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Instruction Set Architecture (ISA) 

• ISAs in General 

• Using MIPS as primary example 

• MIPS Assembly Programming 

• Other ISAs 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Readings 

• Patterson and Hennessy 

• Chapter 2 

• Read this chapter as if you’d have to teach it 

• Appendix A (reference for MIPS instructions and SPIM) 

• Read as much of this chapter as you feel you need 
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Outline 

• What is an ISA? 

• Assembly programming (in the MIPS ISA) 

• Other ISAs 
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What Is a Computer? 

• Machine that has storage (to hold instructions and data) and 
that executes instructions 

• Storage (as seen by each running program) 

• Memory:  

• 232 bytes for 32-bit machine 

• 264 bytes for 64-bit machine  [[ impossible!  mystery for later… ]] 

• Registers: a few dozen 32-bit (or 64-bit) storage elements 

• Live inside processor core 

• Instructions 

• Move data from memory to register or from register to memory 

• Compute on values held in registers 

• Switch to instruction other than the next one in order 

• Etc.   
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What Is An ISA? 

• Functional & precise specification of computer 

• What storage does it have?  How many registers?   
How much memory? 

• What instructions does it have? 

• How do we specify operands for instructions? 

 

• ISA = “contract” between software and hardware 

• Sort of like a “hardware API”  

• Specifies what hardware will do when executing each instruction 

And how do 
we specify 
these in bits? 
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Architecture vs. Microarchitecture 

• ISA specifies WHAT hardware does, not HOW it does it 

• No guarantees regarding these issues: 

• How operations are implemented 

• Which operations are fast and which are slow 

• Which operations take more power and which take less 

• These issues are determined by the microarchitecture 

• Microarchitecture = how hardware implements architecture 

• Can be any number of microarchitectures that implement the same 
architecture (Pentium and Core i7 are almost the same 
architecture, but are very different microarchitectures) 

• Strictly speaking, ISA is the architecture, i.e., the interface 
between the hardware and the software 

• Less strictly speaking, when people talk about architecture, they’re 
also talking about how the architecture is implemented 
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Von Neumann Model of a Computer 

• Implicit model of all modern ISAs 

• “von NOY-man” (German name) 

• Everything is in memory (and perhaps elsewhere) 

• instructions and data 

• Key feature: program counter (PC) 

• PC is the memory address of the currently 
executing instruction 

• Next PC is PC + length_of_instruction unless 
instruction specifies otherwise  

• Processor logically executes loop at left 

• Instruction execution assumed atomic 

• Instruction X finishes before insn X+1 starts 

Fetch *PC 

Decode 

Read Inputs 

Execute 

Write Output 

Next PC 
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Processor 
Core 

An Abstract 32-bit Von Neumann Architecture 

Memory 
 
232 bytes 
 
Holds 
instructions 
and data 

(32-bit) PC 

32-bit 
address of 
current 
instruction 

registers (each 
register holds one 
32-bit operand) 

• Fetch instruction from PC 

• Decode instruction 

• Execute instruction 

• Read input operand(s) 

(registers and/or memory locations and/or 

“immediates”) 

• Perform operation on input operands 

• Write result, if any, in output operand 

(register or memory location) 

• Change PC to next instruction 
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Outline 

• What is an ISA? 

• Assembly programming (in the MIPS ISA) 

• Other ISAs 
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Simple, Running Example 

// silly C code 

 

int sum, temp, x, y; 

while (true){ 

    temp = x + y; 

    sum = sum + temp; 

} 

 

 

// equivalent MIPS assembly code 

 

loop:  lw $1, Memory[1004] 

 lw $2, Memory[1008] 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop 

 

 

OK, so what does this assembly code mean? 
Let’s dig into each line … 

Memory references 

don’t quite work  

like this…we’ll 

correct this later. 
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Simple, Running Example 

loop:  lw $1, Memory[1004]   

 lw $2, Memory[1008] 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop 

 
 
 NOTES 

“loop:” = line label (in case we need to refer to this instruction’s PC) 
lw = “load word” = read a word (32 bits) from memory 
$1 = “register 1”  put result read from memory into register 1 

Memory[1004] = address in memory to read from (where x lives) 
 
Note: almost all MIPS instructions put destination (where result gets written) first (in 
this case, $1) 
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Simple, Running Example 

loop:  lw $1, Memory[1004]   

 lw $2, Memory[1008] 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop 

 
 
 NOTES 

lw = “load word” = read a word (32 bits) from memory 
$2 = “register 2”  put result read from memory into register 2 

Memory[1008] = address in memory to read from (where y lives) 
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Simple, Running Example 

loop:  lw $1, Memory[1004]   

 lw $2, Memory[1008] 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop 

 
 
 NOTES 

add $3, $1, $2= add what’s in $1 to what’s in $2 and put result in $3 
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Simple, Running Example 

loop:  lw $1, Memory[1004]   

 lw $2, Memory[1008] 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop 

 
 
 NOTES 

add $4, $4, $3= add what’s in $4 to what’s in $3 and put result in $4 
 
Note: this instruction overwrites previous value in $4 
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Simple, Running Example 

loop:  lw $1, Memory[1004]   

 lw $2, Memory[1008] 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop 

 
 
