ECE/CS 250
Computer Architecture

Summer 2019

C Programming

Tyler Bletsch
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),
Benjamin Lee (Duke), and Amir Roth (Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty

Outline

e Previously:
e Computer is a machine that does what we tell it to do

e Next:
e How do we tell computers what to do?
e First a quick intro to C programming
e Goal: to learn C, not teach you to be an expert in C
e How do we represent data?
e What is memory?

What is C?

e The language of UNIX

e Procedural language (no classes)
e Low-level access to memory

e Easy to map to machine language
e Not much run-time stuff needed

e Surprisingly cross-platform

Why teach it now?
To expand from basic programming to
operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

The Origin of C

Hey, do you want to build a system that
will become the gold standard of OS
design for this century?

We can call it UNIX.

Ken Thompson

AT&T Bell Labs, 1969-1972

Okay, but only if we also invent a
language to write it in, and only if that
language becomes the default for all

systems programming basically forever.
We'll call it C!

Dennis Ritchie

=

5 7 N ===
Aassats | £
s vt 4 W -

i SR

it worked!

Cool

What were they thinking?

e Main design considerations:

e Compiler size: needed to run on PDP-11 with 24KB of
memory (Algol60 was too big to fit)

e Code size: needed to implement the whole OS and
applications with little memory

e Performance
e Portability

o Little (if any consideration):
e Security, robustness, maintainability
e Legacy Code

C vs. other languages

Microsoft

C# n_e-t Ruby THE
%g) Java

PROGRAMMING
LANGUAGE

@ python perl'm
Most modern languages - c

Develop applications Develop system code (and applications)
(the two used to be the same thing)
Computer is an abstract logic engine Near-direct control of the hardware
Prevent unintended behavior, Never doubts the programmer,
reduce impact of simple mistakes subtle bugs can have crazy effects
Runs on magic! (e.g. garbage collection) Nothing happens without developer
intent
May run via VM or interpreter Compiles to native machine code
Smart, integrated toolchain Discrete, UNIX-style toolchain
(press button, receive EXE) make — g++ (compilation) — g++ (linking)
b Debug - (even more discrete steps behind this)

$ make

g++ -0 thing.o thing.c
o, -0 hino hino 0O

e Why C for humanity?
e It's a “portable assembly language”
e Useful in OS and embedded systems and for highly optimized code

o Why C for this class?

e Need to understand how computers work

e Need a high-level language that can be traced all the way down to
machine code

e Need a language with system-level concepts like pointers and memory
management

e Java hides too much to do this

Example C superpowers

Task: Export a list of coordinates in memory to disk

Most languages C

e Develop file format e Read/write memory to

e Build routine to serialize ~ disk directly
data out to disk |

e Build routine to read &
parse data in

e Benchmark if
performance is a
concern

Example C superpowers

Task: Blink an LED

< led = ©
2 & while (true):
2 Atmel ATTINY4 microcontroller : led = NOT led
o Entire computer (CPU, RAM, & storage)! set_led(led)
1024 bytes storage, 32 bytes RAM. delay for 1 sec

Language Size of Total size RAM used
executable runtime
(ignoring libraries)
Java
Python
Desktop C
Embedded C
(Arduino)

10

What about C++7?

e Originally called “C with Classes”
(because that’s all it is)

e All C programs are C++ programs,
as C++ is an extension to C

o Adds stuff you might recognize et i 1070 al Bl Labe
from Java (only uglier):
e Classes (incl. abstract classes & virtual functions)
e Operator overloading
e Inheritance (incl. multiple inheritance)
e Exceptions

C and Java:

A comparison

C

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char* argv[]) {
int i;

printf("Hello, world.\n");
for (i=0; i<3; i++) {

printf("%d\n", 1i);

return EXIT_SUCCESS;

$ g++ -o thing thing.c && ./thing
Hello, world.

Java

class Thing {
static public void main (String[] args) {
int i;

System.out.printf("Hello, world.\n");

for (i=0; i<3; i++) {
System.out.printf("%d\n", 1i);

$ javac Thing.java && java Thing
Hello, world.

12

Common Platform for This Course

e Different platforms have different conventions for end of
line, end of file, tabs, compiler output, ...

e Solution (for this class): compile and run all programs
consistently on one platform

e Our common platform:

PDuke Linux Machines!?

Don’t you gimme no
“it worked on my box”
nonsense!

13

How to access Duke Linux machines?

