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INTRODUCTION 
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Course objective:  
Evolve your understanding of computers 

Input Output 

After 
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C PROGRAMMING 
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What is C? 

• The language of UNIX 

• Procedural language (no classes) 

• Low-level access to memory 

• Easy to map to machine language 

• Not much run-time stuff needed 

• Surprisingly cross-platform 

 

Why teach it now?   
To expand from basic programming to  

operating systems and embedded development. 

 

Also, as a case study to understand computer architecture in general. 
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Memory Layout and Bounds Checking 

• There is NO bounds checking in C 

• i.e., it’s legal (but not advisable) to refer to  
days_in_month[216] or  
days_in_month[-35]  ! 

• who knows what is stored there? 

… … 

Storage for array int days_in_month[12]; 

Storage for other stuff 
Storage for some more stuff 

(each location shown here is an int) 

DIFFERENT 

from Java! 
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Structures 

• Structures are sort of like Java objects 

• They have member variables 

• But they do NOT have methods! 

 

• Structure definition with struct keyword 
struct student_record { 

 int id; 

 float grade; 

} rec1, rec2; 

 

• Declare a variable of the structure type with struct keyword 
struct student_record onerec; 

• Access the structure member fields with dot (‘.’), e.g. structvar.member 
onerec.id = 12; 

onerec.grade = 79.3; 

DIFFERENT 

from Java! 
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Let’s look at memory addresses! 

• You can find the address of ANY variable with: 

& 
The address-of operator 

 

int v = 5; 

printf(“%d\n”,v); 

printf(“%p\n”,&v); 
$ gcc x4.c && ./a.out 
5 
0x7fffd232228c 

DIFFERENT 

from Java! 
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What’s a pointer? 

• It’s a memory address you treat as a variable 

• You declare pointers with: 

* 
The dereference operator 

int v = 5; 

int* p = &v; 

printf(“%d\n”,v); 

printf(“%p\n”,p); 
$ gcc x4.c && ./a.out 
5 
0x7fffe0e60b7c 

Append to any data type 

DIFFERENT 

from Java! 
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What’s a pointer? 

• You can look up what’s stored at a pointer! 

• You dereference pointers with: 

* 
The dereference operator 

int v = 5; 

int* p = &v; 

printf(“%d\n”,v); 

printf(“%p\n”,p); 

printf(“%d\n”,*p); 
$ gcc x4.c && ./a.out 
5 
0x7fffe0e60b7c 
5 

Prepend to any pointer variable or expression 

DIFFERENT 

from Java! 
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C Memory Allocation 

• void* malloc(nbytes) 

• Obtain storage for your data (like new in Java) 

• Often use sizeof(type) built-in returns bytes needed for type 

• int* my_ptr = malloc (64);  // 64 bytes = 16 ints 

• int* my_ptr = malloc (64*sizeof(int)); // 64 ints 

 

• free(ptr) 

• Return the storage when you are finished (no Java equivalent) 

• ptr must be a value previously returned from malloc 

 

 

ECE/CS 250 

DIFFERENT 

from Java! 
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DATA REPRESENTATIONS AND 
MEMORY 
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Decimal to binary using remainders 

14 

? Quotient Remain-
der 

457  2 = 228 1 

228  2 = 114 0 

114  2 = 57 0 

57  2 = 28 1 

28  2 = 14 0 

14  2 = 7 0 

7  2 = 3 1 

3  2 = 1 1 

1  2 = 0 1 111001001 
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Decimal to binary using comparison 

Num Compare 2n ≥ ? 

457 256 1 

201 128 1 

73 64 1 

9 32 0 

9 16 0 

9 8 1 

1 4 0 

1 2 0 

1 1 1 

111001001 
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Binary to/from hexadecimal 

• 01011011001000112 --> 

• 0101  1011  0010  00112 --> 

•    5      B       2       316 

Binary Hex 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 

1100 C 

1101 D 

1110 E 

1111 F 

    1       F     4       B16 --> 

0001  1111  0100  10112 --> 

00011111010010112 
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2’s Complement Integers 

• Use large positives to represent negatives  

• (-x) = 2n - x 

• This is 1’s complement + 1 

• (-x) = 2n - 1 - x + 1 

• So, just invert bits and add 1 

 

6-bit examples: 

0101102 = 2210 ; 1010102 = -2210 

110 = 0000012; -110 = 1111112 

010 = 0000002; -010 = 0000002   good! 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 -8 

1001 -7 

1010 -6 

1011 -5 

1100 -4 

1101 -3 

1110 -2 

1111 -1 



18 

Floating point 

• 32-bit float format: 

