
ECE/CS 250
Computer Architecture

Course review

Tyler Bletsch

Duke University

Includes work by
Daniel J. Sorin (Duke), Amir Roth (Penn), and Alvin Lebeck (Duke)

2

INTRODUCTION

3

Course objective:
Evolve your understanding of computers

Input Output

After

4

I/O Bus

memory bus

disk

CPU

Cache cache

Main
Memory

disk
controller

main

memory

disk

graphics
controller

network
interface

graphics Network

System Organization

I/O bridge

5

C PROGRAMMING

6

What is C?

• The language of UNIX

• Procedural language (no classes)

• Low-level access to memory

• Easy to map to machine language

• Not much run-time stuff needed

• Surprisingly cross-platform

Why teach it now?
To expand from basic programming to

operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

7

Memory Layout and Bounds Checking

• There is NO bounds checking in C

• i.e., it’s legal (but not advisable) to refer to
days_in_month[216] or
days_in_month[-35] !

• who knows what is stored there?

… …

Storage for array int days_in_month[12];

Storage for other stuff
Storage for some more stuff

(each location shown here is an int)

DIFFERENT

from Java!

8

Structures

• Structures are sort of like Java objects

• They have member variables

• But they do NOT have methods!

• Structure definition with struct keyword
struct student_record {

 int id;

 float grade;

} rec1, rec2;

• Declare a variable of the structure type with struct keyword
struct student_record onerec;

• Access the structure member fields with dot (‘.’), e.g. structvar.member
onerec.id = 12;

onerec.grade = 79.3;

DIFFERENT

from Java!

9

Let’s look at memory addresses!

• You can find the address of ANY variable with:

&
The address-of operator

int v = 5;

printf(“%d\n”,v);

printf(“%p\n”,&v);
$ gcc x4.c && ./a.out
5
0x7fffd232228c

DIFFERENT

from Java!

10

What’s a pointer?

• It’s a memory address you treat as a variable

• You declare pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c

Append to any data type

DIFFERENT

from Java!

11

What’s a pointer?

• You can look up what’s stored at a pointer!

• You dereference pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);

printf(“%d\n”,*p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c
5

Prepend to any pointer variable or expression

DIFFERENT

from Java!

12

C Memory Allocation

• void* malloc(nbytes)

• Obtain storage for your data (like new in Java)

• Often use sizeof(type) built-in returns bytes needed for type

• int* my_ptr = malloc (64); // 64 bytes = 16 ints

• int* my_ptr = malloc (64*sizeof(int)); // 64 ints

• free(ptr)

• Return the storage when you are finished (no Java equivalent)

• ptr must be a value previously returned from malloc

ECE/CS 250

DIFFERENT

from Java!

13

DATA REPRESENTATIONS AND
MEMORY

14

Decimal to binary using remainders

14

? Quotient Remain-
der

457  2 = 228 1

228  2 = 114 0

114  2 = 57 0

57  2 = 28 1

28  2 = 14 0

14  2 = 7 0

7  2 = 3 1

3  2 = 1 1

1  2 = 0 1 111001001

15

Decimal to binary using comparison

Num Compare 2n ≥ ?

457 256 1

201 128 1

73 64 1

9 32 0

9 16 0

9 8 1

1 4 0

1 2 0

1 1 1

111001001

16

Binary to/from hexadecimal

• 01011011001000112 -->

• 0101 1011 0010 00112 -->

• 5 B 2 316

Binary Hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

 1 F 4 B16 -->

0001 1111 0100 10112 -->

00011111010010112

17

2’s Complement Integers

• Use large positives to represent negatives

• (-x) = 2n - x

• This is 1’s complement + 1

• (-x) = 2n - 1 - x + 1

• So, just invert bits and add 1

6-bit examples:

0101102 = 2210 ; 1010102 = -2210

110 = 0000012; -110 = 1111112

010 = 0000002; -010 = 0000002  good!