HLL = Assembly Language

High Level Language temp = v[k];

Program v[k] = v[k+1l];
v[k+1l] = temp;

Compiler
1w $15, 0($2)
Assembly Language lw $16, 4($2)
Program SW $16, 0($2)
sw $15, 4($2)

e Every computer architecture has its own assembly
language

e Assembly languages tend to be pretty low-level, yet some
actual humans still write code in assembly

e But most code is written in HLLs and compiled
e Compiler is a program that automatically converts HLL to assembly

15

Assembly Language = Machine Language

High Level Language temp = v[k];

Program v[k] = v[k+1l];

_ v[k+1l] = temp;
Compiler
lw $15, 0($2)
Asssmbly Language 1w $16, 4(S$2)
rogram

9 sw $16, 0($2)

l Assembler SwW 315, 4(82)
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

e Assembler program automatically converts assembly code
into the binary machine language (zeros and ones) that
the computer actually executes

16

Machine Language =2 Inputs to Digital System

High Level Language temp = v[k];

Program v[k] = v[k+1l];
vik+l] = temp;

Compiler
lw $15, 0($2)
AssPemny Language 1w $16, 4(S$2)
rogram
9 sw $16, 0($2)
Assembler SwW 315, 4(82)
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Machine Interpretation

A 4

Control Signals for
Finite State Machine

Transistors (switches) turning on and off

17

How does a Java program execute?

e Compile Java Source to Java Byte codes
e Java Virtual Machine (JVM) interprets/translates Byte codes
e JVM is a program executing on the hardware

e Java has lots of features that make it easier to program without
making mistakes - training wheels are nice

e JVM handles memory for you

e What do you do when you remove an entry from a hash table,
binary tree, etc.?

18

The C Programming Language

e No virtual machine
e No dynamic type checking, array bounds, garbage collection, etc.
o Compile source file directly to machine

e Closer to hardware
e Easier to make mistakes
e Can often result in faster code - training wheels slow you down

e Generally used for ‘systems programming’
e Operating systems, embedded systems, database implementation
e C++ is object-oriented version of C (C is a strict subset of C++)

19

Creating a C source file

e We are not using a development environment (IDE)

e You will create programs starting with an empty file!

e Files should use .c file extension (e.q., hello.c)

e On a linux machine, edit files with nedit (or emacs or ...)

i1 alvy — ssh B0x24
alvy@quicksorty nedit hellu.cﬂ

22

The nedit window

e nedit is a simple point & click editor
e with ctrl-c, ctrl-x, ctrl-v, etc. short cuts

o Feel free to use any text editor (gvim, emacs, etc.)

. hello.c - fhome/home5 /falvy/courses/250/Code/

File Edit Search Preferences Shell Macro Windows Help

23

Hello World

e Canonical beginner program
e Prints out “Hello ...”

e nedit provides syntax highlighting

hello.c - fhome/home5 falvy/coursesf250/Code/

File Edit 3Search Preferences 3Shell Macro Windows Help

#include <stdio. h:

int maini)

{

printf {("Hello CompsciZE50lhn") .
}

24

Compiling and Running the Program

o Use the g++ (or gcc) compiler to turn .c file into executable file
e g++ —g -0 <outputname> <source file name>

e g++—-g -ohello hello.c (you must be in same directory as hello.c)
e If no —o option, then default output name is a.out (e.g., g++ hello.c)

e The —g option turns on debug info, so tools can tell you what’s up when it breaks

e To run, type the program name on the command line
e ./ before “hello” means look in current directory for hello program

C tkb13@login-teer-07:~

tkbl3@login-teer-07 '~ $ g++ —? -0 hello hello.c
tkbl3@login-teer-07:~ % . /hello

Hello, world!!

tkbl3@login-teer-07 ~ § []

25

Key Language Issues (for C)

Variable types: int, float, char, etc. é)
Operators: +, -, *, ==, >, etc. =
Expressions Black: C same as Java

_ _ Blue: C very similar to Java
Control flow: if/else, while, for, etc. Red: C different from Java
Functions
Arrays

Java: Strings = C: character arrays

Java: Objects = C: structures

Java: References - C: pointers

Java: Automatic memory mgmt - C: DIY mem mgmt

26

Variables, operators, expressions — just like Java

s
=
o
SAME
s Java!

27

e Variables types
e Data types: int, float, double, char, void
* signed and unsigned int

« char, short, int, long, long long can all be integer types
e These specify how many bits to represent an integer

e Operators
e Mathematical: + - * / %
e logical: ! g& || == != < > <= >=
e Bitwise: ¢« | ~ ~ << >>
(we'll get to what these do later)

e EXpressions: varl = var2 + var3;

C Allows Type Conversion with Casts

e Use type casting to convert between types

QO

v wn '
ﬁ&%&
gmBw

e variablel = (new type) variableZ2;
e Be careful with order of operations — cast often takes precedence

e Example
main ()

{

float x;

int 1i;

X = 3.6;

i = (int) x; // 1 1s the integer cast of x
printf (“x=%f, 1=%d”, x, 1)

result: x=3.600000, i=3

28

Control Flow — just like Java

e Conditionals &
if (a < b) { .. } else {..} as gaval

switch (a) {
case 0: s0; break;
case 1: sl; break;
case 2: s2; break;
default: break;

}

e Loops
for (i = 0; 1 < max,; i++) { ... }

while (i < max) {..}

29

Variable Scope: Global Variables

e Global variables are accessible from any function

e Declared outside main ()
#include <stdio.h>

int X = 0;

float Y = 0.0;

void setX () { X = 78; }
int main ()

{

S w "
;i@%&
SER LY

X = 23;
Y =0.31234;
setX (),

// what 1s the value of X here?