 NOTES 

j = “jump” 
loop = PC of instruction at label “loop” (the first lw instruction above) 
sets next PC to the address labeled by “loop” 
 
Note: all other instructions in this code set next PC = PC+1 
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Assembly Code Format 

• Every line of program has: 
 label (optional) – followed by “:” 
 instruction 
 comment (optional) – follows “#” 
 
loop:  lw $1, Memory[1004]  # read from address 1004 

 lw $2, Memory[1008] 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop   # jump back to instruction at label loop 

 
 
Note: a label is just a convenient way to represent an address so 
programmers don’t have to worry about numerical addresses 
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Assembly  Machine Code 

• Every MIPS assembly instruction has a unique 32-bit 
representation 
• add $3, $2, $7     00000000010001110001100000100000   

• lw $8, Mem[1004]   10001100000010000000001111101100 

 

• Computer hardware deals with bits 

• We find it easier to look at the assembly 

• But they’re equivalent!  No magical transformation. 

 

• So how do we represent each MIPS assembly instruction with 
a string of 32 bits? 
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MIPS Instruction Format 

• opcode = what type of operation to perform 

• add, subtract, load, store, jump, etc. 

• 6 bits  how many types of operations can we specify? 

• operands specify: inputs, output (optional), and next PC 
(optional) 

• operands can be specified with: 

• register numbers 

• memory addresses 

• immediates  (values wedged into last 26 bits of instruction) 

 

opcode 

(6 bits) 

operands 

(26 bits) 
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MIPS Instruction Formats 

• 3 variations on theme from previous slide 

• All MIPS instructions are either R, I, or J type 

• Note: all instructions have opcode as first 6 bits 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 
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MIPS Format – R-Type Example 

• add $1, $2, $3   # $1 = $2 + $3 

• add Rd, Rs, Rt     # d=dest, s=source, t=?? 

• Op = 6-bit code for “add” = 000000 

• Rs = 00010 

• Rt = 00011 

• Rd = 00001 

• don’t worry about Sh and Func fields for now 

 

opcode     Rs          Rt        Rd     Sh and Func 

000000  00010  00011  00001  00000100000 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 

Note: the MIPS 
architecture has 32 
registers. Therefore, it 
takes log232=5 bits to 
specify any one of them. 
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Uh-Oh 

• Let’s try a lw (load word) instruction 

• lw  $1, Memory[1004] 

• 6 bits for opcode 

• That leaves 26 bits for address in memory 

• But an address is 32 bits long! 

• What gives? 

opcode 

(6 bits) 

operands 

(26 bits) 
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Memory Operand Addressing (for loads/stores) 

• We have to use indirection to specify memory operands 

• Addressing mode: way of specifying address 
• (Register) Indirect:  lw $1,($2)    # $1=memory[$2]  

• Displacement:  lw $1,8($2)   # $1=memory[$2+8]  

• Index-base:   lw $1,($2,$3) # $1=memory[$2+$3]  

• Memory-indirect:  lw $1,@($2)   # $1=memory[memory[$2]]  

• Auto-increment:   lw $1,($2)+   # $1=memory[$2++] 

 

• What high-level language idioms are these used for? 

^ Last three not supported in MIPS 
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MIPS Addressing Modes 

• MIPS implements only displacement addressing mode 

• Why? Experiment on VAX (ISA with every mode) found distribution 

• Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%  

• 80% use displacement or register indirect (=displacement 0) 

 

• I-type instructions: 16-bit displacement 

• Is 16-bits enough?  

• Yes! VAX experiment showed 1% accesses use displacement >215 

Op(6) Rs(5) Rt(5) Immed(16) I-type 
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Back to the Simple, Running Example 

• assume $6=1004=address of variable x in C code example 

• and recall that 1008=address of variable y in C code example 

 
loop:  lw $1, Memory[1004]  lw $1, 0($6) # put val of x in $1 

 lw $2, Memory[1008]  lw $2, 4($6) # put val of y in $2 

 add $3, $1, $2 

 add $4, $4, $3 

 j loop 
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MIPS Format – I-Type Example 

• lw $1, 0($6) // $1 = Memory [$6 + 0] 

• lw Rt, immed(Rs) 

• Opcode = 6-bit code for “load word” = 100011 

• Rs = 6 = 00110 

• Rt = 1 = 00001 

• Immed = 0000 0000 0000 0000 = 010 

 

opcode  Rs    Rt                   immed    

100011 00110  00001 0000000000000000 

Op(6) Rs(5) Rt(5) Immed(16) I-type 
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• Alignment: require that objects fall on address that 
is multiple of their size 

• 32-bit integer 

• Aligned if address % 4 = 0  [% is symbol for “mod”] 

• (Binary ends in 00) 

• (Hex ends in 0, 4, 8, or C) 

• 64-bit integer? 

• Aligned if ? 

• Question: what to do with unaligned accesses 
(uncommon case)? 