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

18

Floating point

• 32-bit float format:

• 64-bit double format:
(same thing, but with more bits)

19

Standardized ASCII (0-127)

20

Memory Layout

Stack

Data

Text

Reserved 0

2n-1

Typical

Address

Space
Heap

• Memory is array of bytes, but there
are conventions as to what goes
where in this array

• Text: instructions (the program to
execute)

• Data: global variables

• Stack: local variables and other
per-function state; starts at top &
grows down

• Heap: dynamically allocated
variables; grows up

• What if stack and heap overlap????

21

LEARNING ASSEMBLY LANGUAGE
WITH MIPS

22

The MIPS architecture

• 32-bit word size

• 32 registers ($0 is zero, $31 is return address)

• Fixed size 32-bit aligned instructions

• Types of instructions:

• Math and logic:

• or $1, $2, $3 → $1 = $2 | $3

• add $1, $2, $3 → $1 = $2 + $3

• Loading constants:

• li $1, 50 → $1 = 50

• Memory:

• lw $1, 4($2) → $1 = *($2 + 4)

• sw $1, 4($2) → *($2 + 4) = $1

• Control flow:

• j label → PC = label

• bne $1, $2, label → if ($1==$2) PC=label

23

Control Idiom: If-Then-Else

• Control idiom: if-then-else
if (A < B) A++; // assume A in register $1

else B++; // assume B in $2

 slt $3,$1,$2 // if $1<$2, then $3=1

 beqz $3,else // branch to else if !condition

 addi $1,$1,1

 j join // jump to join

 else: addi $2,$2,1

 join:
ICQ: assembler converts “else”
operand of beqz into immediate 
what is the immediate?

24

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

MIPS Register Usage/Naming Conventions

Important: The only general purpose registers are the $s and $t registers.

Everything else has a specific usage:

$a = arguments, $v = return values, $ra = return address, etc.

Also 32 floating-point registers: $f0 .. $f31

25

MIPS Instruction Formats

• 3 variations on theme from previous slide

• All MIPS instructions are either R, I, or J type

• Note: all instructions have opcode as first 6 bits

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type

Op(6) Rs(5) Rt(5) Immed(16) I-type

Op(6) Target(26) J-type

26

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Memory Addressing Issue: Endian-ness

Byte Order

• Big Endian: byte 0 is 8 most significant bits IBM 360/370,
Motorola 68k, MIPS, SPARC, HP PA-RISC

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC
Vax, DEC/Compaq Alpha

27

COMBINATIONAL LOGIC

28

Truth Tables

• Map any number if inputs to any number of outputs

• Example:

(A & B) | !C

Start with Empty TT

Column Per Input

Column Per Output

Fill in Inputs

Counting in Binary

Compute Output

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

29

Convert truth table to function

• Given a Truth Table, find the formula?

Write down every “true” case

Then OR together:

(!A & !B & !C) |

(!A & !B & C) |

(!A & B & !C) |

(A & B &!C) |

(A & B &C)

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

30

Boolean Function Simplification

• Boolean expressions can be simplified by using the following
rules (bitwise logical):
• A & A = A A | A = A

• A & 0 = 0 A | 0 = A

• A & 1 = A A | 1 = 1

• A & !A = 0 A | !A = 1

• !!A = A

• & and | are both commutative and associative

• & and | can be distributed: A & (B | C) = (A & B) | (A & C)

• & and | can be subsumed: A | (A & B) = A

• DeMorgan’s Laws:

!(A & B) = (!A) | (!B)

!(A | B) = (!A) & (!B)

31

a

b

AND(a,b) a

b

OR(a,b)

 Guide to Remembering your Gates

XOR(a,b) a

b

Straight like an A Curved, like an O
XOR looks like OR (curved line),

but has two lines (like an X does)

