
ECE/CS 250
Computer Architecture

Summer 2019

Instruction Set Architecture (ISA) and Assembly Language

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Alvy Lebeck (Duke), and Amir Roth (Penn)

2

Instruction Set Architecture (ISA)

• ISAs in General

• Using MIPS as primary example

• MIPS Assembly Programming

• Other ISAs

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

3

Readings

• Patterson and Hennessy

• Chapter 2

• Read this chapter as if you’d have to teach it

• Appendix A (reference for MIPS instructions and SPIM)

• Read as much of this chapter as you feel you need

4

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

5

What Is a Computer?

• Machine that has storage (to hold instructions and data) and
that executes instructions

• Storage (as seen by each running program)

• Memory:

• 232 bytes for 32-bit machine

• 264 bytes for 64-bit machine [[impossible! mystery for later…]]

• Registers: a few dozen 32-bit (or 64-bit) storage elements

• Live inside processor core

• Instructions

• Move data from memory to register or from register to memory

• Compute on values held in registers

• Switch to instruction other than the next one in order

• Etc.

6

What Is An ISA?

• Functional & precise specification of computer

• What storage does it have? How many registers?
How much memory?

• What instructions does it have?

• How do we specify operands for instructions?

• ISA = “contract” between software and hardware

• Sort of like a “hardware API”

• Specifies what hardware will do when executing each instruction

And how do
we specify
these in bits?

7

Architecture vs. Microarchitecture

• ISA specifies WHAT hardware does, not HOW it does it

• No guarantees regarding these issues:

• How operations are implemented

• Which operations are fast and which are slow

• Which operations take more power and which take less

• These issues are determined by the microarchitecture

• Microarchitecture = how hardware implements architecture

• Can be any number of microarchitectures that implement the same
architecture (Pentium and Core i7 are almost the same
architecture, but are very different microarchitectures)

• Strictly speaking, ISA is the architecture, i.e., the interface
between the hardware and the software

• Less strictly speaking, when people talk about architecture, they’re
also talking about how the architecture is implemented

8

Von Neumann Model of a Computer

• Implicit model of all modern ISAs

• “von NOY-man” (German name)

• Everything is in memory (and perhaps elsewhere)

• instructions and data

• Key feature: program counter (PC)

• PC is the memory address of the currently
executing instruction

• Next PC is PC + length_of_instruction unless
instruction specifies otherwise

• Processor logically executes loop at left

• Instruction execution assumed atomic

• Instruction X finishes before insn X+1 starts

Fetch *PC

Decode

Read Inputs

Execute

Write Output

Next PC

9

Processor
Core

An Abstract 32-bit Von Neumann Architecture

Memory

232 bytes

Holds
instructions
and data

(32-bit) PC

32-bit
address of
current
instruction

registers (each
register holds one
32-bit operand)

• Fetch instruction from PC

• Decode instruction

• Execute instruction

• Read input operand(s)

(registers and/or memory locations and/or

“immediates”)

• Perform operation on input operands

• Write result, if any, in output operand

(register or memory location)

• Change PC to next instruction

10

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

11

Simple, Running Example

// silly C code

int sum, temp, x, y;

while (true){

 temp = x + y;

 sum = sum + temp;

}

// equivalent MIPS assembly code

loop: lw $1, Memory[1004]

 lw $2, Memory[1008]

 add $3, $1, $2

 add $4, $4, $3

 j loop

OK, so what does this assembly code mean?
Let’s dig into each line …

Memory references

don’t quite work

like this…we’ll

correct this later.

12

Simple, Running Example

loop: lw $1, Memory[1004]

 lw $2, Memory[1008]

 add $3, $1, $2

 add $4, $4, $3

 j loop

 NOTES

“loop:” = line label (in case we need to refer to this instruction’s PC)
lw = “load word” = read a word (32 bits) from memory
$1 = “register 1” put result read from memory into register 1

Memory[1004] = address in memory to read from (where x lives)

Note: almost all MIPS instructions put destination (where result gets written) first (in
this case, $1)

13

Simple, Running Example

loop: lw $1, Memory[1004]

 lw $2, Memory[1008]

 add $3, $1, $2

 add $4, $4, $3

 j loop

 NOTES

lw = “load word” = read a word (32 bits) from memory
$2 = “register 2” put result read from memory into register 2

Memory[1008] = address in memory to read from (where y lives)

