and resume 

• If not, this is invalid access, kill app (seg fault) 

• Governing policies: 

• Keep a certain number of frames loaded per app 

• Kick out frames based on a replacement algorithm (like LRU, etc.) 

• Looking up page table in memory too slow, so cache it: 

• The Translation Buffer (TB) is a hardware cache for the page table 

• When applied at the same time as caching (as is common),  
it’s called a Translation Lookaside Buffer (TLB).  

• Working set size tells you how many pages you need over a time 
window. 

• DRAM is slower than SRAM, but denser. Needs constant refreshing of data. 

WOW! 
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OTHER CONSIDERATIONS 
(TIME PERMITTING) 
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Non-Uniform Memory Access 

• So far all memory accessed equally 

• Many systems are NUMA – speed of access to memory varies 

• E.g. multi-socket systems, even some single-socket multi-core systems 

• Want to allocate memory “close to” a process’s CPU 

• Must modifying the scheduler to  
schedule the thread on a core  
“near” its memory 

• If an app needs more memory than 
local memory can provide, must  
use some “remote” memory. 

• The problem of “local” allocation 
vs. “remote” is basically another 
layer of the memory hierarchy 
(and is solved the same way). 

Figure from “Memory Deep Dive: NUMA and Data Locality” by Frank Denneman 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 

http://frankdenneman.nl/2015/02/27/memory-deep-dive-numa-data-locality/
http://frankdenneman.nl/2015/02/27/memory-deep-dive-numa-data-locality/
http://frankdenneman.nl/2015/02/27/memory-deep-dive-numa-data-locality/
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Memory-Mapped Files 

• Tell the OS: “treat this region of memory as if it’s data that 
should be swapped in from THIS swapfile”. mmap() on *nix. 

• File is accessed via demand paging (for initial I/O) or simple 
memory access (for subsequent I/O) 

• Benefits: 

• Can be faster (depending on I/O pattern) 

• Can be simpler (depending on problem) 

• Allows several processes to map the same file,  
allowing the pages in memory to be shared 

• When does written data make it to disk? 

• Periodically and / or at file close() time 
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Memory-Mapped File Technique for all I/O 

• Some OSes  uses memory mapped files for standard I/O 

• Process can explicitly request memory mapping a file via 
mmap() system call 

• Now file mapped into process address space 

• For standard I/O (open(), read(), write(), 
close()), mmap anyway 

• But map file into kernel address space 

• Process still does read() and write() 

• Copies data to and from kernel space and user space 

• Uses efficient memory management subsystem 

• Avoids needing separate subsystem 

• COW can be used for read/write non-shared pages 
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Memory Mapped Files 
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Applications and Page Replacement 

• All of these algorithms have OS guessing about future page 
access 

• Some applications have better knowledge, e.g., databases 

• Memory intensive applications can cause double buffering 

• OS keeps copy of page in memory as I/O buffer 

• Application keeps page in memory for its own work 

• OS can give direct access to the disk, getting out of the way of 
the applications 

• Raw disk mode 

• Bypasses buffering, locking, etc 

 

 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Page Size 

• Sometimes OS designers have a choice 

• Especially if running on custom-built CPU 

• Page size selection must take into consideration: 

• Fragmentation 

• Page table size  

• I/O overhead 

• Number of page faults 

• TLB size and effectiveness 

• Always power of 2, usually 4kB~4MB 

• Modern x86 supports 4kB “normal” pages and 2MB “huge” 
pages at the same time (the latter requiring special 
consideration to use) 
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Any Questions? 