XNOR(a,b)

a NOT(a)

a

b

NAND(a,b) a

b

NOR(a,b) a

b

Circle means NOT

(XNOR is 1-bit “equals” by the way)

32

Designing a 1-bit adder

• So we’ll need to add three bits (including carry-in)

• Two-bit output is the carry-out and the sum

a b Cin

0 + 0 + 0 = 00

0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10

1 + 1 + 0 = 10

1 + 1 + 1 = 11
Turn into expression,

simplify,

circuit-ify,

yadda yadda yadda…

33

A 1-bit Full Adder

a b Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

01101100

 01101101

+00101100

 10011001

a

b

Cin

Cout

Sum

Logisim example

basic_logic.circ : full-adder

34

Full AdderFull AdderFull AdderFull Adder

b0 b1 b2 b3 a0 a1 a2 a3

Cout

S0 S1 S2 S3

Add/Sub

Example: Adder/Subtractor

Logisim example

basic_logic.circ : 4bit-addsub

35

Add/sub

C in

C ou t

Add/sub F

2

0

1

2

3

a

b

Q

A F Q

0 0 a + b

1 0 a - b

- 1 NOT b

- 2 a OR b

- 3 a AND b

ALU Slice

Logisim example

basic_logic.circ : alu-slice

36

The ALU

ALU Slice ALU Slice ALU Slice ALU Slice

ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow Is non-zero?

Logisim example

basic_logic.circ : alu

37

SEQUENTIAL LOGIC

38

D flip flops

• Stores one bit

• Inputs:

• The data D

• The clock ‘>’

• An “enable” signal E

• Outputs:

• The stored bit output Q
(and also its inverse !Q)

• “Commits” the input bit on clock rise,
and only if E is high

DFF

D Q

E Q

>

Clock rise (bit gets saved at this time)

39

Register

• Register: N flip flops working in parallel,
where N is the word size

DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>

40

Register file

• A set of registers with multiple ports so numbered registers
can be read/written.

• How to write:

• Use decoder to convert reg # to one hot

• Send write data to all regs

• Use one hot encoding of reg # to enable right reg

• How to read:

• 32 input mux (the way we’ve made it) not realistic

• To do this: expand our world from {1,0} to {1, 0, Z}

En0

En1

En30

En31

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

WrData

En0

En1

En30

En31

…

41

FINITE STATE MACHINES

42

How FSMs are represented

State 1 State 2

3 / 0

What input we need to see
to do this state transition

What we change the circuit output
to as a result of this state transition

7 / 1

“Self-edges” are possible

43

FSM Types: Moore and Mealy

• Recall: FSM = States + Transitions

• Next state = function (current state, inputs)

• Outputs = function (current state, inputs)

• This is the most general case

• Called a “Mealy Machine”

• We will assume Mealy Machines from now on

• A more restrictive FSM type is a “Moore Machine”

• Outputs = function (current state)

“Mealy Machine”

developed in 1955

by George H. Mealy

“Moore Machine”

developed in 1956

by Edward F. Moore

44

State Transition Diagram  Truth Table

Current State Input Next state Output

Start 3 Saw 3 0 (closed)

Start Not 3 Start 0

Saw 3 8 Saw 38 0

Saw 3 3 Saw 3 0

Saw 3 Not 8 or 3 Start 0

Saw 38 4 Saw 384 1 (open)

Saw 38 3 Saw 3 0

Saw 38 Not 4 or 3 Start 0

Saw 384 Any Saw 384 1

start saw 3

3/0

{0-2,4-9}/0

saw

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

45

State Transition Diagram  Truth Table

Current State Input Next state Output

00 (start) 3 01 0 (closed)

00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)

10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states  2 flip-flops to hold the current state of the FSM

inputs to flip-flops are D1D0

outputs of flip-flops are Q1Q0

46

State Transition Diagram  Truth Table

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Input can be 0-9  requires 4 bits

input bits are in3, in2, in1, in0

47

State Transition Diagram  Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3
(all binary combos other than 00011)

0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3
(all binary combos other than 01000 & 00011)

0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3
(all binary combos other than 00100 & 00011)

0 0 0

1 1 Any 1 1 1

From here, it’s just like combinational logic design!