 

 

 

 

 

 

• 64-bit double format: 
(same thing, but with more bits) 
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Standardized ASCII (0-127) 
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Memory Layout 

Stack 

Data 

Text 

Reserved 0 

2n-1 

Typical 

Address 

Space 
Heap 

• Memory is array of bytes, but there 
are conventions as to what goes 
where in this array 

• Text: instructions (the program to 
execute) 

• Data: global variables 

• Stack: local variables and other 
per-function state; starts at top & 
grows down 

• Heap: dynamically allocated 
variables; grows up 

• What if stack and heap overlap???? 
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LEARNING ASSEMBLY LANGUAGE 
WITH MIPS 
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The MIPS architecture 

• 32-bit word size 

• 32 registers ($0 is zero, $31 is return address) 

• Fixed size 32-bit aligned instructions 

• Types of instructions: 

• Math and logic: 

• or $1, $2, $3 → $1 = $2 | $3 

• add $1, $2, $3 → $1 = $2 + $3 

• Loading constants: 

• li $1, 50 → $1 = 50 

• Memory: 

• lw $1, 4($2) → $1 = *($2 + 4) 

• sw $1, 4($2) → *($2 + 4) = $1 

• Control flow: 

• j label  → PC = label 

• bne $1, $2, label  → if ($1==$2) PC=label 
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Control Idiom: If-Then-Else 

• Control idiom: if-then-else 
if (A < B) A++;     // assume A in register $1 

else B++;           // assume B in $2 

 

   slt  $3,$1,$2  // if $1<$2, then $3=1 

   beqz $3,else      // branch to else if !condition 

   addi $1,$1,1 

   j    join          // jump to join 

  else: addi $2,$2,1  

  join: 
ICQ: assembler converts “else” 
operand of beqz into immediate  
what is the immediate? 
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16 s0 callee saves 

. . . 

23 s7 

24 t8 temporary (cont’d) 

25 t9 

26 k0 reserved for OS kernel 

27 k1 

28 gp pointer to global area 

29 sp stack pointer 

30 fp frame pointer 

31 ra return address 

0 zero constant 

1 at reserved for assembler 

2 v0 expression evaluation & 

3 v1 function results 

4 a0 arguments 

5 a1 

6 a2 

7 a3  

8 t0 temporary: caller saves 

. . . 

15 t7 

MIPS Register Usage/Naming Conventions 

Important: The only general purpose registers are the $s and $t registers. 

 

Everything else has a specific usage: 

$a = arguments, $v = return values, $ra = return address, etc. 

Also 32 floating-point registers: $f0 .. $f31 
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MIPS Instruction Formats 

• 3 variations on theme from previous slide 

• All MIPS instructions are either R, I, or J type 

• Note: all instructions have opcode as first 6 bits 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 
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msb lsb 

3          2          1           0 

little endian byte 0 

0          1          2           3 

big endian byte 0 

Memory Addressing Issue: Endian-ness 

Byte Order 

• Big Endian: byte 0 is 8 most significant bits IBM 360/370, 
Motorola 68k, MIPS, SPARC, HP PA-RISC 

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC 
Vax, DEC/Compaq Alpha 
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COMBINATIONAL LOGIC 
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Truth Tables 

• Map any number if inputs to any number of outputs 

• Example: 

(A & B) | !C 

 

Start with Empty TT 

Column Per Input 

Column Per Output 

 

Fill in Inputs 

Counting in Binary 

 

Compute Output  

  

A B C Output 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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Convert truth table to function 

• Given a Truth Table, find the formula? 

 

Write down every “true” case 

Then OR together: 

 

(!A & !B & !C) |  

(!A & !B & C)  | 

(!A & B & !C) | 

(A & B &!C) | 

(A & B &C) 

 

  

  

A B C Output 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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Boolean Function Simplification 

• Boolean expressions can be simplified by using the following 
rules (bitwise logical): 
• A & A = A                        A | A = A 

• A & 0 = 0                        A | 0 = A 

• A & 1 = A                        A | 1 = 1 

• A & !A = 0                       A | !A = 1 

 

• !!A  = A 

 

• & and | are both commutative and associative 

• & and | can be distributed:  A & (B | C) = (A & B) | (A & C) 

• & and | can be subsumed: A | (A & B) = A 

 

• DeMorgan’s Laws:  

!(A & B) = (!A) | (!B) 

!(A | B) = (!A) & (!B) 
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a 

b 

AND(a,b) a 

b 

OR(a,b) 

 Guide to Remembering your Gates 

XOR(a,b) a 

b 

Straight like an A Curved, like an O 
XOR looks like OR (curved line), 

but has two lines (like an X does) 

