
ECE/CS 250 – Summer 2017 – Prof. Bletsch
Recitation #3

Assembly Programming with SPIM

Objective: In this recitation, you will learn how to write MIPS assembly programs that run on the SPIM

emulator of a MIPS system.

Complete as much of this as you can during recitation. If you run out of time, please complete the rest

at home.

1. Download SPIM
For the MIPS programming you do in this class, you will use the QtSpim simulator (a newer version of

the venerable SPIM simulator) to run and test your assembly programs. QtSpim is a program that

simulates the behavior of MIPS32 computers and can run MIPS32 assembly language programs.

Download QtSpim and find documentation for it at:

http://sourceforge.net/projects/spimsimulator/files/

2. Run a Short Sample Program on SPIM
A helpful reference is a simple program that I’ve provided for you on the course site (simple.s). This

simple program sums the entries in a list of 9 integers. Download and run this program on SPIM. Try

running it to completion first and then run it again using the single-step feature to walk through each

instruction one at a time. Look at how the PC, register values, and memory values change as a result of

each instruction. You’re going to want to get good at stepping through programs, because this is largely

how you’ll debug your own programs.

3. Write a Very Simple MIPS Program
Write a MIPS program that prints out the integers from 0 to 10. Write this program as a loop (i.e., don’t

just declare a string “0, 1, 2, etc.” and print that string).

4. Write a Somewhat Less Simple MIPS Program
Write a MIPS program that reads in the user’s name and the user’s age (from the console) and then

prints out the year in which that person will turn 50 years old. For example, if the user types in “Dan

40”, then the program should print out “Dan will turn 50 years old in 2026.” You may assume that the

user has already celebrated their birthday this year.

Note: More advanced MIPS material is below. It is unclear at this time if we’ll cover all the stuff

necessary to tackle it by this recitation, so we may revisit this content in lecture or possibly out of

class.

5. Calling a Procedure, Passing Args and Return Values
Write a short MIPS program with a main function that calls (using “jal”) another function called foo. The

foo function takes two arguments (both are ints) and returns one value (also an int). You must follow

conventions for arguments and return values: you must pass the arguments through $a0 and $a1

registers and you must return the value from foo in $v0. For now, let foo simply compute the sum of

the two arguments and return that result. In main, please set $a0=1 and $a1=2.

When complete, save this as callproc1.s.

6. Saving the Caller-Saved Registers, Using the Stack
Copy your work from Task 1 into a new file. Now modify main so that it saves the caller-saved $t

registers before calling foo and then restores them after foo returns. You must modify main to use two

$t registers ($t0 and $t1) to initially hold the values it’s going to pass to foo (but main still must pass

them through the $a registers, so they must be copied from $t to $a). (Instead of setting $a0=1 and

$a1=2, set $t0=1 and $t1=2, then copy from the $t regs to the $a regs.) After foo returns to main, main

should then compute the result from foo plus the sum of these two $t registers. (main may not use the

$a registers for this purpose!) To make room for main to save these $t registers, main must create

space on the stack. You will move $sp to make room for these two $t regs, copy them there before

calling foo, and then copy them back into the $t registers after foo returns.

When complete, save this as callproc2.s. Both tasks 7 and 8 start with this code, so don’t overwrite it

in Task 7!

7. Why Did We Do Task 6?
Copy your work from Task 6 into a new file. Modify foo such that it sets all of the $t registers to zero.

Comment out the lines of code in main that save and restore the $t registers. What happens? Do you

still get a correct program result?

When complete, save this as callproc3.s.

8. Saving the Callee-Saved Registers
Copy your work from Task 6 (not 7!) into a new file. Modify main such that, before it calls foo, it sets two

of the callee-saved $s registers ($s0 and $s1) to the values 5 and 6. After foo returns to main, main

should take the result from foo and add it to $s0 and $s1.

Now modify foo such that it saves the callee-saved $s registers when it begins and restores them just

before returning. You will modify foo to move $sp, etc., just like you did with the caller-saved registers

in main in Task 3.

When complete, save this as callproc4.s. Both tasks 9 and 10 start with this code, so don’t overwrite it

in Task 9!

9. Why Did We Do Task 8?
Copy your work from Task 8 into a new file. Modify foo such that it sets all of the $s registers to zero.

Comment out the lines of code in foo that save and restore the $s registers. What happens? Do you still

get a correct program result?

When complete, save this as callproc5.s.

10. Thought Exercise
Why do we need these register usage conventions? Couldn’t the programmer just manage all of the

registers on his/her own without these conventions? If we know that foo won’t modify any $t registers,

can’t we skip saving/restoring the $t registers in main?

11. A Little Bit of Recursion
Note: it’s unlikely you’ll have much time left for this exercise. I recommend continuing this at home with

or without a partner, because it will help with homework #2. However, it is not required that you do this

exercise.

Copy your work from Task 9 (not 10!) into a new file. Modify foo such that it uses $t2 to hold the sum of

its arguments ($a0 and $a1). If $t2 is greater than 10, then it simply returns that sum (in $v0). Else, it

calls itself with its arguments each incremented by 1 (i.e., $a0 +1, $a1+1).

Now foo is both a callee AND a caller. You’ll have to modify foo to save its caller-saved register ($t2) and

$ra on the stack.

When complete, save this as callproc6.s.