Write out product-of-sums equations, optimize, and build.

48

State Transition Diagram  Truth Table

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D0 = do the same thing

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

49

State Transition Diagram  Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Remember, these represent DFF outputs …and these are the DFF inputs

The DFFs are how we store the state.

50

Truth Table  Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

Not pictured
Follow a similar procedure for D0…

51

CPU DATAPATH AND CONTROL

52

How Is Control Implemented?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control

53

Exceptions

• Exceptions and interrupts

• Infrequent (exceptional!) events

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer

• Handling requires intervention from operating system

• End program: divide-by-0, protection fault, illegal insn, ^C

• Fix and restart program: I/O, page fault, ^Z, timer

• Handling should be transparent to application code

• Don’t want to (can’t) constantly check for these using insns

• Want “Fix and restart” equivalent to “never happened”

54

CACHING

55

Big Concept: Memory Hierarchy

• Use hierarchy of memory components

• Upper components (closer to CPU)

• Fast  Small  Expensive

• Lower components (further from CPU)

• Slow  Big  Cheap

• Bottom component (for now!) = what we have
been calling “memory” until now

• Make average access time close to L1’s

• How?

• Most frequently accessed data in L1

• L1 + next most frequently accessed in L2, etc.

• Automatically move data up&down hierarchy

CPU

L1

L2

L3

Memory

56

Terminology

• Hit: Access a level of memory and find what we want

• Miss: Access a level of memory and DON’T find what we want

• Block: a group of spatially contiguous and aligned bytes

• Temporal locality: Recently accessed stuff likely to be
accessed again soon

• Spatial locality: Stuff near recently accessed thing likely to
be accessed soon

57

Memory Performance Equation

• For memory component M

• Access: read or write to M

• Hit: desired data found in M

• Miss: desired data not found in M

• Must get from another (slower) component

• Fill: action of placing data in M

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) M

• tmiss: time to read data into M from lower level

• Performance metric

• tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

M

thit

tmiss

%miss

58

Abstract Hierarchy Performance

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

How do we compute tavg ?

=tavg-M1

=thit-M1 +(%miss-M1*tmiss-M1)

=thit-M1 +(%miss-M1*tavg-M2)

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tmiss-M2)))

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tavg-M3)))

= …

Note: Miss at level X = access at level X+1

59

Where to Put Blocks in Cache

• How to decide which frame holds which block?

• And then how to find block we’re looking for?

• Some more cache structure:

• Divide cache into sets

• A block can only go in its set  there is a 1-to-1 mapping from
block address to set

• Each set holds some number of frames = set associativity

• E.g., 4 frames per set = 4-way set-associative

• At extremes

• Whole cache has just one set = fully associative

• Most flexible (longest access latency)

• Each set has 1 frame = 1-way set-associative = ”direct mapped”

• Least flexible (shortest access latency)

60

Cache structure math

• Given capacity, block_size, ways (associativity), and
word_size.

• Cache parameters:

• num_frames = capacity / block_size

• sets = num_frames / ways = capacity / block_size / ways

• Address bit fields:

• offset_bits = log2(block_size)

• index_bits = log2(sets)

• tag_bits = word_size - index_bits - offset_bits

• Numeric way to get offset/index/tag from address:

• block_offset = addr % block_size

• index = (addr / block_size) % sets

• tag = addr / (sets*block_size)

61

Cache Replacement Policies

• Set-associative caches present a new design choice

• On cache miss, which block in set to replace (kick out)?

• Some options

• Random

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used)

• An easier-to-implement approximation of LRU

• NMRU=LRU for 2-way set-associative caches

• FIFO (first-in first-out)

• When is this a good idea?