XNOR(a,b) 

a NOT(a) 

a 

b 

NAND(a,b) a 

b 

NOR(a,b) a 

b 

Circle means NOT 

(XNOR is 1-bit “equals” by the way) 
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Designing a 1-bit adder 

• So we’ll need to add three bits (including carry-in) 

• Two-bit output is the carry-out and the sum 

 

a   b   Cin 

0 + 0 + 0 = 00 

0 + 0 + 1 = 01 

0 + 1 + 0 = 01 

0 + 1 + 1 = 10 

1 + 0 + 0 = 01 

1 + 0 + 1 = 10 

1 + 1 + 0 = 10 

1 + 1 + 1 = 11 
Turn into expression,  

simplify,  

circuit-ify,  

yadda yadda yadda… 
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A 1-bit Full Adder 

a  b  Cin  Sum  Cout 

0  0  0    0    0 

0  0  1    1    0 

0  1  0    1    0 

0  1  1    0    1 

1  0  0    1    0 

1  0  1    0    1 

1  1  0    0    1 

1  1  1    1    1 

01101100 
 

 01101101 

+00101100 

 10011001 

a 

b 

Cin 

Cout 

Sum 

Logisim example 

basic_logic.circ : full-adder 
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Full AdderFull AdderFull AdderFull Adder

b0 b1 b2 b3 a0 a1 a2 a3 

Cout 

S0 S1 S2 S3 

Add/Sub 

Example: Adder/Subtractor 

Logisim example 

basic_logic.circ : 4bit-addsub 
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Add/sub 

C in 

C ou t 

Add/sub F 

2 

0 

1 

2 

3 

a 

b 

Q 

A   F         Q 

0   0        a + b 

1   0        a - b 

-    1      NOT b 

-    2      a OR b 

-    3      a AND b 

ALU Slice 

Logisim example 

basic_logic.circ : alu-slice 
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The ALU 

ALU Slice ALU Slice ALU Slice ALU Slice 

ALU control 

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1 

Q 0 Q 1 Q n-2 Q n-1 

Overflow Is non-zero? 

Logisim example 

basic_logic.circ : alu 
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SEQUENTIAL LOGIC 
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D flip flops 

• Stores one bit 

• Inputs: 

• The data D 

• The clock ‘>’ 

• An “enable” signal E 

• Outputs: 

• The stored bit output Q  
(and also its inverse !Q) 

• “Commits” the input bit on clock rise,  
and only if E is high 

DFF 

D Q 

E Q 

> 

Clock rise (bit gets saved at this time) 
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Register 

• Register: N flip flops working in parallel,  
where N is the word size 

 

DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
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Register file 

• A set of registers with multiple ports so numbered registers 
can be read/written. 

• How to write: 

• Use decoder to convert reg # to one hot 

• Send write data to all regs 

• Use one hot encoding of reg # to enable right reg 

• How to read: 

• 32 input mux (the way we’ve made it) not realistic 

• To do this: expand our world from {1,0} to {1, 0, Z} 

 

En0 

En1 

En30 

En31 

32 bit reg 

D Q 

E Q 

32 bit reg 

D Q 

E Q 

32 bit reg 

D Q 

E Q 

32 bit reg 

D Q 

E Q 

WrData 

En0 

En1 

En30 

En31 

… 
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FINITE STATE MACHINES 
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How FSMs are represented 

State 1 State 2 

3 / 0 

What input we need to see 
to do this state transition 

What we change the circuit output  
to as a result of this state transition 

7 / 1 

“Self-edges” are possible 
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FSM Types: Moore and Mealy 

• Recall: FSM = States + Transitions 

• Next state = function (current state, inputs) 

• Outputs = function (current state, inputs) 

 

• This is the most general case 

• Called a “Mealy Machine”  

• We will assume Mealy Machines from now on 

• A more restrictive FSM type is a “Moore Machine” 

• Outputs = function (current state) 

 

“Mealy Machine” 

developed in 1955  

by George H. Mealy 

“Moore Machine” 

developed in 1956 

by Edward F. Moore 
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State Transition Diagram  Truth Table 

Current State Input Next state Output 

Start 3 Saw 3 0 (closed) 

Start Not 3 Start 0 

Saw 3 8 Saw 38 0 

Saw 3 3 Saw 3 0 

Saw 3 Not 8 or 3 Start 0 

Saw 38 4 Saw 384 1 (open) 

Saw 38 3 Saw 3 0 

Saw 38 Not 4 or 3 Start 0 

Saw 384 Any Saw 384 1 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 

38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 

{0-9}/1 
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State Transition Diagram  Truth Table 