}
e What if we had "int X = 23;"inmain()?

30

Functions — mostly like Java

e C has functions, just like Java
e But these are not methods! (not attached to objects)
e Must be defined or at /east declared before use

int div2 (int x,int y); /* declaration here */

int main () {

S w "
53 (IILP&‘\\-
SER LY

int a;
a = divz2 (10, 2);
}

int div2 (int x, int y) { /* implementation here */

return (x/vy);

}
o Or you can just put functions at top of file (before use)

31

Arrays — same as Java

char buf[256];
int grid[256] [
float scores|[4
double speed[10

for (1 = 0; i<

Same as Java (for now...)

S w)
S5 ([[Eé{\\
SER LY

512]1; /* two dimensional array */
096];

017

25; 1++)

buf[i] = "A'+i; /* what does this do? */

32

Memory Layout and Bounds Checking

FFFFFFFFF

Storage for array int days in month[12];

Storage for other stuff J\ Storage for some more stuff

—

(each location shown here is an int)

e There is NO bounds checking in C

e i.e,, it's legal (but not advisable) to refer to
days in month[216] Or
days in month[-35] |

e who knows what is stored there?

33

Strings — not quite like Java

e Strings <
e char strl[256] = “hi”;
e str1[0] = “h’, strl[l] = ‘i’,strl[2] = O;

« 0 is value of NULL character *\ 0, identifies end of string
e What is C code to compute string length?

int len=0;

while (strl[len] !'= 0){
len++;

}

e Length does not include the NULL character

e C has built-in string operations
e #include <string.h> // includes string operations

e strlen(strl);

34

Structures

Structures are sort of like Java objects =

DIFFERENT

e They have member variables
e But they do NOT have methods!

Structure definition with struct keyword
struct student record {
int 1id;
float grade;

} recl, rec2;

Declare a variable of the structure type with struct keyword

struct student record onerec;

Access the structure member fields with dot (*.”), e.9. structvar.member

onerec.id = 12;

onerec.grade = 79.3;

35

Array of Structures

#include <stdio.h> &,

4

struct student record { o aval
int 1id;

float grade;
I

struct student record myroster[100]; /* declare array of structs */
int main ()
{

myroster[23].1id = 99;

myroster[23] .grade = 88.5;

36

Console l/OIn C

e I/O is provided by standard library functions =
¢ available on all platforms

e To use, your program must have “Standard 10"
#include <stdio.h> < Not "studio”!
e ...and it doesn’t hurt to also have

#include <stdlib.h> ¢

o These are preprocessor statements; the .h files define
function types, parameters, and constants from the standard
library

“Standard library”

37

Back to our first program

o #include <stdio.h> defines input/output functions in C
standard library (just like you have libraries in Java)

e printf(args) writes to terminal

hello.c - fhome/home5 falvy/coursesf250/Code/

File Edit 3Search Preferences 3Shell Macro Windows Help

#include <stdio. h:

int maini)

{

printf {("Hello CompsciZE50lhn") .
}

38

Input/Output (I1/O)

e Read/Write to/from the terminal Ed
e Standard input, standard output (defaults are terminal)

e Character I/O

e putchar (), getchar ()

e Formatted I/O

e printf (), scanf ()

39

Character 1/0O

#include <stdio.h> /* include the standard I/O function defs */ L,
int main() {

DIFFERENT
from Java!

char c;

/* read chars until end of file */

while ((c = getchar()) != EOF) {
if (c == ‘e’)
c = \N_7r .

14

putchar (c) ;
}
return O;

}
e EOF is End Of File (type Ctrl+D)

40

Formatted I/O

P

#include <stdio.h>] _ mﬁEiT
int main() { printf() = print formatted
int a = 23; scanf() = scan (read) formatted

float £ =0.31234;
char strl[] = “satisfied?”;

/* some code here.. */

printf (“The variable values are %d, %f , %s\n”, a, f, strl);
scanf (“%d %f”, a,),

scanf (“%s”, strl);

printf (“The variable values are now %d, %f , %s\n”,a,f,strl);

}

e printf (“format string”, vl1,v2,..);
« \n is newline character

e scanf (“format string”,..);
e Returns number of matching items or EOF if at end-of-file

41

Example: Reading Input in a Loop

#include <stdio.h> &
int main () o Java

{
int x= 0;
while (scanf ("%d", &x) != EOF) {

printf ("The value is %d\n", x);

This reads integers from the terminal until the user types ~d (ctrl-d)
e Canuse a.out < file.in

WARNING THIS IS NOT CLEAN CODE!!!

o If the user makes a typo and enters a non-integer it can loop indefinitely!!!
How to stop a program that is in an infinite loop on Linux?
Type ~c (ctrl-c). It kills the currently executing program.