62

ABCs of Cache Design

• Architects control three primary aspects of cache design

• And can choose for each cache independently

• A = Associativity

• B = Block size

• C = Capacity of cache

• Secondary aspects of cache design

• Replacement algorithm

• Some other more subtle issues we’ll discuss later

63

Analyzing Cache Misses: 3C Model

• Divide cache misses into three categories

• Compulsory (cold): never seen this address before

• Easy to identify

• Capacity: miss caused because cache is too small – would’ve been
miss even if cache had been fully associative

• Consecutive accesses to block separated by accesses to at least N
other distinct blocks where N is number of frames in cache

• Conflict: miss caused because cache associativity is too low – would’ve
been hit if cache had been fully associative

• All other misses

64

Stores: Write-Through vs. Write-Back

• When to propagate new value to (lower level) memory?

• Write-through: immediately (as soon as store writes to this level)

+ Conceptually simpler

+ Uniform latency on misses

– Requires additional bandwidth to next level

• Write-back: later, when block is replaced from this level

• Requires additional “dirty” bit per block  why?

+ Minimal bandwidth to next level

• Only write back dirty blocks

– Non-uniform miss latency

• Miss that evicts clean block: just a fill from lower level

• Miss that evicts dirty block: writeback dirty block and then fill
from lower level

65

Stores: Write-allocate vs. Write-non-allocate

• What to do on a write miss?

• Write-allocate: read block from lower level, write value into it

+ Decreases read misses

– Requires additional bandwidth

• Use with write-back

• Write-non-allocate: just write to next level

– Potentially more read misses

+ Uses less bandwidth

• Use with write-through

66

Example cache trace

Term Value Equation

cache size 4096 given

block size 32 given

ways 2 given

frames 128 cache size / block size

sets 64 frames / ways

bits:index 6 log2(sets)

bits:offset 5 log2(block size)

bits:tag 53 64 minus the above

addr-dec addr-hex tag index offset result

38 0026 0 1 6 miss compulsory

30 001E 0 0 30 miss compulsory

62 003E 0 1 30 hit

5 0005 0 0 5 hit

2049 0801 1 0 1 miss compulsory

2085 0825 1 1 5 miss compulsory

60 003C 0 1 28 hit

4130 1022 2 1 2 miss compulsory

2085 0825 1 1 5 miss conflict

67

VIRTUAL MEMORY

68

C
A

C
H

IN
G

Cache

Copy if popular

Figure: caching vs. virtual memory

68

RAM

V
IR

T
U

A
L

 M
E

M
O

R
Y

(or SSD)

Hard disk

Load if needed

Drop

• Faster

• More expensive

• Lower capacity

• Slower

• Cheaper

• Higher capacity

Swap out (RW) or drop (RO)

69

High level operation

69

SEGFAULT

OK (fast)

OK (fast)

OK (but slow)

!

Virtual memory

Memory map

Physical memory

HDD/SSD storage

70

Demand Paging

Memory
reference

Is in physical
memory?

Success

Is page stored on
disk?

Load it, success

Invalid reference,
abort!

Y

N

N

Y

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

71

Address translation

71

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

72

Steps in Handling a Page Fault

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

73 © Daniel J. Sorin from Roth 73

Translation Buffer

• Functionality problem? Add indirection!

• Performance problem? Add cache!

• Address translation too slow?