• Support in hardware? Makes all accesses slower 

• Trap to software routine? Possibility 

• MIPS? ISA support: unaligned access using two 
instructions:  
ulw @XXXX10 = lwl @XXXX10; lwr @XXXX10 

0      1      2      3 

Aligned 

Not 

 

Memory Addressing Issue: Alignment 

Byte # 
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Declaring Space in Memory for Data 

• Add two numbers x and y: 
 .text  # declare text segment 

main:   # label for main 

 la $3, x  # la = “load address” of x into $3 

 lw $4, 0($3) # load value of x into $4 

 la $3, y  # load address of y into $3 

 lw $5, 0($3) # load value of y into $5 

 add $6, $4,$5 # compute x+y, put result in $6 

 … 

 

 

 .data  # declare data segment 

x: .word 10  # initialize x to 10 

y: .word 3  # initialize y to 3 

emptystr: .space 32  # 32 bytes of nulls 

hellostr: .asciiz “hello” # 6 bytes incl. null terminator 

◄ What memory region?  
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MIPS Operand Model 

• MIPS is a “load-store” architecture 

• All computations done on values in registers 

• Can only access memory with load/store instructions 

• 32 32-bit integer registers 

• Actually 31:  $0 is hardwired to value 0  ICQ: why? 

• Also, certain registers conventionally used for special purposes 

• We’ll talk more about these conventions later 

• 32 32-bit FP registers 

• Can also be treated as 16 64-bit FP registers 

• HI,LO: destination registers for multiply/divide 
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How Many Registers? 

• Registers faster than memory  have as many as possible?  No! 

• One reason registers are faster is that there are fewer of them 

• Smaller storage structures are faster (hardware truism) 

• Another is that they are directly addressed (no address calc) 

• More registers  larger specifiers  fewer regs per instruction 

• Not everything can be put in registers 

• Structures, arrays, anything pointed-to 

• Although compilers are getting better at putting more things in 

• More registers means more saving/restoring them 

• At procedure calls and context switches 

• Number of registers:  
• 32-bit x86: 8 

• MIPS32: 32 

• ARM: 16 

• 64-bit x86: 16 (plus some weird special purpose ones) 
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Control Instructions – Changing the PC 

• Most instructions set next PC = PC+1 

• But what about handling control flow? 

• Conditional control flow: if condition is satisfied, then change 
control flow 

• if/then/else 

• while() loops 

• for() loops 

• switch 

• Unconditional control flow: always change control flow 

• procedure calls 

 

• How do we implement control flow in assembly? 
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Control Instructions 

• Three issues: 

1. Testing for condition:  Is PC getting changed? 

2. Computing target:  If so, then where to? 

3. Dealing with procedure calls (later) 

 

• Types of control instructions 
• conditional branch: beq, beqz, bgt, etc. 

• if condition is met, “branch” to some new PC; else PC=PC+1 

• many flavors of branch based on condition (<, >0, <=, etc.) 

• unconditional jump: j, jr, jal, jalr 

• change PC to some new PC 

• several flavors of jump based on how new PC is specified 
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Control Instructions I: Condition Testing 

• Three options for testing conditions 

• Option I: implicit condition codes (CCs) (not used in MIPS except for floats) 

subi $2,$1,10   // sets “negative” CC 

bn target  // if negative CC set, goto target 

# bn = “Branch if Negative” 

• Option II: compare and branch instructions (sorta used in MIPS) 

beq $1,$2,target // if $1==$2, goto target 

# beq = “Branch if Equal” 

• Option III: condition registers, separate branch insns (in MIPS) 

slti $2,$1,10  // set $2 if $1<10 

# slti = “Set Less-Than Immediate” 

bnez $2,target  // if $2 != 0, goto target 

# bnez = “Branch if Not-Equal to Zero” 

 

 

not 

actual 

MIPS 

code 

actual 

MIPS 

actual 

MIPS 
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MIPS Conditional Branches 

• MIPS uses combination of options II and III 
• (II) Compare 2 registers and branch: beq, bne 

• Equality and inequality only 

+ Don’t need adder for comparison 

• (II) Compare 1 register to zero and branch: bgtz, bgez, bltz, blez 

• Greater/less than comparisons 

+ Don’t need adder for comparison 

• (III) Set explicit condition registers: slt, sltu, slti, sltiu, etc. 

 

• Why?  

• 86% of branches in programs are (in)equalities or comparisons to 0 

• OK to take two insns to do remaining 14% of branches 

• Make the common case fast (MCCF)! 



36 

Control Instructions II: Computing Target 

• Three options for computing targets (target = next PC) 

• Option A: PC-relative (next PC = current PC +/- some value) 

• Position-independent within procedure 

• Used for branches and jumps within a procedure 

• Option B: Absolute (next PC = some value) 

• Position independent outside procedure 

• Used for procedure calls 

• Option C: Indirect (next PC = contents of a register) 

• Needed for jumping to dynamic targets 

• Used for returns, dynamic procedure calls, switches 

 

• How far do you need to jump? 

• Typically not so far within a procedure (they don’t get very big) 

• Further from one procedure to another 



37 

MIPS: Computing Targets 

• MIPS uses all 3 ways to specify target of control insn 
• PC-relative  conditional branches: bne, beq, blez, etc.  