Current State Input Next state Output 

00 (start) 3 01 0 (closed) 

00 Not 3 00 0 

01 8 10 0 

01 3 01 0 

01 Not 8 or 3 00 0 

10 4 11 1 (open) 

10 3 01 0 

10 Not 4 or 3 00 0 

11 Any 11 1 

4 states  2 flip-flops to hold the current state of the FSM 

inputs to flip-flops are D1D0 

outputs of flip-flops are Q1Q0 
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State Transition Diagram  Truth Table 

Q1 Q0 Input D1 D0 Output 

0 0 3 0 1 0 (closed) 

0 0 Not 3 0 0 0 

0 1 8 1 0 0 

0 1 3 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 4 1 1 1 (open) 

1 0 3 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

Input can be 0-9  requires 4 bits 

input bits are in3, in2, in1, in0 
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State Transition Diagram  Truth Table 

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 
(all binary combos other than 00011) 

0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 
(all binary combos other than 01000 & 00011) 

0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 
(all binary combos other than 00100 & 00011) 

0 0 0 

1 1 Any 1 1 1 

From here, it’s just like combinational logic design! 

Write out product-of-sums equations, optimize, and build. 
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State Transition Diagram  Truth Table 

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

 

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

 

D0 = do the same thing 

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 
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State Transition Diagram  Truth Table 

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

Remember, these represent DFF outputs …and these are the DFF inputs 

The DFFs are how we store the state. 
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Truth Table  Sequential Circuit 

D1      Q1  

FF1 
!Q1 

D0      Q0  

FF0 
!Q0 

 

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

in3 

in2 

in1 

in0 

output 

Not pictured 
Follow a similar procedure for D0… 
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CPU DATAPATH AND CONTROL 
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How Is Control Implemented? 

 

P 

C 

Insn 

Mem 

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

a 

d 

+ 

4 

<< 

2 
<< 

2 

Rwe 

ALUinB 

DMwe 

JP 

ALUop 

BR 

Rwd 

Rdst 

Control 
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Exceptions 

• Exceptions and interrupts 

• Infrequent (exceptional!) events 

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer 

 

• Handling requires intervention from operating system 

• End program: divide-by-0, protection fault, illegal insn, ^C 

• Fix and restart program: I/O, page fault, ^Z, timer 

 

• Handling should be transparent to application code 

• Don’t want to (can’t) constantly check for these using insns 

• Want “Fix and restart” equivalent to “never happened” 
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CACHING 
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Big Concept: Memory Hierarchy 

• Use hierarchy of memory components 

• Upper components (closer to CPU) 

• Fast  Small  Expensive 

• Lower components (further from CPU) 

• Slow  Big  Cheap 

• Bottom component (for now!) = what we have 
been calling “memory” until now 

 

• Make average access time close to L1’s 

• How? 

• Most frequently accessed data in L1 

• L1 + next most frequently accessed in L2, etc. 

• Automatically move data up&down hierarchy 

CPU 

L1 

L2 

L3 

Memory 
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Terminology 

• Hit: Access a level of memory and find what we want 

• Miss: Access a level of memory and DON’T find what we want 

 

• Block: a group of spatially contiguous and aligned bytes 

 

• Temporal locality: Recently accessed stuff likely to be 
accessed again soon 

• Spatial locality: Stuff near recently accessed thing likely to 
be accessed soon 
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Memory Performance Equation 

• For memory component M 

• Access: read or write to M 

• Hit: desired data found in M 

• Miss: desired data not found in M 

• Must get from another (slower) component 

• Fill: action of placing data in M 

 

• %miss (miss-rate): #misses / #accesses 

• thit: time to read data from (write data to) M 

• tmiss: time to read data into M from lower level 

 

• Performance metric 

• tavg: average access time 

tavg = thit + (%miss * tmiss) 

CPU 

M 

thit 

tmiss 

%miss 
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Abstract Hierarchy Performance 

tmiss-M3 = tavg-M4 

CPU 

M1 

M2 

M3 

M4 

tmiss-M2 = tavg-M3 

tmiss-M1 = tavg-M2 

tavg = tavg-M1 

How do we compute tavg ? 

=tavg-M1 

=thit-M1 +(%miss-M1*tmiss-M1) 

=thit-M1 +(%miss-M1*tavg-M2) 

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tmiss-M2))) 

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tavg-M3))) 

= … 

 

Note: Miss at level X = access at level X+1 
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Where to Put Blocks in Cache 

• How to decide which frame holds which block? 

• And then how to find block we’re looking for? 