• Cache translations in translation buffer (TB)

• Small cache: 16–64 entries, often fully assoc

+ Exploits temporal locality in PT accesses

+ OS handler only on TB miss

CPU

D$

L2

Main

Memory

I$

TB

VPN PPN

VPN PPN

VPN PPN

“tag” “data” PA

VA

VA

VA VA

74 © Daniel J. Sorin from Roth 74

Virtual Physical Caches

• Compromise: virtual-physical caches

• Indexed by VAs

• Tagged by PAs

• Cache access and address translation in parallel

+ No context-switching/aliasing problems

+ Fast: no additional thit cycles

• A TB that acts in parallel with a cache is a TLB

• Translation Lookaside Buffer

• Common organization in processors today

CPU

D$

L2

Main

Memory

I$ TLB

PA

PA

VA VA

TLB

75

The Table of Time

75

Event Picoseconds ≈ Hardware/target Source

Average instruction time* 30 30 ps Intel Core i7 4770k (Haswell), 3.9GHz https://en.wikipedia.org/wiki/Instructions_per_se
cond

Time for light to traverse CPU core
(~13mm)

 44 40 ps Intel Core i7 4770k (Haswell), 3.9GHz
http://www.anandtech.com/show/7003/the-
haswell-review-intel-core-i74770k-i54560k-

tested/5

Clock cycle (3.9GHz) 256 300 ps Intel Core i7 4770k (Haswell), 3.9GHz Math

Memory read: L1 hit 1,212 1 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html

Memory read: L2 hit 3,636 4 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html

Memory read: L3 hit 8,439 8 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html

Memory read: DRAM 64,485 60 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html

Process context switch or system call 3,000,000 3 us Intel E5-2620 (Sandy Bridge), 2GHz http://blog.tsunanet.net/2010/11/how-long-does-
it-take-to-make-context.html

Storage sequential read**, 4kB (SSD) 7,233,796 7 us SSD: Samsung 840 500GB
http://www.samsung.com/global/business/semic

onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html

Storage sequential read**, 4kB (HDD) 65,104,167 70 us HDD: 2.5" 500GB 7200RPM
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html

Storage random read, 4kB (SSD) 100,000,000 100 us SSD: Samsung 840 500GB
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html

Storage random read, 4kB (HDD) 10,000,000,000 10 ms HDD: 2.5" 500GB 7200RPM
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html

Internet latency, Raleigh home to
NCSU (3 mi)

 21,000,000,000 20 ms courses.ncsu.edu Ping

Internet latency, Raleigh home to
Chicago ISP (639 mi)

 48,000,000,000 50 ms dls.net Ping

Internet latency, Raleigh home to
Luxembourg ISP (4182 mi)

 108,000,000,000 100 ms eurodns.com Ping

Time for light to travel to
the moon (average)

 1,348,333,333,333 1 s The moon http://www.wolframalpha.com/input/?i=distance
+to+the+moon

76

Performance of Demand Paging (Cont.)

• Page Fault Rate 0  p  1

• if p = 0 no page faults

• if p = 1, every reference is a fault

• Effective Access Time (EAT)

 EAT = (1 – p) x memory access

 + p (page fault overhead

 + swap page out

 + swap page in

 + restart overhead

)

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

77

What Happens if There is no Free Frame?

• Page replacement – find some page in memory, but not
really in use, page it out

• Algorithm?

• Want an algorithm which will result in minimum number of page faults

• This decision is just like choosing the caching replacement algorithm!

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

78

Thrashing

• If a process does not have “enough” pages, the page-fault
rate is very high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the degree of
multiprogramming

• Another process added to the system

• Thrashing  a process is busy swapping pages in and out

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

79

Working-set model

•   working-set window  a fixed number of page references
Example: 10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

• if  too small will not encompass entire locality

• if  too large will encompass several localities

• if  =   will encompass entire program

• D =  WSSi  total demand frames

• Approximation of locality

• if D > m  Thrashing

• Policy if D > m, then suspend or swap out one of the processes

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

80

Virtual memory summary

• Address translation via page table

• Page table turns VPN to PPN (noting the valid bit)

• Page is marked ‘i’? Page fault.

• If OS has stored page on disk, load and resume

• If not, this is invalid access, kill app (seg fault)

• Governing policies:

• Keep a certain number of frames loaded per app

• Kick out frames based on a replacement algorithm (like LRU, etc.)

