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Where We Are in This Course Right Now 

• So far: 

• We know how to design a processor that can fetch, decode, and 
execute the instructions in an ISA 

• We have assumed that memory storage (for instructions and data) is a 
magic black box 

• Now: 

• We learn why memory storage systems are hierarchical 

• We learn about caches and SRAM technology for caches 

• Next: 

• We learn how to implement main memory 
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Readings 

• Patterson and Hennessy 

• Chapter 5 
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This Unit: Caches and Memory Hierarchies 

• Memory hierarchy 

• Basic concepts 

• Cache organization 

• Cache implementation 

Application 

OS 

Firmware Compiler 

I/O 

Memory 

Digital Circuits 

Gates & Transistors 

CPU 
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Why Isn’t This Sufficient? 

 

processor 

core 

(CPU) 

MEMORY 

 

2N bytes of 

storage, where 

N=32 or 64 (if 32-

bit or 64-bit ISA) 

instruction fetch requests;  

load requests;  

stores 

fetched instructions; 

loaded data 

Access latency of memory is proportional to its 
size.  Accessing 4GB of memory would take 
hundreds of cycles  way too long. 
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An Analogy: Duke’s Library System  

• Student keeps small subset of Duke library 
books on bookshelf at home 

• Books she’s actively reading/using 

• Small subset of all books owned by Duke 

• Fast access time 

• If book not on her shelf, she goes to 
Perkins 

• Much larger subset of all books owned by Duke 

• Takes longer to get books from Perkins 

• If book not at Perkins, must get from off-
site storage 

• Guaranteed (in my analogy) to get book at this 
point 

• Takes much longer to get books from here 

Student 

shelf 

Perkins 

Off-Site 

storage 
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An Analogy: Duke’s Library System  

• CPU keeps small subset of memory in its 
level-1 (L1) cache 

• Data it’s actively reading/using 

• Small subset of all data in memory 

• Fast access time 

• If data not in CPU’s cache, CPU goes to 
level-2 (L2) cache 

• Much larger subset of all data in memory 

• Takes longer to get data from L2 cache 

• If data not in L2 cache, must get from main 
memory 

• Guaranteed to get data at this point 

• Takes much longer to get data from here 

CPU 

L1 cache 

L2 cache 

Memory 
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Big Concept: Memory Hierarchy 

• Use hierarchy of memory components 

• Upper components (closer to CPU) 

• Fast  Small  Expensive 

• Lower components (further from CPU) 

• Slow  Big  Cheap 

• Bottom component (for now!) = what we have 
been calling “memory” until now 

 

• Make average access time close to L1’s 

• How? 

• Most frequently accessed data in L1 

• L1 + next most frequently accessed in L2, etc. 

• Automatically move data up&down hierarchy 

CPU 

L1 

L2 

L3 

Memory 
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Some Terminology 

• If we access a level of memory and find what we want  
called a hit 

• If we access a level of memory and do NOT find what we 
want  called a miss 
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Some Goals 

• Key 1: High “hit rate”  high probability of finding what we 
want at a given level 

• Key 2: Low access latency 

 

• Misses are expensive (take a long time) 

• Try to avoid them 

• But, if they happen, amortize their costs  bring in more than just the 
specific word you want  bring in a whole block of data (multiple 
words) 
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Blocks 

• Block = a group of spatially contiguous and aligned bytes 

• Typical sizes are 32B, 64B, 128B 

• Spatially contiguous and aligned 

• Example: 32B blocks 

• Blocks = [address 0- address 31], [32-63], [64-95], etc. 