14

Simple, Running Example

loop: lw $1, Memory[1004]

 lw $2, Memory[1008]

 add $3, $1, $2

 add $4, $4, $3

 j loop

 NOTES

add $3, $1, $2= add what’s in $1 to what’s in $2 and put result in $3

15

Simple, Running Example

loop: lw $1, Memory[1004]

 lw $2, Memory[1008]

 add $3, $1, $2

 add $4, $4, $3

 j loop

 NOTES

add $4, $4, $3= add what’s in $4 to what’s in $3 and put result in $4

Note: this instruction overwrites previous value in $4

16

Simple, Running Example

loop: lw $1, Memory[1004]

 lw $2, Memory[1008]

 add $3, $1, $2

 add $4, $4, $3

 j loop

 NOTES

j = “jump”
loop = PC of instruction at label “loop” (the first lw instruction above)
sets next PC to the address labeled by “loop”

Note: all other instructions in this code set next PC = PC+1

17

Assembly Code Format

• Every line of program has:
 label (optional) – followed by “:”
 instruction
 comment (optional) – follows “#”

loop: lw $1, Memory[1004] # read from address 1004

 lw $2, Memory[1008]

 add $3, $1, $2

 add $4, $4, $3

 j loop # jump back to instruction at label loop

Note: a label is just a convenient way to represent an address so
programmers don’t have to worry about numerical addresses

18

Assembly Machine Code

• Every MIPS assembly instruction has a unique 32-bit
representation
• add $3, $2, $7 00000000010001110001100000100000

• lw $8, Mem[1004] 10001100000010000000001111101100

• Computer hardware deals with bits

• We find it easier to look at the assembly

• But they’re equivalent! No magical transformation.

• So how do we represent each MIPS assembly instruction with
a string of 32 bits?

19

MIPS Instruction Format

• opcode = what type of operation to perform

• add, subtract, load, store, jump, etc.

• 6 bits how many types of operations can we specify?

• operands specify: inputs, output (optional), and next PC
(optional)

• operands can be specified with:

• register numbers

• memory addresses

• immediates (values wedged into last 26 bits of instruction)

opcode

(6 bits)

operands

(26 bits)

20

MIPS Instruction Formats

• 3 variations on theme from previous slide

• All MIPS instructions are either R, I, or J type

• Note: all instructions have opcode as first 6 bits

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type

Op(6) Rs(5) Rt(5) Immed(16) I-type

Op(6) Target(26) J-type

21

MIPS Format – R-Type Example

• add $1, $2, $3 # $1 = $2 + $3

• add Rd, Rs, Rt # d=dest, s=source, t=??

• Op = 6-bit code for “add” = 000000

• Rs = 00010

• Rt = 00011

• Rd = 00001

• don’t worry about Sh and Func fields for now

opcode Rs Rt Rd Sh and Func

000000 00010 00011 00001 00000100000

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type

Note: the MIPS
architecture has 32
registers. Therefore, it
takes log232=5 bits to
specify any one of them.

22

Uh-Oh

• Let’s try a lw (load word) instruction

• lw $1, Memory[1004]

• 6 bits for opcode

• That leaves 26 bits for address in memory

• But an address is 32 bits long!

• What gives?

opcode

(6 bits)

operands

(26 bits)

23

Memory Operand Addressing (for loads/stores)

• We have to use indirection to specify memory operands

• Addressing mode: way of specifying address
• (Register) Indirect: lw $1,($2) # $1=memory[$2]

• Displacement: lw $1,8($2) # $1=memory[$2+8]

• Index-base: lw $1,($2,$3) # $1=memory[$2+$3]

• Memory-indirect: lw $1,@($2) # $1=memory[memory[$2]]

• Auto-increment: lw $1,($2)+ # $1=memory[$2++]

• What high-level language idioms are these used for?

^ Last three not supported in MIPS

24

MIPS Addressing Modes

• MIPS implements only displacement addressing mode

• Why? Experiment on VAX (ISA with every mode) found distribution

• Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%

• 80% use displacement or register indirect (=displacement 0)

• I-type instructions: 16-bit displacement

• Is 16-bits enough?

• Yes! VAX experiment showed 1% accesses use displacement >215

Op(6) Rs(5) Rt(5) Immed(16) I-type

25

Back to the Simple, Running Example

• assume $6=1004=address of variable x in C code example

• and recall that 1008=address of variable y in C code example

loop: lw $1, Memory[1004] lw $1, 0($6) # put val of x in $1

 lw $2, Memory[1008] lw $2, 4($6) # put val of y in $2

 add $3, $1, $2

 add $4, $4, $3

 j loop

26

MIPS Format – I-Type Example

• lw $1, 0($6) // $1 = Memory [$6 + 0]

• lw Rt, immed(Rs)

• Opcode = 6-bit code for “load word” = 100011

• Rs = 6 = 00110

• Rt = 1 = 00001

• Immed = 0000 0000 0000 0000 = 010

opcode Rs Rt immed

100011 00110 00001 0000000000000000

Op(6) Rs(5) Rt(5) Immed(16) I-type

28

• Alignment: require that objects fall on address that
is multiple of their size

• 32-bit integer

• Aligned if address % 4 = 0 [% is symbol for “mod”]

• (Binary ends in 00)

• (Hex ends in 0, 4, 8, or C)

• 64-bit integer?