• Looking up page table in memory too slow, so cache it:

• The Translation Buffer (TB) is a hardware cache for the page table

• When applied at the same time as caching (as is common),
it’s called a Translation Lookaside Buffer (TLB).

• Working set size tells you how many pages you need over a time
window.

• DRAM is slower than SRAM, but denser. Needs constant refreshing of data.

WOW!

81

I/O

82

Protection and access

• I/O should be protected, with device access limited to OS

• User processes request I/O through the OS (not directly)

• User processes do so by triggering an interrupt,
this causes the OS to take over and service the request

• The interrupt/exception facility is implemented in hardware,
but triggers OS software

83

Connectivity

• Bus: A communication linkage with two or more devices on it

• Various topologies are possible

CPU ($)

Main

Memory Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (memory-I/O) bus

CPU

I/O I/O

I/O

Mem

Proc-Mem

adapter

I/O I/O

Backplane

CPU Mem

84

Communication models

• Polling: Ask continuously

• Often a waste of processor time

• Interrupts: Have disk alert the CPU when data is ready

• But if data packets are small, this interrupt overhead can add up

• Direct Memory Access (DMA): The device itself can put the
requested data directly into RAM without the CPU being
involved

• The CPU is alerted via interrupt when the whole transaction is done

• Complication!

• Now memory can change without notice; interferes with cache

• Solution: cache listens on bus for DMA traffic, drops changed data

85

PIPELINING

86 © Daniel J. Sorin from Roth 86

5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not re-latched after ALU stage (why not?)

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

87 © Daniel J. Sorin from Roth 87

Pipeline Diagram

• Pipeline diagram: shorthand for what we just saw

• Across: cycles

• Down: insns

• Convention: X means lw $4,0($5) finishes execute stage and
writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($5) F D X M W

sw $6,4($7) F D X M W

88 © Daniel J. Sorin from Roth 88

Pipeline Hazards

• Hazard: condition leads to incorrect execution if not fixed

• “Fixing” typically increases CPI

• Three kinds of hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• Fix by proper ISA/pipeline design:
Each insn uses every structure exactly once for at most one cycle, always at same stage relative to
Fetch

• Data hazards

• Result of dependencies: Need data before it’s ready

• Solve by (a) stalling pipeline (inject NOPs) and (b) having bypasses provide data before it formally
hits destination memory/register.

• Control hazards

• Result of jump/branch not being resolved until late in pipeline

• Solve by flushing instructions that shouldn’t have been happening after branch is resolved

• This incurs overhead: wasted time! Reduce with:

• Fast branches: Add hardware to resolve branch sooner

• Delayed branch: Always execute instruction after a branch (complicates compiler)

• Branch prediction: Add hardware to speculate on if/where the branch goes

89 © Daniel J. Sorin from Roth 89

Stalling and Bypassing together

Stall = (D/X.IR.OP == LOAD) &&

 ((F/D.IR.RS1 == D/X.IR.RD) ||

 ((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))

Register

File

S

X

s1 s2 d

Data

Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)

stall

nop

add $4,$2,$3

lw $3,0($2) add $4,$2,$3

90 © Daniel J. Sorin from Roth 90

Pipeline Diagram: Data Hazard

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F d* D X M W

• Even with bypasses, stalls are sometimes necessary

• Examples:

• Memory load -> ALU operation

• Memory load -> Address component of memory load/store

• Example pipeline diagram for a stall due to a data hazard:

91 © Daniel J. Sorin from Roth 91

Pipeline Diagram: Control Hazard

• Control hazards indicated with c* (or not at all)

• “Default” penalty for taken branch is 2 cycles:

• Fast branches reduce the penalty to 1 cycle:

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* c* F D X M W

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* F D X M W

92

MULTICORE

93

Types of parallelism

• Pipelining tries to exploit instruction-level parallelism
(ILP)

• “How can we simultaneously do steps in this otherwise sequential
process?”