• 16-bit relative offset, <0.1% branches need more 

• PC = PC + 4 + immediate if condition is true (else PC=PC+4) 

 

 

• Absolute  unconditional jumps: j target 

• 26-bit offset (can address 228 words < 232  what gives?) 

 

 

• Indirect  Indirect jumps: jr $31 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 
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Control Idiom: If-Then-Else 

• First control idiom: if-then-else 
if (A < B) A++;     // assume A in register $1 

else B++;           // assume B in $2 

 

   slt  $3,$1,$2  // if $1<$2, then $3=1 

   beqz $3,else      // branch to else if !condition 

   addi $1,$1,1 

   j    endif          // jump to endif 

  else:  

         addi $2,$2,1  

  endif: 

ICQ: assembler converts “else” 
operand of beqz into immediate  
what is the immediate? 
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Control Idiom: Arithmetic For Loop 

• Second idiom: “for loop” with arithmetic induction 
int A[100], sum, i, N; 

for (i=0; i<N; i++){    // assume: i in $1, N in $2 

 sum += A[i];         // &A[i] in $3, sum in $4 

} 

   li $1, 0 # initialize i to 0 

  # pretend i set $3 right here 

  loop: slt  $8,$1,$2   # if i<N, then $8=1; else $8=0 

   beqz $8,endloop  # test for exit at loop header 

   lw   $9,0($3)    # $9 = A[i]  (not &A[i])  

   add  $4,$4,$9 # sum = sum + A[i]   

   addi $3,$3,4     # increment &A[i] by sizeof(int) 

   addi $1,$1,1     # i++  

   j loop           # backward jump 

  endloop: 
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Control Idiom: Pointer For Loop 

• Third idiom: for loop with pointer induction 
struct node_t { int val; struct node_t *next; }; 

struct node_t *p, *head; 

int sum; 

for (p=head; p!=NULL; p=p->next)  // p in $1, head in $2 

sum += p->val                  // sum in $3 

 

  move $1,$2 # p = head  

loop: beq $1,$0,endloop # if p==0 (NULL), goto exit  

  lw $5,0($1)      # $5 = *p = pval 

  add $3,$3,$5    # sum = sum + pval 

  lw $1,4($1)      # p = *(p+1) = pnext  

  j loop # go back to top of loop 

endloop: 
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Some of the Most Important Instructions 

• Math/logic 
• add, sub, mul, div 

• Access memory 
• lw = load (read) word:  
lw $3, 4($5)   #  $3 = memory[$5+4] 

• sw = store (write) word:  
sw $3, 4($5)    #  memory[$5+4] = $3 

• Change PC, perhaps conditionally 
• Branches: blt, bgt, beqz, etc. 

• Jumps: j, jr, jal (will see last two later) 

• Handy miscellaneous instructions 
• la = load address 

• move: move $1, $5  # copies (doesn’t move!) $5 into $1 

• li = load immediate:   
li $5, 42    # writes value 42 into $5 

(terrible name for instr!!  not a load – no memory access!) 

Note: sw is unusual in that the 
destination of instruction isn’t 
first operand! 
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Clarifying “load” instructions 

int array[] = {55, 27, 19, 88}; 

char str[] = "hello"; 

 

 

int main() { 

    int r1 = 5; 

    int* r2 = array; 

    int r3 = *r2; 

    int r4 = r1; 

} 

.data 

array: .word 55, 27, 19, 88 

str:   .asciiz "hello" 

 

.text 

main: 

    li $1, 5 

    la $2, array 

    lw $3, 0($2) 

    move $4, $1 

 

• “Load immediate” isn’t really a load (it doesn’t come from memory) 

• “Load address” is just a “load immediate”, but the assembler figures out 
the immediate from labels 

• “Move” just copies values between registers 

• Of the instructions shown, only “load word” actually loads from memory 

C code MIPS assembly code 
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Many Other Operations 

• Many types of operations 

• Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned) 

• FP arithmetic: add, sub, mul, div, sqrt 

• Integer logical: and, or, xor, not, sll, srl, sra 

• Packed integer: padd, pmul, pand, por… (saturating/wraparound) 

• What other operations might be useful? 

• More operation types == better ISA?? 

• DEC VAX computer had LOTS of operation types 

• E.g., instruction for polynomial evaluation (no joke!) 

• But many of them were rarely/never used (ICQ: Why not?) 

• We’ll talk more about this issue later … 
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Flavors of Math Instructions 

• We already know about add 
• add $3, $4, $5 

• Also have addi = “add immediate”  [Note: I-type instr] 
• addi $3, $4, 42  #  $3 = $4 + 42 

• And addu = “add unsigned” 
• addu $3, $4, $5    

#  same as add, but treat values as unsigned ints 

• And even addiu = “add immediate unsigned” 
• addiu $3, $4, 42 

 

• Same variants for sub, etc. 
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Flavors of Load/Store Instructions 

• We already know about lw and sw 
• lw $3, 12($5) 

• sw $4, -4($6) 

• Also have load/store instructions that operate at non-word-size 
granularity 
• lb = load byte, lh = load halfword 

• sb = store byte, sh = store halfword 

• Loads can access smaller size but always write all 32 bits of 
destination register 

• By default, sign-extend to fill register 

• Unless specified as unsigned with instrs: lbu, lhu 
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Datatypes 

• Datatypes 

• Software view: property of data 

• Hardware view: data is just bits, property of operations 

• Same 32 bits could be interpreted as int or as instruction, etc. 