• Aligned if ?

• Question: what to do with unaligned accesses
(uncommon case)?

• Support in hardware? Makes all accesses slower

• Trap to software routine? Possibility

• MIPS? ISA support: unaligned access using two
instructions:
ulw @XXXX10 = lwl @XXXX10; lwr @XXXX10

0 1 2 3

Aligned

Not

Memory Addressing Issue: Alignment

Byte #

29

Declaring Space in Memory for Data

• Add two numbers x and y:
 .text # declare text segment

main: # label for main

 la $3, x # la = “load address” of x into $3

 lw $4, 0($3) # load value of x into $4

 la $3, y # load address of y into $3

 lw $5, 0($3) # load value of y into $5

 add $6, $4,$5 # compute x+y, put result in $6

 …

 .data # declare data segment

x: .word 10 # initialize x to 10

y: .word 3 # initialize y to 3

emptystr: .space 32 # 32 bytes of nulls

hellostr: .asciiz “hello” # 6 bytes incl. null terminator

◄ What memory region?

30

MIPS Operand Model

• MIPS is a “load-store” architecture

• All computations done on values in registers

• Can only access memory with load/store instructions

• 32 32-bit integer registers

• Actually 31: $0 is hardwired to value 0 ICQ: why?

• Also, certain registers conventionally used for special purposes

• We’ll talk more about these conventions later

• 32 32-bit FP registers

• Can also be treated as 16 64-bit FP registers

• HI,LO: destination registers for multiply/divide

31

How Many Registers?

• Registers faster than memory have as many as possible? No!

• One reason registers are faster is that there are fewer of them

• Smaller storage structures are faster (hardware truism)

• Another is that they are directly addressed (no address calc)

• More registers larger specifiers fewer regs per instruction

• Not everything can be put in registers

• Structures, arrays, anything pointed-to

• Although compilers are getting better at putting more things in

• More registers means more saving/restoring them

• At procedure calls and context switches

• Number of registers:
• 32-bit x86: 8

• MIPS32: 32

• ARM: 16

• 64-bit x86: 16 (plus some weird special purpose ones)

32

Control Instructions – Changing the PC

• Most instructions set next PC = PC+1

• But what about handling control flow?

• Conditional control flow: if condition is satisfied, then change
control flow

• if/then/else

• while() loops

• for() loops

• switch

• Unconditional control flow: always change control flow

• procedure calls

• How do we implement control flow in assembly?

33

Control Instructions

• Three issues:

1. Testing for condition: Is PC getting changed?

2. Computing target: If so, then where to?

3. Dealing with procedure calls (later)

• Types of control instructions
• conditional branch: beq, beqz, bgt, etc.

• if condition is met, “branch” to some new PC; else PC=PC+1

• many flavors of branch based on condition (<, >0, <=, etc.)

• unconditional jump: j, jr, jal, jalr

• change PC to some new PC

• several flavors of jump based on how new PC is specified

34

Control Instructions I: Condition Testing

• Three options for testing conditions

• Option I: implicit condition codes (CCs) (not used in MIPS except for floats)

subi $2,$1,10 // sets “negative” CC

bn target // if negative CC set, goto target

bn = “Branch if Negative”

• Option II: compare and branch instructions (sorta used in MIPS)

beq $1,$2,target // if $1==$2, goto target

beq = “Branch if Equal”

• Option III: condition registers, separate branch insns (in MIPS)

slti $2,$1,10 // set $2 if $1<10

slti = “Set Less-Than Immediate”

bnez $2,target // if $2 != 0, goto target

bnez = “Branch if Not-Equal to Zero”

not

actual

MIPS

code

actual

MIPS

actual

MIPS

35

MIPS Conditional Branches

• MIPS uses combination of options II and III
• (II) Compare 2 registers and branch: beq, bne

• Equality and inequality only

+ Don’t need adder for comparison

• (II) Compare 1 register to zero and branch: bgtz, bgez, bltz, blez

• Greater/less than comparisons

+ Don’t need adder for comparison

• (III) Set explicit condition registers: slt, sltu, slti, sltiu, etc.

• Why?

• 86% of branches in programs are (in)equalities or comparisons to 0

• OK to take two insns to do remaining 14% of branches

• Make the common case fast (MCCF)!