• NOT: 

• [13-44]  = unaligned 

• [0-22, 26-34] = not contiguous 

• [0-20] = wrong size (not 32B) 
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Why Hierarchy Works For Duke Books 

• Temporal locality 

• Recently accessed book likely to be accessed again soon 

 

• Spatial locality 

• Books near recently accessed book likely to be accessed soon 
(assuming spatially nearby books are on same topic) 
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Why Hierarchy Works for Memory 

• Temporal locality 

• Recently executed instructions likely to be executed again soon 

• Loops 

• Recently referenced data likely to be referenced again soon 

• Data in loops, hot global data 

 

• Spatial locality 

• Insns near recently executed insns likely to be executed soon 

• Sequential execution 

• Data near recently referenced data likely to be referenced soon 

• Elements in array, fields in struct, variables in stack frame 

 

• Locality is one of the most important concepts in computer 
architecture  don’t forget it! 
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Hierarchy Leverages Non-Uniform Patterns 

• 10/90 rule (of thumb) 

• For Instruction Memory: 

• 10% of static insns account for 90% of executed insns 

• Inner loops 

• For Data Memory: 

• 10% of variables account for 90% of accesses 

• Frequently used globals, inner loop stack variables 

 

• What if processor accessed every block with equal likelihood?  
Small caches wouldn’t help much. 
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Memory Hierarchy: All About Performance 

tavg = thit + %miss * tmiss  

• tavg = average time to satisfy request at given level of hierarchy 

• thit = time to hit (or discover miss) at given level 

• tmiss = time to satisfy miss at given level 

• Problem: hard to get low thit and %miss in one structure 

• Large structures have low %miss but high thit 

• Small structures have low  thit but high %miss 

• Solution: use a hierarchy of memory structures 

 “Ideally, one would desire an infinitely large memory capacity such that any 
particular word would be immediately available … We are forced to recognize 
the possibility of constructing a hierarchy of memories, each of which has a 
greater capacity than the preceding but which is less quickly accessible.” 

Burks, Goldstine, and Von Neumann, 1946  
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Memory Performance Equation 

• For memory component M 

• Access: read or write to M 

• Hit: desired data found in M 

• Miss: desired data not found in M 

• Must get from another (slower) component 

• Fill: action of placing data in M 

 

• %miss (miss-rate): #misses / #accesses 

• thit: time to read data from (write data to) M 

• tmiss: time to read data into M from lower level 

 

• Performance metric 

• tavg: average access time 

tavg = thit + (%miss * tmiss) 

CPU 

M 

thit 

tmiss 

%miss 
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Abstract Hierarchy Performance 

tmiss-M3 = tavg-M4 

CPU 

M1 

M2 

M3 

M4 

tmiss-M2 = tavg-M3 

tmiss-M1 = tavg-M2 

tavg = tavg-M1 

How do we compute tavg ? 

=tavg-M1 

=thit-M1 +(%miss-M1*tmiss-M1) 

=thit-M1 +(%miss-M1*tavg-M2) 

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tmiss-M2))) 

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tavg-M3))) 

= … 

 

Note: Miss at level X = access at level X+1 
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Typical Memory Hierarchy 

• 1st level: L1 I$, L1 D$ (L1 insn/data caches) 

• 2nd level: L2 cache (L2$) 

• Also on same chip with CPU 

• Made of SRAM (same circuit type as CPU) 

• Managed in hardware 

• This unit of ECE/CS 250 

• 3rd level: main memory 

• Made of DRAM 

• Managed in software  

• Next unit of ECE/CS 250 

• 4th level: disk (swap space) 

• Made of magnetic iron oxide discs 

• Managed in software 

• Course unit after main memory 

• Could be other levels (e.g., Flash, PCM, tape, etc.) 

CPU 

D$ 

L2 

Main 

Memory 

I$ 

Disk(swap) 

Note: many 

processors have L3$ 

between L2$ and 

memory 
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Concrete Memory Hierarchy 

• Much of today’s chips used for caches  important! 