• Some more cache structure: 

• Divide cache into sets 

• A block can only go in its set  there is a 1-to-1 mapping from 
block address to set 

• Each set holds some number of frames = set associativity 

• E.g., 4 frames per set = 4-way set-associative 

• At extremes 

• Whole cache has just one set = fully associative 

• Most flexible (longest access latency) 

• Each set has 1 frame = 1-way set-associative = ”direct mapped” 

• Least flexible (shortest access latency) 
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Cache structure math 

• Given capacity, block_size, ways (associativity), and 
word_size. 

• Cache parameters: 

• num_frames = capacity / block_size 

• sets = num_frames / ways = capacity / block_size / ways 

• Address bit fields: 

• offset_bits = log2(block_size) 

• index_bits = log2(sets) 

• tag_bits = word_size - index_bits - offset_bits 

• Numeric way to get offset/index/tag from address: 

• block_offset = addr % block_size 

• index = (addr / block_size) % sets 

• tag = addr / (sets*block_size) 
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Cache Replacement Policies 

• Set-associative caches present a new design choice 

• On cache miss, which block in set to replace (kick out)? 

• Some options 

• Random 

• LRU (least recently used) 

• Fits with temporal locality, LRU = least likely to be used in future 

• NMRU (not most recently used)  

• An easier-to-implement approximation of LRU 

• NMRU=LRU for 2-way set-associative caches 

• FIFO (first-in first-out) 

• When is this a good idea? 
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ABCs of Cache Design 

• Architects control three primary aspects of cache design 

• And can choose for each cache independently 

• A = Associativity 

• B = Block size 

• C = Capacity of cache 

 

• Secondary aspects of cache design 

• Replacement algorithm 

• Some other more subtle issues we’ll discuss later 
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Analyzing Cache Misses: 3C Model 

• Divide cache misses into three categories 

• Compulsory (cold): never seen this address before 

• Easy to identify 

• Capacity: miss caused because cache is too small – would’ve been 
miss even if cache had been fully associative 

• Consecutive accesses to block separated by accesses to at least N 
other distinct blocks where N is number of frames in cache 

• Conflict: miss caused because cache associativity is too low – would’ve 
been hit if cache had been fully associative 

• All other misses 
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Stores: Write-Through vs. Write-Back 

• When to propagate new value to (lower level) memory? 

• Write-through: immediately (as soon as store writes to this level) 

+ Conceptually simpler 

+ Uniform latency on misses 

– Requires additional bandwidth to next level 

• Write-back: later, when block is replaced from this level 

• Requires additional “dirty” bit per block  why? 

+ Minimal bandwidth to next level 

• Only write back dirty blocks 

– Non-uniform miss latency 

• Miss that evicts clean block: just a fill from lower level 

• Miss that evicts dirty block: writeback dirty block and then fill 
from lower level 
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Stores: Write-allocate vs. Write-non-allocate 

• What to do on a write miss? 

• Write-allocate: read block from lower level, write value into it 

+ Decreases read misses 

– Requires additional bandwidth 

• Use with write-back 

• Write-non-allocate: just write to next level 

– Potentially more read misses 

+ Uses less bandwidth 

• Use with write-through 
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Example cache trace 

Term Value Equation 

cache size 4096 given 

block size 32 given 

ways 2 given 

frames 128 cache size / block size 

sets 64 frames / ways 

bits:index 6 log2(sets) 

bits:offset 5 log2(block size) 

bits:tag 53 64 minus the above 

addr-dec addr-hex tag index offset result 

38 0026 0 1 6 miss compulsory 

30 001E 0 0 30 miss compulsory 

62 003E 0 1 30 hit 

5 0005 0 0 5 hit 

2049 0801 1 0 1 miss compulsory 

2085 0825 1 1 5 miss compulsory 

60 003C 0 1 28 hit 

4130 1022 2 1 2 miss compulsory 

2085 0825 1 1 5 miss conflict 
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VIRTUAL MEMORY 



68 

C
A

C
H

IN
G

 

Cache 

Copy if popular 

Figure: caching vs. virtual memory 
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RAM 
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(or SSD) 

Hard disk 

Load if needed 

Drop 

• Faster 

• More expensive 

• Lower capacity 

• Slower 

• Cheaper 

• Higher capacity 

Swap out (RW) or drop (RO) 
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High level operation 
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SEGFAULT 

OK (fast) 

OK (fast) 

OK (but slow) 

! 

Virtual memory 

Memory map 

Physical memory 

HDD/SSD storage 
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Demand Paging 

 

Memory 
reference 

Is in physical 
memory? 