36

Control Instructions II: Computing Target

• Three options for computing targets (target = next PC)

• Option A: PC-relative (next PC = current PC +/- some value)

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Option B: Absolute (next PC = some value)

• Position independent outside procedure

• Used for procedure calls

• Option C: Indirect (next PC = contents of a register)

• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switches

• How far do you need to jump?

• Typically not so far within a procedure (they don’t get very big)

• Further from one procedure to another

37

MIPS: Computing Targets

• MIPS uses all 3 ways to specify target of control insn
• PC-relative conditional branches: bne, beq, blez, etc.

• 16-bit relative offset, <0.1% branches need more

• PC = PC + 4 + immediate if condition is true (else PC=PC+4)

• Absolute unconditional jumps: j target

• 26-bit offset (can address 228 words < 232 what gives?)

• Indirect Indirect jumps: jr $31

Op(6) Rs(5) Rt(5) Immed(16) I-type

Op(6) Target(26) J-type

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type

38

Control Idiom: If-Then-Else

• First control idiom: if-then-else
if (A < B) A++; // assume A in register $1

else B++; // assume B in $2

 slt $3,$1,$2 // if $1<$2, then $3=1

 beqz $3,else // branch to else if !condition

 addi $1,$1,1

 j endif // jump to endif

 else:

 addi $2,$2,1

 endif:

ICQ: assembler converts “else”
operand of beqz into immediate
what is the immediate?

39

Control Idiom: Arithmetic For Loop

• Second idiom: “for loop” with arithmetic induction
int A[100], sum, i, N;

for (i=0; i<N; i++){ // assume: i in $1, N in $2

 sum += A[i]; // &A[i] in $3, sum in $4

}

 li $1, 0 # initialize i to 0

 # pretend i set $3 right here

 loop: slt $8,$1,$2 # if i<N, then $8=1; else $8=0

 beqz $8,endloop # test for exit at loop header

 lw $9,0($3) # $9 = A[i] (not &A[i])

 add $4,$4,$9 # sum = sum + A[i]

 addi $3,$3,4 # increment &A[i] by sizeof(int)

 addi $1,$1,1 # i++

 j loop # backward jump

 endloop:

40

Control Idiom: Pointer For Loop

• Third idiom: for loop with pointer induction
struct node_t { int val; struct node_t *next; };

struct node_t *p, *head;

int sum;

for (p=head; p!=NULL; p=p->next) // p in $1, head in $2

sum += p->val // sum in $3

 move $1,$2 # p = head

loop: beq $1,$0,endloop # if p==0 (NULL), goto exit

 lw $5,0($1) # $5 = *p = pval

 add $3,$3,$5 # sum = sum + pval

 lw $1,4($1) # p = *(p+1) = pnext

 j loop # go back to top of loop

endloop:

41

Some of the Most Important Instructions

• Math/logic
• add, sub, mul, div

• Access memory
• lw = load (read) word:
lw $3, 4($5) # $3 = memory[$5+4]

• sw = store (write) word:
sw $3, 4($5) # memory[$5+4] = $3

• Change PC, perhaps conditionally
• Branches: blt, bgt, beqz, etc.

• Jumps: j, jr, jal (will see last two later)

• Handy miscellaneous instructions
• la = load address

• move: move $1, $5 # copies (doesn’t move!) $5 into $1

• li = load immediate:
li $5, 42 # writes value 42 into $5

(terrible name for instr!! not a load – no memory access!)

Note: sw is unusual in that the
destination of instruction isn’t
first operand!

42

Clarifying “load” instructions

int array[] = {55, 27, 19, 88};

char str[] = "hello";

int main() {

 int r1 = 5;

 int* r2 = array;

 int r3 = *r2;

 int r4 = r1;

}

.data

array: .word 55, 27, 19, 88

str: .asciiz "hello"

.text

main:

 li $1, 5

 la $2, array

 lw $3, 0($2)

 move $4, $1

• “Load immediate” isn’t really a load (it doesn’t come from memory)

• “Load address” is just a “load immediate”, but the assembler figures out
the immediate from labels

• “Move” just copies values between registers

• Of the instructions shown, only “load word” actually loads from memory

C code MIPS assembly code

43

Many Other Operations

• Many types of operations

• Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned)

• FP arithmetic: add, sub, mul, div, sqrt

• Integer logical: and, or, xor, not, sll, srl, sra

• Packed integer: padd, pmul, pand, por… (saturating/wraparound)

• What other operations might be useful?

• More operation types == better ISA??

• DEC VAX computer had LOTS of operation types

• E.g., instruction for polynomial evaluation (no joke!)

• But many of them were rarely/never used (ICQ: Why not?)

