
ECE/CS 250 – Summer 2019 – Prof. Bletsch 
Recitation #2 – C 

Objective: In this recitation, you will learn how to write, compile, and run simple C programs. 

Complete as much of this as you can during recitation.  If you run out of time, please complete the rest 

at home. 

1. Basic I/O and Type Casts 
Write a program that asks the user to input the name of his/her favorite Duke basketball player, the 

player’s height in inches (this height should be an integer), and the player’s average number of points 

scored per game (this last input should be an integer).  The program should then output the player’s 

name followed by “scored an average of X points per inch”, where X is the average points divided by the 

height in inches.  IMPORTANT: X must be a floating point number, which means you must do some type 

casting to compute it. 

2. Functions and Structs 
Write a program that uses a two-element struct called HoopsPlayer.  This struct has two elements: an 

int for the player’s number, and a float for his/her average points per game.  Write a program that in 

main() loops and, in each loop, asks the user to input the info for one player (ask for an int then ask for a 

float).  If the user inputs “-1” for the player number, then the loop ends (without asking for a float).  For 

simplicity, you may assume you’ll get at most 10 players.  After the loop ends, main() must call a 

function called sortList(<args>) that prints the list of players sorted in ascending order of points per 

game.  IMPORTANT: for sortList() to work, you have to figure out how to have sortList() get access to the 

list.  A simple way is to declare the list as a global variable.  More sophisticated programmers can pass a 

pointer instead. 

3. Pointers Are Fun 
Write a program that, in main(), declares an array of 100 ints and sets them to the values 0 through 99.  

(That is myArray[x]=x.)  Have main() pass a pointer to this array to a function called sumArray(int* ptr) 

that returns the sum of all the entries in the array. 

4. The Joy of Seg Faults 
Write a program that mis-uses pointers such that it causes a segmentation fault.  (Enjoy being asked to 

do something wrong!) Be sure to use the -g flag when you compile to include debugging info in your 

binary – without this, you won’t be able to determine which line of code caused the fault! 



Identify the exact line causing the fault using both gdb (a command-line debugger that lets you step 

through programs line by line and can report the cause of a segfault) and  valgrind (a memory access 

checking tool used to detect memory leaks and pointer errors).  Below is an example where typed 

commands are blue and evidence of the fault is red. In C programming, your debugging tools are your 

eyes – you’ll be blind if you don’t learn to use them! 

$ g++ -g -o bad bad.c 

$ ./bad 

Segmentation fault (core dumped) 

$ gdb bad 

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04 

... 

Reading symbols from /x/tkbletsc/bad...done. 

(gdb) run 

Starting program: /x/tkbletsc/bad 

 

Program received signal SIGSEGV, Segmentation fault. 

0x00000000004004bc in main () at bad.c:3 

3         *p = 55; 

(gdb) quit 

A debugging session is active. 

 

        Inferior 1 [process 22024] will be killed. 

 

Quit anyway? (y or n) y 

$ valgrind ./bad 

==22035== Memcheck, a memory error detector 

==22035== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al. 

==22035== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info 

==22035== Command: ./bad 

==22035== 

==22035== Use of uninitialised value of size 8 

==22035==    at 0x4004BC: main (bad.c:3) 

==22035== 

==22035== Invalid write of size 1 

==22035==    at 0x4004BC: main (bad.c:3) 

==22035==  Address 0x0 is not stack'd, malloc'd or (recently) free'd 

==22035== 

==22035== 

==22035== Process terminating with default action of signal 11 (SIGSEGV) 

==22035==  Access not within mapped region at address 0x0 

==22035==    at 0x4004BC: main (bad.c:3) 

... 

==22035== For counts of detected and suppressed errors, rerun with: -v 

==22035== Use --track-origins=yes to see where uninitialised values come from 

==22035== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 2 from 2) 

Segmentation fault (core dumped) 



5. Malloc/Free and Linked Lists 
We’re going to re-do task 2, but with malloc/free.  Write a program that uses a two-element struct 

called HoopsPlayer.  This struct has two elements: an int for the player’s number, and a float for his 

average points per game.  Write a program that in main() loops and, in each loop, asks the user to input 

the info for one player (ask for an int then ask for a float).  If the user inputs “-1” for the player number, 

then the loop ends (without asking for a float).  You may NOT assume any limit on the number of players 

entered and thus you MUST use malloc to allocate new entries in the list.  After the loop ends, main() 

must call a function called sortList(<args>) that prints the list of players sorted in ascending order of 

points per game.  IMPORTANT: main() must pass a pointer to sortList().  You may not use global 

variables for this purpose. 

During this task, I highly encourage you to run your program through the debugger gdb.  Even if your 

program works fine, you should get used to using gdb.  Remember that you have to compile with the -g 

flag to create a binary for use with gdb. 

NOTE: This recitation introduced gdb, valgrind, and compiling with the -g option. 

Make sure you understand all of these things, as they’re hugely usefull to coding in C. 

 