 

• Hardware datatypes 

• Integer: 8 bits (byte), 16b (half), 32b (word), 64b (long) 

• IEEE754 FP: 32b (single-precision), 64b (double-precision) 

• Packed integer: treat 64b int as 8 8b int’s or 4 16b int’s 

• Packed FP 
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Procedure Calls: A Simple, Running Example 

main:  li $1, 1   # $1 = 1 
 li $2, 2   # $2 = 2 
 $3 = call foo($1, $2) # this is NOT actual MIPS code 
 add $4, $3, $3   
 {rest of main} 
 {end program} 
 
foo: add $5, $1, $2 
 return ($5) 
 
-------------------------------------------------- 
main is the caller 
foo is the callee 
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Procedure Calls: Jump-and-Link and Return 

main:  li $1, 1  
 li $2, 2  
 $3 = call foo($1, $2)  jal foo # jal = jump and link 
 add $4, $3, $3 
 {rest of main} 
 
foo: sub $5, $1, $2 
 return ($5)  jr $ra 

 
-------------------------------------------------- 
jal does two things: 
 1) sets PC = foo  (just like a regular jump instruction) 
 2) “links” to PC after the jal  saves that PC in register $31 

MIPS designates $31 for a special purpose: it’s the return address ($ra) 
 
jr sets PC to the value in $ra  computer executes add instr after jal 



49 

Procedure Calls: Why Link? 

main:  li $1, 1  
 li $2, 2  
 $3 = call foo($1, $2)  j foo # j = jump 
r1: add $4, $3, $3 
 add $1, $1, $4 
 j foo 
r2:  sub $2, $1, $3 
 {rest of main} 
 
foo: sub $5, $1, $2 
 return ($5)  OK, now what??  Jump to r1?  Jump to r2? 
 
-------------------------------------------------- 
Since function can be called from multiple places, must explicitly 
remember (link!) where called from.  
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Procedure Calls: Passing Args & Return Values 

main:  li $1, 1  
 li $2, 2 
 move $a0, $1    # pass first arg in $a0 
 move $a1, $2 # pass second arg in $a1 
 jal foo  
 add $4, $3, $3  add $4, $v0, $v0   # return value in $v0 now 

 {rest of main} 
 
foo: sub $5, $a0, $a1 
 move $v0, $5     # pass return value in $v0 
 jr $ra 
 
-------------------------------------------------- 
Must use specific registers for passing arguments and return values. 
MIPS denotes $a0-$a3 as argument registers. 
MIPS denotes $v0-$v1 as return value registers. 
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Passing Arguments by Value or by Reference 

• Passing arguments 

• By value: pass contents [$3+4] in $a0 

 int n;     // n in 4($3) 

 foo(n); 

   lw $a0,4($3) 

   jal foo 

 

• By reference: pass address $3+4 in $a0 

 int n;     // n in 4($3) 

 bar(&n); 

   addi $a0,$3,4 

   jal bar 
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Procedures Must Play Nicely Together 

main:  li $1, 1  
 li $2, 2 
 move $a0, $1 
 move $a1, $2  
 jal foo  
 add $4, $v0, $v0 
 add $6, $4, $1  # $1 should still be 1  
 {rest of main} 
 
foo: sub $5, $a0, $a1 
 li $1, 3  # $1 now equals 3 
 add $5, $5, $1 
 move $v0, $5 
 jr $ra 

What would happen if main uses $1 after calling 
foo but foo also uses $1? 
 
Not good, right?  Let’s see why … 
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Brief Detour to HLL Programming 

int main (){ 
 int x=1; 
 int y=2; 
 int z = foo(x,y); 
 z = z + x; 
} 
 
int foo(int a1, int a2){ 
 // code written by other person 
 return a1+a2; 
} 

Programmer of main() assumes that x will still 
equal 1 after call to foo().  But that won’t 
happen if foo() messes with registers that x was 
using. 
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Procedures Must Play Nicely Together 

main:  li $1, 1  
 li $2, 2 
 move $a0, $1 
 move $a1, $2  
 jal foo  
 add $4, $v0, $v0 
 add $6, $4, $1  # $1 should still be 1  
 {rest of main} 
 
foo: sub $5, $a0, $a1 
 li $1, 3  # $1 now equals 3 
 add $5, $5, $1 
 move $v0, $5 
 jr $ra 

This seems contrived.  Why can’t the 
programmer of foo just not use $1  Problem 
solved, right? 
 