• We’ll talk more about this issue later …

44

Flavors of Math Instructions

• We already know about add
• add $3, $4, $5

• Also have addi = “add immediate” [Note: I-type instr]
• addi $3, $4, 42 # $3 = $4 + 42

• And addu = “add unsigned”
• addu $3, $4, $5

same as add, but treat values as unsigned ints

• And even addiu = “add immediate unsigned”
• addiu $3, $4, 42

• Same variants for sub, etc.

45

Flavors of Load/Store Instructions

• We already know about lw and sw
• lw $3, 12($5)

• sw $4, -4($6)

• Also have load/store instructions that operate at non-word-size
granularity
• lb = load byte, lh = load halfword

• sb = store byte, sh = store halfword

• Loads can access smaller size but always write all 32 bits of
destination register

• By default, sign-extend to fill register

• Unless specified as unsigned with instrs: lbu, lhu

46

Datatypes

• Datatypes

• Software view: property of data

• Hardware view: data is just bits, property of operations

• Same 32 bits could be interpreted as int or as instruction, etc.

• Hardware datatypes

• Integer: 8 bits (byte), 16b (half), 32b (word), 64b (long)

• IEEE754 FP: 32b (single-precision), 64b (double-precision)

• Packed integer: treat 64b int as 8 8b int’s or 4 16b int’s

• Packed FP

47

Procedure Calls: A Simple, Running Example

main: li $1, 1 # $1 = 1
 li $2, 2 # $2 = 2
 $3 = call foo($1, $2) # this is NOT actual MIPS code
 add $4, $3, $3
 {rest of main}
 {end program}

foo: add $5, $1, $2
 return ($5)

--
main is the caller
foo is the callee

48

Procedure Calls: Jump-and-Link and Return

main: li $1, 1
 li $2, 2
 $3 = call foo($1, $2) jal foo # jal = jump and link
 add $4, $3, $3
 {rest of main}

foo: sub $5, $1, $2
 return ($5) jr $ra

--
jal does two things:
 1) sets PC = foo (just like a regular jump instruction)
 2) “links” to PC after the jal saves that PC in register $31

MIPS designates $31 for a special purpose: it’s the return address ($ra)

jr sets PC to the value in $ra computer executes add instr after jal

49

Procedure Calls: Why Link?

main: li $1, 1
 li $2, 2
 $3 = call foo($1, $2) j foo # j = jump
r1: add $4, $3, $3
 add $1, $1, $4
 j foo
r2: sub $2, $1, $3
 {rest of main}

foo: sub $5, $1, $2
 return ($5) OK, now what?? Jump to r1? Jump to r2?

--
Since function can be called from multiple places, must explicitly
remember (link!) where called from.

50

Procedure Calls: Passing Args & Return Values

main: li $1, 1
 li $2, 2
 move $a0, $1 # pass first arg in $a0
 move $a1, $2 # pass second arg in $a1
 jal foo
 add $4, $3, $3 add $4, $v0, $v0 # return value in $v0 now

 {rest of main}

foo: sub $5, $a0, $a1
 move $v0, $5 # pass return value in $v0
 jr $ra

--
Must use specific registers for passing arguments and return values.
MIPS denotes $a0-$a3 as argument registers.
MIPS denotes $v0-$v1 as return value registers.

51

Passing Arguments by Value or by Reference

• Passing arguments

• By value: pass contents [$3+4] in $a0

 int n; // n in 4($3)

 foo(n);

 lw $a0,4($3)

 jal foo

• By reference: pass address $3+4 in $a0

 int n; // n in 4($3)

 bar(&n);

 addi $a0,$3,4

 jal bar

52

Procedures Must Play Nicely Together

main: li $1, 1
 li $2, 2
 move $a0, $1
 move $a1, $2
 jal foo
 add $4, $v0, $v0
 add $6, $4, $1 # $1 should still be 1
 {rest of main}

foo: sub $5, $a0, $a1
 li $1, 3 # $1 now equals 3
 add $5, $5, $1
 move $v0, $5
 jr $ra

What would happen if main uses $1 after calling
foo but foo also uses $1?

Not good, right? Let’s see why …

53

Brief Detour to HLL Programming

int main (){
 int x=1;
 int y=2;
 int z = foo(x,y);
 z = z + x;
}

int foo(int a1, int a2){
 // code written by other person
 return a1+a2;
}

Programmer of main() assumes that x will still
equal 1 after call to foo(). But that won’t
happen if foo() messes with registers that x was
using.

54

Procedures Must Play Nicely Together

main: li $1, 1
 li $2, 2
 move $a0, $1
 move $a1, $2
 jal foo
 add $4, $v0, $v0
 add $6, $4, $1 # $1 should still be 1
 {rest of main}

foo: sub $5, $a0, $a1
 li $1, 3 # $1 now equals 3
 add $5, $5, $1
 move $v0, $5
 jr $ra

This seems contrived. Why can’t the
programmer of foo just not use $1 Problem
solved, right?