42

Example: Reading Input in a Loop (better)

#include <stdio.h> <o

DIFFERENT

int main () from Javal
{

int x= 0;

while (scanf ("%d", &x) == 1) {

printf ("The value is %d\n", x);

}

e Now it reads integers from the terminal until there’s an EOF ora non-integer
IS given.

e Type "man scanf” on a linux machine and you can read a lot about scanf.
e You can also find these “manual pages” on the web, such as at die.net.

43

sscanf vs. atol

e You can parse in-memory strings with sscanf (string scanf):mi.f%gm
\\29/’;

from Java!

char mystring|[]
int r;

int n = sscanf (mystring, “%d”, &r) ;
// returns number of successful conversions (0 or 1)

e You could use the atoi function to convert a string to an
integer, but then you can't detect errors.
char mystring[] = “29”;
int r = atoi(mystring) ;

e The atoi function just returns 0 for non-integers, so
atoi("0")==atoi("hurfdurf”) ®

44

Header Files, Separate Compilation, Libraries

e C pre-processor provides useful features &,
. #include filename just inserts that file (like #include <stdio.h>) "=
e #define MYFOO 8, replaces MYFOO with 8 in entire program
e Good for constants

* #define MAX STUDENTS 100 (functionally equivalent to const int)

e Separate Compilation

e Many source files (e.g., main.c, students.c, instructors.c, deans.c)
e g++ -0 prog main.c students.c instructors.c deans.c

e Produces one executable program from multiple source files

o Libraries: Collection of common functions (some provided, you can build
your own)
e We've already seen stdio.h for I/O
e libc has I/0, strings, etc.
e libm has math functions (pow, exp, etc.)
* g++ —o prog file.c —1m (says use math library)

45

Command Line Arguments

e Parameters to main (int argc, char *argvi]) &
- argc = number of arguments (0 to argc-1)
« argv IS array of strings
« argv[0] = program name

° Example: myProgram dan 250

e argc=3
e argv[0] = “myProgram”, argv[l]=%“dan”, argv[2]=%"250"
int main(int argc, char *argv[]) {
int 1i;

printf ("$d arguments\n", argc);
for (1i=0; i< argc; i++) {

printf ("argument %d: %s\n", i, argv[il]);

46

The Big Differences Between C and Java

1) Java is object-oriented, while C is not

2) Memory management

e Java: the virtual machine worries about where the variables “live” and
how to allocate memory for them

e C: the programmer does all of this

47

Memory Is a real thing!

e Most languages — e C — flat memory space
protected variables

user_info
shopping_cart

user_info _
i shopping_cart

|
|

i i
system _id /Q _ /

‘ system_id .
ﬁéD inventory

inventory

48
Figure from Rudra Dutta, NCSU, 2007

Let’s look at memory addresses!

e You can find the address of ANY variable with: &

FFFFFFFFF

The address-of operator

int v = 5;
printf(“%d\n”,v);
printf(“%p\n”,&v); Zx7fffd232228c

$ g++ x4.c && ./a.out

Testing our memory map

int x=5;

Params [k |
char msg[] = "Hello"; " erne

Bookkeeping

int main(int argc, const char* argv[]) { ooals stack
int v;
float pi = 3.14159; Params
Bookkeeping libs
printf("&x: %p\n",8&x);)
printf("&msg: %p\n",&msg); Locals
printf("&argc: %p\n",&argc); : :
printf("&argv: %p\n",&argv); 1
printf("&v: %p\n",&v); $ g++ x.c & ./a.out heap
printf("gpi: %p\n",8pi); [Static
} &argc: Ox7fff85b78c2c

code

&argv: ox7fff85b78c20
&v: Ox7fff85b78c38
&pi: Ox7fff85b78c3c

50

What'’s a pointer?

e It's a memory address you treat as a variable
e You declare pointers with:

X

The dereference operator
int V<=5;/_ Append to any data type
int* p = &v;
printf(“%d\n”,v);
printf(“%p\n”,p);

$ g++ x4.c & ./a.out
5

Ox7fffeBeb60b7cC

FFFFFFFFF

51

What’s a pointer?

e You can look up what's stored ata pointer! :?;
e You dereference pointers with:

X

The dereference operator

int v = 5;

int* p = &V3 Prepend to any pointer variable or expression

printf(“%d\n”,v);

printf(“%p\n”’,p);
. $ g++ x4.c & ./a.out
printf(“%d\n”,*p); c

Ox7fffeBe60Ob7cC
5

What is an array?