Nope!  In real-world, one person doesn’t write 
all of the software.  My code must play well with 
your code. 
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Procedures Use the Stack 

• In general, procedure calls obey stack discipline 

• Local procedure state contained in stack frame 

• Where we can save registers to avoid problem in last slide 

• When a procedure is called, a new frame opens 

• When a procedure returns, the frame collapses 

• Procedure stack is in memory 

• Starts at “top” of memory and grows down 

A A 

B 

A 

B 

C 

A 

B 

A A calls B 

B calls C 

C returns 

B returns 
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Preserving Registers Across Procedures 

main:  li $1, 1  
 li $2, 2 
 move $a0, $1 
 move $a1, $2  
 jal foo  
 add $4, $v0, $v0 
 add $6, $4, $1  
 {rest of main} 
 
foo: sub $5, $a0, $a1 
 li $1, 3 
 add $5, $5, $1 
 move $v0, $5 
 jr $ra 

memory 

main’s frame 
stack pointer 
(during main) Stack pointer 

is address of 
bottom of 

current stack 
frame.  Always 
held in register 

$sp. 
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Preserving Registers Across Procedures 

main:  li $1, 1  
 li $2, 2 
 move $a0, $1 
 move $a1, $2  
 jal foo  
 add $4, $v0, $v0 
 add $6, $4, $1  
 {rest of main} 
 
foo: make frame (move stack ptr)  
 save $1 in stack frame 
 sub $5, $a0, $a1 
 li $1, 3 
 add $5, $5, $1 
 move $v0, $5 
 restore $1 from stack frame 
 destroy frame 
 jr $ra 

memory 

main’s frame 

stack pointer 
(during foo) 

foo’s frame 
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Preserving Registers Across Procedures 

main:  li $1, 1  
 li $2, 2 
 move $a0, $1 
 move $a1, $2  
 jal foo  
 add $4, $v0, $v0 
 add $6, $4, $1  
 {rest of main} 
 
foo: make frame  subi $sp, $sp, 4 
 save $1 on stack frame   sw $1, 0($sp) 

 sub $5, $a0, $a1 
 li $1, 3 
 add $5, $5, $1 
 move $v0, $5 
 restore $1 from stack frame  lw $1, 0($sp) 
 destroy frame  addi $sp, $sp, 4 

 jr $ra 

memory 

main’s frame 

$sp 
(during foo) 

foo’s frame 
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Who Saves/Restores Registers? 

main:  li $1, 1  
 li $2, 2 
 move $a0, $1 
 move $a1, $2  
 jal foo  
 add $4, $v0, $v0 
 add $6, $4, $1  
 {rest of main} 
 
foo: subi $sp, $sp, 4 
 sw $1, 0($sp) 
 sub $5, $a0, $a1 
 li $1, 3 
 add $5, $5, $1 
 move $v0, $5 
 lw $1, 0($sp) 
 addi $sp, $sp, 4 
 jr $ra 

In this example, the callee 
(foo) saved/restored 

registers.  But why didn’t 
the caller (main) do that 

instead? 

memory 

main’s frame 

$sp 
(during foo) 

foo’s frame 
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16 s0 callee saves 

. . . 

23 s7 

24 t8 temporary (cont’d) 

25 t9 

26 k0 reserved for OS kernel 

27 k1 

28 gp pointer to global area 

29 sp stack pointer 

30 fp frame pointer 

31 ra return address 

0 zero constant 

1 at reserved for assembler 

2 v0 expression evaluation & 

3 v1 function results 

4 a0 arguments 

5 a1 

6 a2 

7 a3  

8 t0 temporary: caller saves 

. . . 

15 t7 

MIPS Register Usage/Naming Conventions 

Important: The only general purpose registers are the $s and $t registers. 

 

Everything else has a specific usage: 

$a = arguments, $v = return values, $ra = return address, etc. 

Also 32 floating-point registers: $f0 .. $f31 

$f0,$f2: Return value (like $v) 
$f4..$f10: Temp (like $t) 
$f12..$f14: Arguments (like $a) 
$f16..$f18: Temp (like $t) 
$f20..$f30: Saved (like $s) 
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MIPS/GCC Procedure Calling Conventions 

Calling Procedure 

• Step-1: Pass the arguments 

• First four arguments (arg0-arg3) are passed in registers $a0-$a3  

• Remaining arguments are pushed onto the stack  

    (in reverse order, arg5 is at the top of the stack) 
 

• Step-2: Save caller-saved registers 

• Save registers $t0-$t9 if they contain live values at the call site 
 

• Step-3: Execute a jal instruction 

 

• Step-4: Restore any $t registers you saved 
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MIPS/GCC Procedure Calling Conventions (cont.) 

Called Routine 

• Step-1: Establish stack frame 

• Subtract the frame size from the stack pointer 
        addiu $sp,  $sp,  -<frame_size> 

• Step-2: Save callee-saved registers in the frame 

• Register $ra is saved if routine makes a call 

• Registers $s0-$s7 are saved if they are used 

Negative frame-size, 
e.g. -8 to reserve 
space for 2 words. 
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MIPS/GCC Procedure Calling Conventions (cont.) 

On return from a call 

• Step-1: Put returned values in registers $v0 and $v1  
    (if values are returned) 

• Step-2: Restore callee-saved registers 

• $ra, $s0 - $s7 

• Step-3: Pop the stack 

• Add the frame size to $sp 
     addiu $sp, $sp, <frame-size> 

• Step-4: Return 

•  Jump to the address in $ra  
     jr  $ra 
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Which flavor of register to use? 