Nope! In real-world, one person doesn’t write
all of the software. My code must play well with
your code.

55

Procedures Use the Stack

• In general, procedure calls obey stack discipline

• Local procedure state contained in stack frame

• Where we can save registers to avoid problem in last slide

• When a procedure is called, a new frame opens

• When a procedure returns, the frame collapses

• Procedure stack is in memory

• Starts at “top” of memory and grows down

A A

B

A

B

C

A

B

A A calls B

B calls C

C returns

B returns

56

Preserving Registers Across Procedures

main: li $1, 1
 li $2, 2
 move $a0, $1
 move $a1, $2
 jal foo
 add $4, $v0, $v0
 add $6, $4, $1
 {rest of main}

foo: sub $5, $a0, $a1
 li $1, 3
 add $5, $5, $1
 move $v0, $5
 jr $ra

memory

main’s frame
stack pointer
(during main) Stack pointer

is address of
bottom of

current stack
frame. Always
held in register

$sp.

57

Preserving Registers Across Procedures

main: li $1, 1
 li $2, 2
 move $a0, $1
 move $a1, $2
 jal foo
 add $4, $v0, $v0
 add $6, $4, $1
 {rest of main}

foo: make frame (move stack ptr)
 save $1 in stack frame
 sub $5, $a0, $a1
 li $1, 3
 add $5, $5, $1
 move $v0, $5
 restore $1 from stack frame
 destroy frame
 jr $ra

memory

main’s frame

stack pointer
(during foo)

foo’s frame

58

Preserving Registers Across Procedures

main: li $1, 1
 li $2, 2
 move $a0, $1
 move $a1, $2
 jal foo
 add $4, $v0, $v0
 add $6, $4, $1
 {rest of main}

foo: make frame subi $sp, $sp, 4
 save $1 on stack frame sw $1, 0($sp)

 sub $5, $a0, $a1
 li $1, 3
 add $5, $5, $1
 move $v0, $5
 restore $1 from stack frame lw $1, 0($sp)
 destroy frame addi $sp, $sp, 4

 jr $ra

memory

main’s frame

$sp
(during foo)

foo’s frame

59

Who Saves/Restores Registers?

main: li $1, 1
 li $2, 2
 move $a0, $1
 move $a1, $2
 jal foo
 add $4, $v0, $v0
 add $6, $4, $1
 {rest of main}

foo: subi $sp, $sp, 4
 sw $1, 0($sp)
 sub $5, $a0, $a1
 li $1, 3
 add $5, $5, $1
 move $v0, $5
 lw $1, 0($sp)
 addi $sp, $sp, 4
 jr $ra

In this example, the callee
(foo) saved/restored

registers. But why didn’t
the caller (main) do that

instead?

memory

main’s frame

$sp
(during foo)

foo’s frame

60

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

MIPS Register Usage/Naming Conventions

Important: The only general purpose registers are the $s and $t registers.

Everything else has a specific usage:

$a = arguments, $v = return values, $ra = return address, etc.

Also 32 floating-point registers: $f0 .. $f31

$f0,$f2: Return value (like $v)
$f4..$f10: Temp (like $t)
$f12..$f14: Arguments (like $a)
$f16..$f18: Temp (like $t)
$f20..$f30: Saved (like $s)

61

MIPS/GCC Procedure Calling Conventions

Calling Procedure

• Step-1: Pass the arguments

• First four arguments (arg0-arg3) are passed in registers $a0-$a3

• Remaining arguments are pushed onto the stack

 (in reverse order, arg5 is at the top of the stack)

• Step-2: Save caller-saved registers

• Save registers $t0-$t9 if they contain live values at the call site

• Step-3: Execute a jal instruction

• Step-4: Restore any $t registers you saved

62

MIPS/GCC Procedure Calling Conventions (cont.)

Called Routine

• Step-1: Establish stack frame

• Subtract the frame size from the stack pointer
 addiu $sp, $sp, -<frame_size>

• Step-2: Save callee-saved registers in the frame

• Register $ra is saved if routine makes a call

• Registers $s0-$s7 are saved if they are used

Negative frame-size,
e.g. -8 to reserve
space for 2 words.

63

MIPS/GCC Procedure Calling Conventions (cont.)

On return from a call

• Step-1: Put returned values in registers $v0 and $v1
 (if values are returned)

• Step-2: Restore callee-saved registers

• $ra, $s0 - $s7

• Step-3: Pop the stack

• Add the frame size to $sp
 addiu $sp, $sp, <frame-size>

• Step-4: Return

• Jump to the address in $ra
 jr $ra

64

Which flavor of register to use?