Success 

Is page stored on 
disk? 

Load it, success 

Invalid reference, 
abort! 

Y 

N 

N 

Y 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Address translation 

71 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Steps in Handling a Page Fault 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Translation Buffer 

• Functionality problem? Add indirection! 

• Performance problem? Add cache! 

 

• Address translation too slow? 

• Cache translations in translation buffer (TB) 

• Small cache: 16–64 entries, often fully assoc 

+ Exploits temporal locality in PT accesses 

+ OS handler only on TB miss 

CPU 

D$ 

L2 

Main 

Memory 

I$ 

TB 

VPN PPN 

VPN PPN 

VPN PPN 

“tag” “data” PA 

VA 

VA 

VA VA 
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Virtual Physical Caches 

• Compromise: virtual-physical caches 

• Indexed by VAs 

• Tagged by PAs 

• Cache access and address translation in parallel 

+ No context-switching/aliasing problems  

+ Fast: no additional thit cycles 

 

• A TB that acts in parallel with a cache is a TLB 

• Translation Lookaside Buffer 

 

• Common organization in processors today 

 

CPU 

D$ 

L2 

Main 

Memory 

I$ TLB 

PA 

PA 

VA VA 

TLB 
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The Table of Time 
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Event Picoseconds   ≈ Hardware/target Source 

Average instruction time*                                       30  30 ps Intel Core i7 4770k (Haswell), 3.9GHz https://en.wikipedia.org/wiki/Instructions_per_se
cond 

Time for light to traverse CPU core 
(~13mm) 

                                       44  40 ps Intel Core i7 4770k (Haswell), 3.9GHz 
http://www.anandtech.com/show/7003/the-
haswell-review-intel-core-i74770k-i54560k-

tested/5 

Clock cycle (3.9GHz)                                      256  300 ps Intel Core i7 4770k (Haswell), 3.9GHz Math 

Memory read: L1 hit                                    1,212  1 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: L2 hit                              3,636  4 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: L3 hit                       8,439  8 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: DRAM                         64,485  60 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Process context switch or system call 3,000,000 3 us Intel E5-2620 (Sandy Bridge), 2GHz http://blog.tsunanet.net/2010/11/how-long-does-
it-take-to-make-context.html 

Storage sequential read**, 4kB (SSD)                    7,233,796  7 us SSD: Samsung 840 500GB 
http://www.samsung.com/global/business/semic

onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Storage sequential read**, 4kB (HDD)                  65,104,167  70 us HDD: 2.5" 500GB 7200RPM 
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Storage random read, 4kB (SSD)                   100,000,000  100 us SSD: Samsung 840 500GB 
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Storage random read, 4kB (HDD)             10,000,000,000  10 ms HDD: 2.5" 500GB 7200RPM 
http://www.samsung.com/global/business/semic
onductor/minisite/SSD/global/html/whitepaper/w
hitepaper01.html 

Internet latency, Raleigh home to  
NCSU (3 mi) 

            21,000,000,000  20 ms courses.ncsu.edu Ping 

Internet latency, Raleigh home to  
Chicago ISP (639 mi) 

             48,000,000,000  50 ms dls.net Ping 

Internet latency, Raleigh home to  
Luxembourg ISP (4182 mi) 

          108,000,000,000  100 ms eurodns.com Ping 

Time for light to travel to  
the moon (average) 

 1,348,333,333,333  1   s The moon http://www.wolframalpha.com/input/?i=distance
+to+the+moon 
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Performance of Demand Paging (Cont.) 

• Page Fault Rate 0  p  1 

• if p = 0 no page faults  

• if p = 1, every reference is a fault 
 

• Effective Access Time (EAT) 

  EAT = (1 – p) x memory access 

   + p (page fault overhead 

              + swap page out 

              + swap page in 

              + restart overhead 

                                           ) 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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What Happens if There is no Free Frame? 

• Page replacement – find some page in memory, but not 
really in use, page it out 

• Algorithm? 

• Want an algorithm which will result in minimum number of page faults 

• This decision is just like choosing the caching replacement algorithm! 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Thrashing 

• If a process does not have “enough” pages, the page-fault 
rate is very high 

• Page fault to get page 

• Replace existing frame 

• But quickly need replaced frame back 

• This leads to: 

• Low CPU utilization 

• Operating system thinking that it needs to increase the degree of 
multiprogramming 

• Another process added to the system 
 

• Thrashing  a process is busy swapping pages in and out 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Working-set model 

•   working-set window  a fixed number of page references  
Example:  10,000 instructions 
 

• WSSi (working set of Process Pi) = 
total number of pages referenced in the most recent  (varies in time) 

• if  too small will not encompass entire locality 

• if  too large will encompass several localities 

• if  =   will encompass entire program 
 

• D =  WSSi  total demand frames  

• Approximation of locality 
 

• if D > m  Thrashing 
 

• Policy if D > m, then suspend or swap out one of the processes 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Virtual memory summary 

• Address translation via page table 

• Page table turns VPN to PPN (noting the valid bit) 

• Page is marked ‘i’? Page fault. 