The shocking truth:
You've been using pointers all along!

e Every array LS a pointer to a block of memory

Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N tAings later from pointer P

e “Thing” depends on the datatype of the P
Can dereference such pointers to get what's there

e Interpreted according to the datatype of P
e E.g. *(nums-1) is a number related to how we represent the letter ‘0’

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

&X msg nums

Y y y
09 [00 100 100 [*h* ['e [[['o' [00 [06 |00 07 [00 08 [00_
mjg\:]-4 ms/lg\;]-3 mj;-z ms/[]-l ms/£+1 ms/gE+2 ms/£+3 ms/£+4 ms/£+5 ms/£+6 T T

T nums+1 nums+2

nums-1 >3

Array lookups ARE pointer references!

int x[] = {15,16,17,18,19,20}; . t(lnzcase you don’t believe me)
int n=2;

printf("%p %p\n", x s X);

Array Pointer Type printf("%d %d\n", x[@] , *x);
look f printf("%d %d\n", x[5] ,*(x+5));
OOKup rérerence printf("%d %d\n", x[n] ,*(x+n));

X X int* printf("%p %p\n",&x[0], X);
printf("%p %p\n",&x[5], X+5);
X[0] *X INt printf("%p %p\n",&x[n], x+n);
X[5] *(X4—5) int $ g++ x5.c & ./a.out
. ox7fffa2dobodo ox7fffa2dob9odo
x[Nn] *(x+n) int 1o 10 X
8x[0] X int* 20 20
&x[5] X+5 int* ox7fffa2dobode Ox7fffa2debode
e Ox7fffa2dob9e4 Ox7fffa2doboes
&x[n] X+n Int ox7fffa2debods Ox7fffa2debods

e This is why arrays don‘t know their own length:
they're just blocks of memory with a pointer!

Definition of array brackets: A[i] & *(A+i)

!

Creepy-side effect: A[5] = *(A+5) = *(5+A) = 5[A], so 5[A] is legal & equivalent! (Don't do this, it's gross.)

54

Using pointers

e Start with an address of something that exists Ed
e Manipulate according to known rules
e Don’t go out of bounds (don't screw up)

void underscorify(char* s) {

char* p = s; int main() {

while (*p = 9) { char msg[] = "Here are words";
if (*p == ') { Eﬁzzgiizify(msg);
*p = "', puts(msg);
} }
p++;
} $ g++ x3.c & & ./a.out

} Here are words
Here_are_words

55

Shortening that function

// how a developer might code it

void underscorify(char* s) { void underscorify2(char* s) {
char* p = s; char* p;
while (*p != 0) { for (p = s; *p ; p++) {
. 1 ' i -F * == - '
if (*p ==) { . *é E C) |
*p="_"; } N
! }
p++; }
}
} // how a kernel hacker might code it

void underscorify3(char* s) {
for (; *s ; s++) {
if (¥*s == " ') *s = ' ';
}
}

56

Pointers: powerful, but deadly

e What happens if we run this?
#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ g++ x2.c && ./a.out

p: (nil)
Segmentation fault (core dumped)

57

Pointers: powerful, but deadly

e Okay, I can fix this! I'll initialize p!

#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p = 100000;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ g++ x2.c
x2.c: In function ‘main’:
X2.C:4:9: warning: initialization makes pointer from

integer without a cast [enabled by default]
$./a.out

p: ©x186a0
Segmentation fault (core dumped)

A more likely pointer bug...

void underscorify bad(char* s) { int main() {
char msg[] = "Here are
puts(msg);
underscorify bad(msg);

puts(msg);

char* p = s;
while (*p != '0") {

tkbletsc@doc ~ § gcc x3.cC && . /a.out
Here are words
Here are words_ EE08

% oo [T
EomE_ammEoEE

./ 3. OUT_TERM=xXTerm_5HELL=/bin/bash_XDG_SESSION_COOKIE=le
Obdeealb345b2e73fb1092000026bc-1386809487.335162-1765344744

Bus error (core dumped)

tkbletsc@®doc:~ § []

Almost fixed...

void underscorify_bad2(char* s) { int main() {

char msg[] = "Here are words";
puts(msg) ;

underscorify bad2(msg);

char* p = s;
while (*p I= '0") {

if (*p=="") { puts(msg);
*p = I_I; }
}
Ps kb’ B . Worked but
¥ ere_: ! words crashed on exit
} Seqme : o ._-.-m = umped }
— Worked totally!!

words
e_Wor ds

Worked totally!!

Worked totally!!

.|_1 .l_

1 ¢ WL l4| |JI i

I.III"

L

= . Worked totally!!
I Worked totally!!

Worked totally!!

3
3
=
=
3

[T]

[T

Worked totally!!

60

1w

Effects of pointer mistakes

No visible effect

Access an array out of bounds
or some other invalid pointer location?

/

Totally weird behavior

ash [SE] =]

Silent corruption & bad results

T
H
He
tkb
H
H
T
H
He
tkb
H
H
T
H
H
T
H
H
T
H
H
T

Program crash with OS error

The application M_PROGRAM=iTerm.app quit
{myprogram unexpectedly.