• When to use callee-saved $s register vs
caller-saved $t register?

• Choose to minimize saving/restoring needed

• Can get complicated in practice

• Simple rule:

• If your function calls another function, use $s registers
(if you make 5 calls, you’d need to save/restore a $t register 5 times,
this way you just save it once)

• If your function does not call other functions, use $t registers
(no need to save/restore at all!)

• Note: $ra is considered a callee-saved register,
and is trashed if your function makes a call

65

System Call Instruction

• System call is used to communicate with the operating
system and request services (memory allocation, I/O)

• syscall instruction in MIPS

• Sort of like a procedure call, but call to ask OS for help

• SPIM supports “system-call-like”

1. Load system call code into register $v0

• Example: if $v0==1, then syscall will print an integer

2. Load arguments (if any) into registers $a0, $a1, or $f12 (for
floating point)

3. syscall

• Results returned in registers $v0 or $f0

66

SPIM System Call Support

code service ArgType Arg/Result

1 print int $a0

2 print float $f12

3 print double $f12

4 print string $a0 (string address)

5 read integer integer in $v0

6 read float float in $f0

7 read double double in $f0 & $f1

8 read string $a0=buffer, $a1=length

9 sbrk $a0=amount address in $v0

10 exit

 Plus a few more for general file IO which we shouldn’t need.

67

Echo number and string

.text

main:

 li $v0, 5 # code to read an integer

 syscall # do the read (invokes the OS)

 move $a0, $v0 # copy result from $v0 to $a0

 li $v0, 1 # code to print an integer

 syscall # print the integer

 li $v0, 4 # code to print string

 la $a0, nln # address of string (newline)

 syscall

code continues on next slide …

68

Echo Continued

 li $v0, 8 # code to read a string

 la $a0, name # address of buffer (name)

 li $a1, 32 # size of buffer (32 bytes)

 syscall

 la $a0, name # address of string to print

 li $v0, 4 # code to print a string

 syscall

 jr $31 # return

 .data

 .align 2 # make data declarations snap to 2^2=4 byte boundaries

name: .space 32 # reserve 32 bytes of space for string

nln: .asciiz "\n“ # ascii string, zero terminated

69

Let’s walk through simple.s

• See simple.s, linked from course site by recitation 3

70

Factorial (skimming base case of recursion!)

fact: addi $sp,$sp,-8 // open frame (2 words)

 sw $ra,4($sp) // save return address

 sw $s0,0($sp) // save $s0

 # handle base case (not real code here)

 # if $a0=1, set $v0=1 and jump to clean

 move $s0,$a0 // copy $a0 to $s0

 addi $a0,$a0,-1 // pass arg via $a0

 jal fact // recursive call

 mul $v0,$s0,$v0 // value returned via $v0

 …

clean:lw $s0,0($sp) // restore $s0

 lw $ra,4($sp) // restore $ra

 addi $sp,$sp,8 // collapse frame

 jr $ra // return, value in $v0

71

All of MIPS in two pages

• Print this quick reference linked from the course page

72

Calling convention summary

• Privacy:

• A function may not assume the state of any registers, except that $a registers
have arguments and $ra has the return address. Put return value into $v
register(s).

• Callee-saved:

• A function may not leave $s registers in a modified state when returning.

• At the top of a function, save any $s/$ra registers that will be changed; restore
right before returning

• Caller-saved:

• When making a call, save any $t registers you care about; restore right after it
returns.

• Minimize this by using $s registers in this case where possible.

• Stack frame:

• At the top of a function, reserve space (decrementing $sp) for any saving
needed (for both $s/$ra and $t) as well as any local variables needing actual
memory addresses as opposed to registers. Clear it before returning.

73

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

74

What Makes a Good ISA?

• Programmability

• Easy to express programs efficiently?

• Implementability

• Easy to design high-performance implementations (i.e.,
microarchitectures)?

• Compatibility

• Easy to maintain programmability as languages and programs evolve?

• Easy to maintain implementability as technology evolves?

75

Programmability

• Easy to express programs efficiently?

• For whom?

• Human

• Want high-level coarse-grain instructions

• As similar to HLL as possible

• This is the way ISAs were pre-1985

• Compilers were terrible, most code was hand-assembled

• Compiler

• Want low-level fine-grain instructions

• Compiler can’t tell if two high-level idioms match exactly or not

• This is the way most post-1985 ISAs are

• Optimizing compilers generate much better code than humans

• ICQ: Why are compilers better than humans?

76

Implementability

• Every ISA can be implemented

• But not every ISA can be implemented well

• Bad ISA bad microarchitecture (slow, power-hungry, etc.)