• When to use callee-saved $s register vs  
caller-saved $t register? 

• Choose to minimize saving/restoring needed 

• Can get complicated in practice 

• Simple rule: 

• If your function calls another function, use $s registers 
(if you make 5 calls, you’d need to save/restore a $t register 5 times, 
this way you just save it once) 

• If your function does not call other functions, use $t registers 
(no need to save/restore at all!) 

 

• Note: $ra is considered a callee-saved register,  
and is trashed if your function makes a call 
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System Call Instruction 

• System call is used to communicate with the operating 
system and request services (memory allocation, I/O) 

• syscall instruction in MIPS 

• Sort of like a procedure call, but call to ask OS for help 

• SPIM supports “system-call-like” 

1. Load system call code into register $v0 

• Example: if $v0==1, then syscall will print an integer 

2. Load arguments (if any) into registers $a0, $a1, or $f12 (for 
floating point) 

3. syscall 

• Results returned in registers $v0 or $f0 
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SPIM System Call Support 

code service ArgType Arg/Result 

1  print  int   $a0 

2  print  float  $f12 

3  print  double $f12 

4  print  string $a0 (string address) 

5  read   integer integer in $v0 

6  read   float  float in $f0 

7  read   double double in $f0 & $f1 

8  read   string $a0=buffer, $a1=length 

9  sbrk  $a0=amount  address in $v0 

10 exit 

 Plus a few more for general file IO which we shouldn’t need. 
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Echo number and string 

.text 

main: 

 li $v0, 5  # code to read an integer 

 syscall  # do the read (invokes the OS) 

 move  $a0, $v0 # copy result from $v0 to $a0 

 

 li $v0, 1  # code to print an integer 

 syscall  # print the integer 

 

 li $v0, 4  # code to print string 

 la $a0, nln # address of string (newline) 

 syscall 

  

# code continues on next slide … 



68 

Echo Continued 

 li $v0, 8  # code to read a string 

 la $a0, name # address of buffer (name) 

 li $a1, 32 # size of buffer (32 bytes) 

 syscall 

 

 la $a0, name # address of string to print 

 li $v0, 4  # code to print a string 

 syscall 

 

 jr $31  # return 

 

 .data 

 .align 2  # make data declarations snap to 2^2=4 byte boundaries 

name: .space 32 # reserve 32 bytes of space for string 

nln: .asciiz "\n“ # ascii string, zero terminated 
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Let’s walk through simple.s 

 

 

 

 

 

• See simple.s, linked from course site by recitation 3 
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Factorial (skimming base case of recursion!) 

fact: addi $sp,$sp,-8 // open frame (2 words) 

  sw $ra,4($sp)  // save return address 

  sw $s0,0($sp)  // save $s0 

   

  # handle base case (not real code here) 

  # if $a0=1, set $v0=1 and jump to clean 

  

  move $s0,$a0 // copy $a0 to $s0 

  addi $a0,$a0,-1 // pass arg via $a0 

  jal fact   // recursive call 

  mul $v0,$s0,$v0 // value returned via $v0 

  …    

clean:lw $s0,0($sp) // restore $s0 

  lw $ra,4($sp) // restore $ra 

  addi $sp,$sp,8    // collapse frame 

  jr $ra            // return, value in $v0 
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All of MIPS in two pages 

• Print this quick reference linked from the course page 
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Calling convention summary 

• Privacy:  

• A function may not assume the state of any registers, except that $a registers 
have arguments and $ra has the return address. Put return value into $v 
register(s). 

• Callee-saved:  

• A function may not leave $s registers in a modified state when returning. 

• At the top of a function, save any $s/$ra registers that will be changed; restore 
right before returning 

• Caller-saved: 

• When making a call, save any $t registers you care about; restore right after it 
returns.  

• Minimize this by using $s registers in this case where possible. 

• Stack frame: 

• At the top of a function, reserve space (decrementing $sp) for any saving 
needed (for both $s/$ra and $t) as well as any local variables needing actual 
memory addresses as opposed to registers. Clear it before returning. 
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Outline 

• What is an ISA? 

• Assembly programming (in the MIPS ISA) 

• Other ISAs 



74 

What Makes a Good ISA? 

• Programmability 

• Easy to express programs efficiently? 

 

• Implementability 

• Easy to design high-performance implementations (i.e., 
microarchitectures)? 

 

• Compatibility 

• Easy to maintain programmability as languages and programs evolve? 

• Easy to maintain implementability as technology evolves? 
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Programmability 

• Easy to express programs efficiently? 

• For whom? 

• Human 

• Want high-level coarse-grain instructions 

• As similar to HLL as possible 

• This is the way ISAs were pre-1985 

• Compilers were terrible, most code was hand-assembled 

• Compiler 

• Want low-level fine-grain instructions 

• Compiler can’t tell if two high-level idioms match exactly or not  

• This is the way most post-1985 ISAs are 

• Optimizing compilers generate much better code than humans 

• ICQ: Why are compilers better than humans? 
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Implementability 

• Every ISA can be implemented 

• But not every ISA can be implemented well 

• Bad ISA  bad microarchitecture (slow, power-hungry, etc.) 