• If OS has stored page on disk, load and resume 

• If not, this is invalid access, kill app (seg fault) 

• Governing policies: 

• Keep a certain number of frames loaded per app 

• Kick out frames based on a replacement algorithm (like LRU, etc.) 

• Looking up page table in memory too slow, so cache it: 

• The Translation Buffer (TB) is a hardware cache for the page table 

• When applied at the same time as caching (as is common),  
it’s called a Translation Lookaside Buffer (TLB).  

• Working set size tells you how many pages you need over a time 
window. 

• DRAM is slower than SRAM, but denser. Needs constant refreshing of data. 

WOW! 
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I/O 
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Protection and access 

• I/O should be protected, with device access limited to OS 

 

• User processes request I/O through the OS (not directly) 

 

• User processes do so by triggering an interrupt, 
this causes the OS to take over and service the request 

 

• The interrupt/exception facility is implemented in hardware, 
but triggers OS software 
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Connectivity 

• Bus: A communication linkage with two or more devices on it 

• Various topologies are possible 

CPU ($) 

Main 

Memory Disk 
kbd 

DMA DMA 

display NIC 

I/O ctrl 

“System” (memory-I/O) bus 

CPU 

I/O I/O 

I/O 

Mem 

Proc-Mem 

adapter 

I/O I/O 

Backplane 

CPU Mem 
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Communication models 

• Polling: Ask continuously 

• Often a waste of processor time 

 

• Interrupts: Have disk alert the CPU when data is ready 

• But if data packets are small, this interrupt overhead can add up 

 

• Direct Memory Access (DMA): The device itself can put the 
requested data directly into RAM without the CPU being 
involved 

• The CPU is alerted via interrupt when the whole transaction is done 

• Complication!  

• Now memory can change without notice; interferes with cache 

• Solution: cache listens on bus for DMA traffic, drops changed data 
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PIPELINING 
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5 Stage Pipelined Datapath 

• Temporary values (PC,IR,A,B,O,D) re-latched every stage 

• Why? 5 insns may be in pipeline at once, they share a single PC? 

• Notice, PC not re-latched after ALU stage (why not?) 
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Pipeline Diagram 

• Pipeline diagram: shorthand for what we just saw 

• Across: cycles 

• Down: insns 

• Convention: X means lw $4,0($5) finishes execute stage and 
writes into X/M latch at end of cycle 4 

 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($5) F D X M W 

sw $6,4($7) F D X M W 
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Pipeline Hazards 

• Hazard: condition leads to incorrect execution if not fixed 

• “Fixing” typically increases CPI 

• Three kinds of hazards 

 

• Structural hazards 

• Two insns trying to use same circuit at same time 

• Fix by proper ISA/pipeline design:  
Each insn uses every structure exactly once for at most one cycle, always at same stage relative to 
Fetch 

• Data hazards  

• Result of dependencies: Need data before it’s ready 

• Solve by (a) stalling pipeline (inject NOPs) and (b) having bypasses provide data before it formally 
hits destination memory/register. 

• Control hazards 

• Result of jump/branch not being resolved until late in pipeline 

• Solve by flushing instructions that shouldn’t have been happening after branch is resolved 

• This incurs overhead: wasted time! Reduce with: 

• Fast branches: Add hardware to resolve branch sooner 

• Delayed branch: Always execute instruction after a branch (complicates compiler) 

• Branch prediction: Add hardware to speculate on if/where the branch goes 
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Stalling and Bypassing together 

Stall = (D/X.IR.OP == LOAD) && 

          ((F/D.IR.RS1 == D/X.IR.RD) ||  

           ((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))  

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

a 

d 
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D 

 

 

 

 

 

IR 

F/D D/X X/M M/W 

lw $3,0($2) 

stall 

nop 

add $4,$2,$3 

lw $3,0($2) add $4,$2,$3 
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Pipeline Diagram: Data Hazard 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F D X M W 

addi $6,$4,1 F d* D X M W 

• Even with bypasses, stalls are sometimes necessary 

• Examples: 

• Memory load -> ALU operation 

• Memory load -> Address component of memory load/store 

 