• We’d like to use some of these high-performance
implementation techniques

• Pipelining, parallel execution, out-of-order execution

• We’ll discuss these later in the semester

• Certain ISA features make these difficult

• Variable length instructions

• Implicit state (e.g., condition codes)

• Wide variety of instruction formats

77

Compatibility

• Few people buy new hardware if it means they have to buy
new software, too

• Intel was the first company to realize this

• ISA must stay stable, no matter what (microarch. can change)

• x86 is one of the ugliest ISAs EVER, but survives

• Intel then forgot this lesson: IA-64 (Itanium) was a new ISA*

• Backward compatibility: very important

• New processors must support old programs (can’t drop features)

• Forward (upward) compatibility: less important

• Old processors must support new programs

• New processors only re-define opcodes that trapped in old ones

• Old processors emulate new instructions in low-level software

78

RISC vs. CISC

• RISC: reduced-instruction set computer

• Coined by Patterson in early 80’s (ideas originated earlier)

• CISC: complex-instruction set computer

• Not coined by anyone, term didn’t exist before “RISC”

• Religious war (one of several) started in mid 1980’s

• RISC (MIPS, Alpha, Power) “won” the technology battles

• CISC (IA32 = x86) “won” the commercial war

• Compatibility a stronger force than anyone (but Intel) thought

• Intel beat RISC at its own game … more on this soon

79

The Setup

• Pre-1980

• Bad compilers

• Complex, high-level ISAs

• Slow, complicated, multi-chip microarchitectures

• Around 1982

• Advances in VLSI made single-chip microprocessor possible…

• Speed by integration, on-chip wires much faster than off-chip

• …but only for very small, very simple ISAs

• Compilers had to get involved in a big way

• RISC manifesto: create ISAs that…

• Simplify single-chip implementation

• Facilitate optimizing compilation

80

The RISC Tenets

• Single-cycle execution (simple operations)

• CISC: many multi-cycle operations

• Load/store architecture

• CISC: register-memory and memory-memory instructions

• Few memory addressing modes

• CISC: many modes

• Fixed instruction format

• CISC: many formats and lengths

• Reliance on compiler optimizations

• CISC: hand assemble to get good performance

Summary

(1) Make it easy to implement in hardware

(2) Make it easy for compiler to generate code

81

Intel 80x86 ISA (aka x86 or IA-32)

• Binary compatibility across generations

• 1978: 8086, 16-bit, registers have dedicated uses

• 1980: 8087, added floating point (stack)

• 1982: 80286, 24-bit

• 1985: 80386, 32-bit, new instrs GPR almost

• 1989-95: 80486, Pentium, Pentium II

• 1997: Added MMX instructions (for graphics)

• 1999: Pentium III

• 2002: Pentium 4

• 2004: “Nocona” 64-bit extension (to keep up with AMD)

• 2006: Core2

• 2007: Core2 Quad

• 2013: Haswell – added transactional mem features

82

80x86 Registers, Addressing Modes, Instructions

• Eight 32-bit registers (not truly general purpose)

• EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

• (Sixteen registers in modern 64-bit, plus several ‘weird’ registers)

• Six 16-bit registers for code, stack, & data

• 2-address ISA

• One operand is both source and destination

• NOT a Load/Store ISA

• One operand can be in memory

• Variable size instructions: 1-byte to 17-bytes, e.g.:

• Jump (JE) 2-bytes

• Push 1-byte

• Add Immediate 5-bytes

83

How Intel Won Anyway

• x86 won because it was the first 16-bit chip by 2 years

• IBM put it into its PCs because there was no competing choice

• Rest is historical inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…

• Because Intel (and AMD) sells the most processors…

• It has the most money…

• Which it uses to hire more and better engineers…

• Which it uses to maintain competitive performance …

• And given equal performance compatibility wins…

• So Intel (and AMD) sells the most processors…

• Moore’s law has helped Intel in a big way

• Most engineering problems can be solved with more transistors

84

Current Approach: Pentium Pro and beyond

• Instruction decode logic translates into micro-ops

• Fixed-size instructions moving down execution path

• Execution units see only micro-ops

+ Faster instruction processing with backward compatibility

+ Execution unit as fast as RISC machines like MIPS

– Complex decoding

– We work with MIPS to keep decoding simple/clean

– Learn x86 on the job!

Learn exactly how this all works in ECE 552 / CS 550

85

Concluding Remarks

1. Keep it simple and regular

• Uniform length instructions

• Fields always in same places

2. Keep it simple and fast

• Small number of registers

3. Make the common case fast

• Compromises inevitable there is no perfect ISA

86

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