 

• We’d like to use some of these high-performance 
implementation techniques 

• Pipelining, parallel execution, out-of-order execution 

• We’ll discuss these later in the semester 

 

• Certain ISA features make these difficult 

• Variable length instructions 

• Implicit state (e.g., condition codes) 

• Wide variety of instruction formats 
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Compatibility 

• Few people buy new hardware if it means they have to buy 
new software, too 

• Intel was the first company to realize this 

• ISA must stay stable, no matter what (microarch. can change) 

• x86 is one of the ugliest ISAs EVER, but survives 

• Intel then forgot this lesson: IA-64 (Itanium) was a new ISA* 

• Backward compatibility: very important 

• New processors must support old programs (can’t drop features) 

• Forward (upward) compatibility: less important 

• Old processors must support new programs 

• New processors only re-define opcodes that trapped in old ones 

• Old processors emulate new instructions in low-level software 
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RISC vs. CISC 

• RISC: reduced-instruction set computer 

• Coined by Patterson in early 80’s (ideas originated earlier) 

• CISC: complex-instruction set computer 

• Not coined by anyone, term didn’t exist before “RISC” 

 

• Religious war (one of several) started in mid 1980’s 

• RISC (MIPS, Alpha, Power) “won” the technology battles 

• CISC (IA32 = x86) “won” the commercial war 

• Compatibility a stronger force than anyone (but Intel) thought 

• Intel beat RISC at its own game … more on this soon 
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The Setup 

• Pre-1980 

• Bad compilers 

• Complex, high-level ISAs 

• Slow, complicated, multi-chip microarchitectures 

• Around 1982 

• Advances in VLSI made single-chip microprocessor possible… 

• Speed by integration, on-chip wires much faster than off-chip 

• …but only for very small, very simple ISAs 

• Compilers had to get involved in a big way 

• RISC manifesto: create ISAs that… 

• Simplify single-chip implementation 

• Facilitate optimizing compilation 
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The RISC Tenets 

• Single-cycle execution (simple operations) 

• CISC: many multi-cycle operations  

• Load/store architecture 

• CISC: register-memory and memory-memory instructions 

• Few memory addressing modes 

• CISC: many modes 

• Fixed instruction format 

• CISC: many formats and lengths 

• Reliance on compiler optimizations 

• CISC: hand assemble to get good performance 

Summary 

(1) Make it easy to implement in hardware 

(2) Make it easy for compiler to generate code 
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Intel 80x86 ISA (aka x86 or IA-32) 

• Binary compatibility across generations 

• 1978: 8086, 16-bit, registers have dedicated uses 

• 1980: 8087, added floating point (stack) 

• 1982: 80286, 24-bit  

• 1985: 80386, 32-bit, new instrs  GPR almost 

• 1989-95: 80486, Pentium, Pentium II 

• 1997: Added MMX instructions (for graphics) 

• 1999: Pentium III 

• 2002: Pentium 4 

• 2004: “Nocona” 64-bit extension (to keep up with AMD) 

• 2006: Core2 

• 2007: Core2 Quad 

• 2013: Haswell – added transactional mem features 
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80x86 Registers, Addressing Modes, Instructions 

• Eight 32-bit registers (not truly general purpose) 

• EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI 

• (Sixteen registers in modern 64-bit, plus several ‘weird’ registers) 

• Six 16-bit registers for code, stack, & data 

• 2-address ISA 

• One operand is both source and destination 

• NOT a Load/Store ISA 

• One operand can be in memory 

• Variable size instructions: 1-byte to 17-bytes, e.g.: 

• Jump (JE) 2-bytes 

• Push 1-byte 

• Add Immediate 5-bytes 
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How Intel Won Anyway 

• x86 won because it was the first 16-bit chip by 2 years 

• IBM put it into its PCs because there was no competing choice 

• Rest is historical inertia and “financial feedback” 

• x86 is most difficult ISA to implement and do it fast but… 

• Because Intel (and AMD) sells the most processors… 

• It has the most money…  

• Which it uses to hire more and better engineers… 

• Which it uses to maintain competitive performance … 

• And given equal performance compatibility wins… 

• So Intel (and AMD) sells the most processors… 

 

• Moore’s law has helped Intel in a big way 

• Most engineering problems can be solved with more transistors 
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Current Approach: Pentium Pro and beyond 

• Instruction decode logic translates into micro-ops 

• Fixed-size instructions moving down execution path 

• Execution units see only micro-ops 

+ Faster instruction processing with backward compatibility 

+ Execution unit as fast as RISC machines like MIPS 

– Complex decoding 

– We work with MIPS to keep decoding simple/clean 

– Learn x86 on the job! 
 
 

Learn exactly how this all works in ECE 552 / CS 550 
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Concluding Remarks 

1. Keep it simple and regular 

• Uniform length instructions 

• Fields always in same places 

2. Keep it simple and fast 

• Small number of registers 

3. Make the common case fast 

 

• Compromises inevitable  there is no perfect ISA 
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Outline 

• What is an ISA? 

• Assembly programming (in the MIPS ISA) 

• Other ISAs 