• Example pipeline diagram for a stall due to a data hazard: 



91 ©  Daniel J. Sorin from Roth 91 

Pipeline Diagram: Control Hazard 

• Control hazards indicated with c* (or not at all) 

• “Default” penalty for taken branch is 2 cycles: 

 

 

 

 

 

• Fast branches reduce the penalty to 1 cycle: 

1 2 3 4 5 6 7 8 9 

addi $3,$0,1 F D X M W 

bnez $3,targ F D X M W 

sw $6,4($7) c* c* F D X M W 

1 2 3 4 5 6 7 8 9 

addi $3,$0,1 F D X M W 

bnez $3,targ F D X M W 

sw $6,4($7) c* F D X M W 
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MULTICORE 
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Types of parallelism 

• Pipelining tries to exploit instruction-level parallelism 
(ILP) 

• “How can we simultaneously do steps in this otherwise sequential 
process?” 

• Multicore tries to exploit thread-level parallelism 

• “How can we simultaneously do multiple processes?” 

 

• Thread: A program has one (or more) threads of control 

• A thread has its own PC 

• Threads in a program share resources, especially memory 

(e.g. sharing a page table) 
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Two cases of multiple threads 

• Multiprogramming: run multiple programs at once 

 

• Multithreaded programming: write software to explicitly 
take advantage of multiple threads (divide problem into 
parallel tasks) 
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Multiprocessors 

• Multiprocessors: have more than one CPU core 

• Historically: multiple discrete physical chips 

• Now: a single chip with multiple cores 

Multiprocessor: 

Two drive-throughs, each 

with its own kitchen 
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Challenges of multicore 

• Two main challenges: 

• Topologies of connection (rings, cubes, meshes, buses, etc.) 

 

 

 

 

• Cache coherence: If each core has a cache, then each CPU can have 
a diverging view of memory !! (BAD) 

• Solution: Intelligent caches that use snooping on the memory bus 
to spot sharing and react accordingly 

• Different coherence algorithms (performance/complexity tradeoffs) 
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-/OtherGETS 
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INTEL X86 
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Basic differences 

MIPS Intel x86 

Word size Originally: 32-bit (MIPS I in 1985) 
Now: 64-bit (MIPS64 in 1999) 

Originally: 16-bit (8086 in 1978) 
Later: 32-bit (80386 in 1985) 
Now: 64-bit (Pentium 4’s in 2005) 

Design RISC CISC 

ALU ops Register = Register ⦻ Register 

(3 operand) 

Register ⦻= <Reg|Memory> 

(2 operand) 

Registers 32 8 (32-bit) or 16 (64-bit) 

Instruction size 32-bit fixed Variable: originally 8- to 48-bit,  
can be longer now (up to 15 *bytes*!) 

Branching Condition in register (e.g. “slt”) Condition codes set implicitly 

Endian Either (typically big) Little 

Variants and 
extensions 

Just 32- vs. 64-bit, plus some 
graphics extensions in the 90s 

A bajillion (x87, IA-32, MMX, 3DNow!, 
SSE, SSE2, PAE, x86-64, SSE3, SSE4, 
SSE5, AVX, AES, FMA) 

Market share Small but persistent (embedded) 80% server, similar for consumer 
(defection to ARM for mobile is recent) 
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• Registers:  

• General: eax ebx ecx edx edi esi 

• Stack: esp ebp 

• Instruction pointer: eip 

• Complex instruction set 

• Instructions are variable-sized & unaligned 

• Hardware-supported call stack 

• call / ret 

• Parameters on the stack,  
return value in eax 

• Little-endian 

• Assembly language summary: 
• Moving data? Use ‘mov’. 

• All ALU ops are 2-operand (add eax, ebx → eax+=ebx) 

• Can do a memory load/store anywhere 

• Address can be fairly complex expression: [0x123 + eax + 4*ebx] 

 

mov  eax, 5 

mov  [ebx], 6 

add  eax, edi 

push eax 

pop  esi 

call 0x12345678 

ret 

jmp  0x87654321 

jmp  eax 

call eax 
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Binary modification 
(applies to *all* ISAs) 

• Can disassemble binaries (turn into human-readable assembly) 

• Do a bunch of cross-referencing to understand functionality 
(that’s what IDA Pro does) 

• Basic blocks of code ending in branches form a flow chart 

• Identify behavior and make inferences on author intent 

 

• Can modify by overwriting binary with new instructions 
(can also insert instructions, but this changes layout of binary 
program, so various pointers have to be updated) 

 

• Cheap and easy technique on x86: overwrite stuff you don’t 
want with NOP (0x90) 
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THE END 