• Multicore tries to exploit thread-level parallelism

• “How can we simultaneously do multiple processes?”

• Thread: A program has one (or more) threads of control

• A thread has its own PC

• Threads in a program share resources, especially memory

(e.g. sharing a page table)

94

Two cases of multiple threads

• Multiprogramming: run multiple programs at once

• Multithreaded programming: write software to explicitly
take advantage of multiple threads (divide problem into
parallel tasks)

95

Multiprocessors

• Multiprocessors: have more than one CPU core

• Historically: multiple discrete physical chips

• Now: a single chip with multiple cores

Multiprocessor:

Two drive-throughs, each

with its own kitchen

96

Challenges of multicore

• Two main challenges:

• Topologies of connection (rings, cubes, meshes, buses, etc.)

• Cache coherence: If each core has a cache, then each CPU can have
a diverging view of memory !! (BAD)

• Solution: Intelligent caches that use snooping on the memory bus
to spot sharing and react accordingly

• Different coherence algorithms (performance/complexity tradeoffs)

Store / OwnGETX

Valid OtherGETX/ --

Invalid

OtherGETS / --

Load / OwnGETS

Load / --

Store / OwnGETX

OtherGETS / --

OtherGETX / --

Load /--

M

-/OtherGETX

Store / OwnGETX
S

I

Store / --

-/OtherGETS
Store / OwnGETX

Load / OwnGETS

OtherBusRdX / --

Load / --
-/OtherGETS

Writeback / OwnPUTX

Writeback / --

97

INTEL X86

98

Basic differences

MIPS Intel x86

Word size Originally: 32-bit (MIPS I in 1985)
Now: 64-bit (MIPS64 in 1999)

Originally: 16-bit (8086 in 1978)
Later: 32-bit (80386 in 1985)
Now: 64-bit (Pentium 4’s in 2005)

Design RISC CISC

ALU ops Register = Register ⦻ Register

(3 operand)

Register ⦻= <Reg|Memory>

(2 operand)

Registers 32 8 (32-bit) or 16 (64-bit)

Instruction size 32-bit fixed Variable: originally 8- to 48-bit,
can be longer now (up to 15 *bytes*!)

Branching Condition in register (e.g. “slt”) Condition codes set implicitly

Endian Either (typically big) Little

Variants and
extensions

Just 32- vs. 64-bit, plus some
graphics extensions in the 90s

A bajillion (x87, IA-32, MMX, 3DNow!,
SSE, SSE2, PAE, x86-64, SSE3, SSE4,
SSE5, AVX, AES, FMA)

Market share Small but persistent (embedded) 80% server, similar for consumer
(defection to ARM for mobile is recent)

99

• Registers:

• General: eax ebx ecx edx edi esi

• Stack: esp ebp

• Instruction pointer: eip

• Complex instruction set

• Instructions are variable-sized & unaligned

• Hardware-supported call stack

• call / ret

• Parameters on the stack,
return value in eax

• Little-endian

• Assembly language summary:
• Moving data? Use ‘mov’.

• All ALU ops are 2-operand (add eax, ebx → eax+=ebx)

• Can do a memory load/store anywhere

• Address can be fairly complex expression: [0x123 + eax + 4*ebx]

mov eax, 5

mov [ebx], 6

add eax, edi

push eax

pop esi

call 0x12345678

ret

jmp 0x87654321

jmp eax

call eax

100

Binary modification
(applies to *all* ISAs)

• Can disassemble binaries (turn into human-readable assembly)

• Do a bunch of cross-referencing to understand functionality
(that’s what IDA Pro does)

• Basic blocks of code ending in branches form a flow chart

• Identify behavior and make inferences on author intent

• Can modify by overwriting binary with new instructions
(can also insert instructions, but this changes layout of binary
program, so various pointers have to be updated)

• Cheap and easy technique on x86: overwrite stuff you don’t
want with NOP (0x90)

101

THE END