Mac OS X and other applications are not affected.

Click Relaunch to launch the application again. Click
Report to see more details or send a report to Apple.

Ignore "- Report... -\' (Relaunch ']

Error: Access vinlation at 0x00736002 (tried ko read Fram 0x0000001F), program kerminaked.

(8]4

61

Pointer summary

e Memory is linear, all the variables live at an address
e Variable declarations reserve a range of memory space

e You can get the address of any variable with
the address-of operator &

int x; printf(“%p\n”,&x);

e You can declare a pointer with the dereference operator
* appended to a type:

int* p = &x;

e You can find the data at a memory address with the
dereference operator * prepended to a pointer expression:

printf(“%d\n”, *p);
e Arrays in C are just pointers to a chunk of memory
e Don't screw up

62

Pass by Value vs. Pass by Reference

void swap (int x, int y){ void swap (int *x, int *y) {
int temp = x; int temp = *x;
X = y; *x o= *y;
y = temp; *y = temp;
} }
int main () { int main () {
int a = 3; int a = 3;
int b = 4; int b = 4;

swap (a, b); swap (&a, &b);

printf (Ya = %d, b= %d\n”, a, b); printf (Ya = %d, b= %d\n”, a, b);

63

C Memory Allocation

e How do you allocate an object in Java?
e What do you do when you are finished with object?

e JVM provides garbage collection
e Counts references to objects, when refs== 0 can reuse

e C does not have garbage collection
e Must explicitly manage memory

64

C Memory Allocation

* void* malloc (nbytes)

DIFFERENT

 Obtain storage for your data (like new in Java)

e Often use sizeof (type) built-in returns bytes needed for type
 int* my ptr = (int*) malloc(64); // 64 bytes = 16 ints
 int* my ptr = (int*) malloc(64*sizeof (int)); // 64 ints

« free (ptr)

e Return the storage when you are finished (no Java equivalent)
« ptr must be a value previously returned from malloc

65

C Memory Allocation

 void* calloc(num, sz) s

FFFFFFFFF

e Like malloc, but reserves num*sz bytes, and initializes the memory to
zeroes

e void* realloc(ptr, sz)
e Grows or shrinks allocated memory
- ptr must be dynamically allocated

e Growing memory doesn't initialize new bytes
e Memory shrinks in place

e Memory may NOT grow in place

e If not enough space, will move to new location and copy
contents

e Old memory is freed
e Update all pointers!!!
e Usage: ptr = realloc (ptr, new size);

66

Memory management examples

#include <stdio.h>

#include <stdlib.h>

int main () {
// kind of silly, but let's malloc a single int
int* one_integer = (int*) malloc(sizeof (int));

*one integer = 5;

// allocating 10 integers worth of space.
int* many integers = (int*) malloc (10 * sizeof(int));

many integers([2] = 99;

// using calloc over malloc will pre-initialize all values to 0
float* many floats = (float*) calloc (10, sizeof(float));
many floats[4] = 1.21;

// double the allocation of this array
many floats = (float*) realloc(many floats, 20*sizeof(float));
many floats[15] = 6.626070040e-34;

free (one_integer) ;

free (many integers) ;
free (many floats);

67

Pointers to Structs

struct student rec {
int 1d;
float grade;
bi

struct student rec* my ptr = malloc(sizeof (struct student rec));

// ptr to a student rec struct

To access members of this struct via the pointer:
(*my ptr).id = 3; // not my ptr.id
my ptr->id = 3; // not my ptr.id
my ptr->grade = 2.3; // not my ptr.grade

68

Example: Linked List

#include <stdio.h>
#include <stdlib.h>
struct entry {
int id;
struct entry* next;
bi
int main() {
struct entry *head, *ptr;
head=(struct entry*)malloc (sizeof (struct entry));
head->id = 66;
//head->next = NULL;

ptr = (struct entry*)malloc(sizeof (struct entry));
ptr->id = 23;

ptr->next = NULL;

head->next = ptr;

printf ("head id: %d, next id: %d\n", head->id, head->next->id);

ptr = head;
head = ptr->next;

printf ("head id: %d, next id: %d\n", head->id, ptr->id);

free (head) ;
free(ptr);

Source Level Debugging

e Symbolic debugging lets you single step through program,
and modify/examine variables while program executes

e On the Linux platform: gdb

e Source-level debuggers built into most IDEs

70

Gdb

e [O start:
$ gdb ./myprog

e To run:
(gdb) run arguments

E -bash

tkbl3@reliant:~ % gdb . /myprog

GNU gdb (ubuntu 7.11.1-Oubuntul~16.5) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLV3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, To the extent permitted by law. Type "show copying”
and "show warranty"” for details.

This GDB was configured as "xB6_64-Tinux-gnu”.

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

<http://www.gnu. org/software/gdb/bugs/>.

Find the GDBE manual and other documentation resources online at:
{httF:ffwww.gnu.Dr /software/gdb/documentation,/>.

For nelp, type "help”.

Type "apropos word" to search for commands related to "word"...

Reading symbols from . /myprog...done.

(gdb) run

starting program: /home/tkbl3/myprog
5

6

[Inferior 1 (process 74213) exited normally]
(gdb) N

gdb commands

list <line>
list <function>

list <line>,<line>

list (show) 10 lines of code at specified
location in program

List from first line to last line

run start running the program
continue continue execution

step single step execution, including into
next functions that are called

single step over function calls

print <var>
printf “fmt”, <var>

display <var>
undisplay <var>

show variable value

show variable each time execution
stops

gdb commands

break <line>
break <function>
break <line> if <cond>

set breakpoints (including
conditional breakpoints)

info breakpoints
delete breakpoint <n>

list, and delete, breakpoints

set <var> <expr>

set variable to a value

backtrace full
bt

show the call stack & args
arguments and local variables

73

gdb quick reference card

e GDB Quick Reference.pdf — print it!

o Also available annotated by me with most important commands for a
beginner:
GDB Quick Reference - annotated.pdf

GDB QUICK REFERENCE cos vewin + ' Breakpoints and Watchpoints ' Execution Control
break [ftesftime st breakpoint at line mumber [in fil] continse [wune] continue running: if count specified, ignore
Essential Commands b [t me ox break sain.ci37 clted e e e
2 program [core] debug program [using coredump core] brenk [flet]fume sct breakpoint at func [in Ale] atep [cound] execute until anotber line seached; repeat
b [fle:]function et breakpaiat at function [in fi] break sofact act break at offsct lines from eurrent. top = ot e i pecified
break -offct
run farst stast your prograim [with argls] .
o faro < your -.slrplwmrzmlk e b kpoint at address addr st [eoun] i by i i aher e Source Files
p e e e el bresk wkpoint ot vt nsruction ot feramt Y S — air names wil divecory mames 1. st of susce
B e e break . 38 cepr break conditionally an sonsero xpr = —— Co L+ ticg of parammster Pt
» et line, stepping over function call smanor] oo comtiieent epeion on pemeipoies i) pity . s e ar clear source path
. next line, stepping fnto function calls i make uncanditional if no expr o n cmumal ymbele ohow asx Sl corrent e e
r—_— comporary breaks disable when senched nexts [cound] e instruction rather than Ty
. Toretk roer brens om sl et cing race at [cound] e cotionasy queren e e
Starting GDB waten capr =t weatehpoint. for cxpresion cepr fememd] s o '.A.i.' e g - shone previous ten lines
B, with no. debagaio Sles cated = reak a8 C-+ handles for exeeption = ot fiocaon] run il et mstrcion (o ocatin) Sl P Mt lines BTy o g e]
o Emseoo o finten rum il elected stack frmm returnm ° P
&db progrum core debug corcdump core produecd by e e xoturn [czpr] pop sclocted stack frame withot b et [tine mmber [i2 named fic]
b —hel; Stscbe eommand & Sho el e g i s] 25 prompt [stes function i of fanction [in named fie]
& 1p describe command line optians signal num resume exceution with signal » (none if 0
g gl = QR g vepeen off liner afer last pristed
clear deete breakpoits vt fostruction Jump tine Fesme excention st speciied fne nmber s y ;
Stopping GDB elear [fler]fum deete beeakpoints at cobey o funl) Jump saddrss ot addoe provious o last printed
quie cxit GDB abao q o EOF (cg. C-d) loar [Alecftine delete breakpointe on souee line Bt varsempr A-mwm‘» expr without. displaying it wse Fio e |
INTERRUPT (s Coc) terminate current command, or antete [1] ekt breakpoints [or breakpoin =] for lering progras varisbles ins, ol
e) 2 i compiled code fo source line mm
ciombie [o] dimbie becakpoies o breakpose 7] Display - S o
Gemne Help enable [1] enable breakpints [or breakpeint] e T ¢ resd e ey cspansion v v |
it clacmes o commands oebie o o] ot o brenpmiot o 1] [empr acconding o format lig, GDB command i oo g e oves o g
o s 1 g o e poits [or breal] hexadecimal mrmands kept in history lat
el a Smsd it £ cxternal Ble for eommand
R e b) caabie doL [cobleLrmbpaint o bk o N T GDB under GNU Emacs
. e e el . oo b olloning options: e Gencibe DB mode
P e e ignore m count igmore breakpint n, count times : e dmcice OB o
o o e ands n GDB command-list every time < character. addreczcs In sbacks, vuloes nesct line (next)
run stact your program with current argument feitent] ki n i reached. [stiem : Hoating point riractive format for acrsye cp ome insuckion (atepd
z . commani-list suppresses efault display Goll [/f] expr ke priat but docs ot display void agled) o iatersal form for finih current stack frame. (£1013k)
un .. Cinf >outf start your program with input, output v 4] cam 5 [e
. e end v of command-list x /] e cxamine oy ¢ s s cptonat | % bt i macine i (o)
s e . i ope Bl it e O
Program Stack v count of bonw tany units to display Tay clements o display e o et el
vty dev e s st st st for et vem vecktzace i) pint o of all s i sack: o of B Az crved typen for objects (i soree) st break. st it
ot args ol e e [e 50 e b individul bytes ompact or indented
< axge pecky iy gt ot = & alfucls (fwo bytes) iy
ot ety e #rame [2] —chect farme ambee m or frame 2t address R e "+ virtunl function tablex . \
f no . display corvent farme e) Display GNU General Public L
pr o ——— e o dply cur s il . Sty b s, . vl Tere MO WARRANTY B
Show env v..‘ o s f et bl v o Thoet e e # ket ing e Display full no-weraaty stasernent
26t env car string. set covisoumet vaiable var ey
unset env rubipar-vesemiran 1nfo £rams [uid] demecite loctod B, ox Eme 1t adic isasnen [add| dieplay memmory ae sunchive instructions s
into args armumenta of selecied feame
g 1nfo locals local variabics of sclected frame
Shell C""‘"“"‘f i i . Lnto eg [. regieter vauen [for rogs rn] in mlected Automatic Display e p—
=]»?.}’S’}:,‘Lm‘.:'fhm".ﬂf.‘i" o info all-reg e SeRrplI e e e e e vt Ll Comrighe (1091, 1992, 1909 Free Software Foundation, fne
ke ol e 1nfo cateh exception handlers active in selected feame st [mocting 10 foemat areduns or discard Tt 1, P
Shell e exeeute asbitrary shell command string dimpley vl bl epremi el able e o0 dicacd The author seevmes o scponebily foe any rrore o thi coel
undisplay n remove mumber(s
wtically dieplayed cxpre bl from fle o dincard This cand may e ey distibated unde tha torms of the GNU
Don't forget to do "gec -g" to include debug symbols! - T dtsable diep n umb display for expression(s) mumber n inke file and acd its symbols. (Gemerat Public L
[] muesound cptionst asguments .. show ane. ox mere seguiments e evelopment of thi card by aotating i
Sble tiop o cosble desly o coprmsionts) s al syl fromn fe osss contribute o develapmant of this card by annotating i
(@193, 1992, 1988 Free Softare Foundation, Inc. Peemioions on back 1 . SMoalplly cumbered ik of desley loscied at add DD et o foe sk, yom v welcome to dieribate coples of
i files aa tarets in usc it wndr the tom Thare 1
somt of path seacched for T
dstach releane target from GDB control cxccutable and mymbel Sl
ahou path display exccutable and symbol e path
into share int novr o shaee Bbracien surrestly
losded

74

Valgrind: detect memory errors

e Can run apps with a process monitor to fry to detect illegal
memory activity and memory leaks

| C b13@login-teer-15:~

tkbl3@login-teer-15:~ $ cat memleak.c
#include <stdlib. h>
void £ {

char* p = (char*) malloc(20);

int main() {
char* c (char*) malloc(10);

fO;

13@1Dg1n teer-15:~ % valgrind --leak-check=yes . /memleak

“5 2 Memcheck, a memory error detector

Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
command: . /memleak

HEAP SUMMARY :
in use at exit: 30 b*tes in 2 blocks
total heap usage: 2 allocs, 0 frees, 30 bytes allocated

10 bytes in 1 blocks are definitely lost in loss record 1 of 2
at Ox4A06A2E: malloc (vg_replace_malloc.c:270)

b
il
17
17
17
17
17
1
17
17
17
1
1
l by O0x4005CD: main (memleak.c:7)

bytes in 1 blocks are definitely lost in loss record 2 of 2
at Ox4A06A2E: malloc (vg_replace_malloc.c:270)

by Ox400585: () (memleak.c:3)

by 0x4005D6: main (memleak.c:8)

LEAK SUMMARY:
definitely lost: 30 bytes in 2 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)
in-teer-15:~ $ []

T
T

UJU"U"U"U"WWWWWWWWWWWWWWWWWWWWWWW
_n-urururummmmmmmmmmmmmmmmmmmmmm
L= S | | | | | (| (O N | | | {1 A

(U | (| O (| (| | | | | I | Y { { O

C Resources

e MIT Open Course

e Courseware from Dr. Bletsch’s NCSU course on C
(linked from course page)

e Video snippets by Prof. Drew Hilton (Duke ECE/CS)
e Doesn’t work with Firefox (use Safari or Chrome)

76

Outline

e Previously:
e Computer is machine that does what we tell it to do

e Next:
e How do we tell computers what to do?
e First a quick intro to C programming
e How do we represent data?
e What is memory, and what are these so-called addresses?

77