L2$ 

P 

C 

Insn 

Mem 

L1I$ 

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

L1D$ 

a 

d 

+ 

4 

<< 

2 
<< 

2 JP 

BR 
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A Typical Die Photo 

L2 Cache 

Intel Pentium4 

Prescott chip with 

2MB L2$ 



21 

A Closer Look at that Die Photo 

Intel Pentium chip 

with 2x16kB split 

L1$ 
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A Multicore Die Photo from IBM 

IBM’s Xenon chip 

with 3 PowerPC 

cores 
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This Unit: Caches and Memory Hierarchies 

• Memory hierarchy 

• Cache organization 

• Cache implementation 

Application 

OS 

Firmware Compiler 

I/O 

Memory 

Digital Circuits 

Gates & Transistors 

CPU 
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Back to Our Library Analogy 

• This is a base-10 (not base-2) analogy 

• Assumptions 

• 1,000,000 books (blocks) in library (memory) 

• Each book has 10 chapters (bytes) 

• Every chapter of every book has its own unique number (address) 

• E.g., chapter 3 of book 2 has number 23 

• E.g., chapter 8 of book 110 has number 1108 

• My bookshelf (cache) has room for 10 books 

• Call each place for a book a “frame” 

• The number of frames is the “capacity” of the shelf 

• I make requests (loads, fetches) for 1 or more chapters at a time 

• But everything else is done at book granularity (not chapter) 



25 

Organizing My Bookshelf (cache!) 

• Two extreme organizations of flexibility (associativity) 

• Most flexible: any book can go anywhere (i.e., in any frame) 

• Least flexible: a given book can only go in one frame 

• In between the extremes 

• A given book can only go in a subset of frames (e.g., 1 or 10) 

• If not most flexible, how to map book to frame? 
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Least Flexible Organization: Direct-mapped 

• Least flexible (direct-mapped) 

• Book X maps to frame X mod 10 

• Book 0 in frame 0 

• Book 1 in frame 1 

• Book 9 in frame 9 

• Book 10 in frame 0 

• Etc.  

• What happens if you want to keep book 3 and 
book 23 on shelf at same time?   You can’t!   
Have to replace (evict) one to make room for 
other. 

frame 0 

frame 9 

This spot reserved 

for a book ending in 

‘0’ (0, 10, 20, etc.) 

This spot reserved 

for a book ending in 

‘1’ (1, 11, 21, etc.) 

This spot reserved 

for a book ending in 

‘9’ (9, 19, 29, etc.) 
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Adding Some Flexibility (Associativity) 

• Keep same shelf capacity (10 frames) 

• Now allow a book to map to multiple frames 

• Frames now grouped into sets 

• If 2 frames/set, 2-way set-associative 

• 1-to-1 mapping of book to set 

• 1-to-many mapping of book to frame 

• If 5 sets, book X maps to set X mod 5 

• Book 0 in set 0 

• Book 1 in set 1 

• Book 4 in set 4 

• Book 5 in set 0 

• Etc.  

set 0 

set 4 

way 0 way 1 

These two spots 

reserved for books 

ending in ‘0’ or ‘5’ 

(0, 5, 10, 15, etc.) 

These two spots 

reserved for books 

ending in ‘1’ or ‘6’ 

(1, 6, 11, 16, etc.) 

These two spots 

reserved for books 

ending in ‘4’ or ‘9’ 

(4, 9, 14, 19, etc.) 
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Most Flexible Organization: Fully Associative 

• Keep same shelf capacity (10 frames) 

• Allow a book to be in any frame  

• fully-associative 

• Whole shelf is one set 

• Ten ways in this set 

• Book could be in any way of set 

• All books map to set 0 (only 1 set!) 

set 0 

way 0 way 1 way 9 

You can put any 

book in any of these 

ten spots.  

Go nuts. 
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Tagging Books on Shelf 

• Let’s go back to direct-mapped organization (w/10 sets) 

• How do we find if book is on shelf? 

• Consider book 1362 

• At library, just go to location 1362 and it’s there 

• But shelf doesn’t have 1362 locations 

• OK, so go to set 1362%10=2 

• If book is on shelf, it’s there 

• But same is true for other books! 

• Books 2, 12, 22, 32, etc. 

• How do we know which one is there? 

• Must tag each book to distinguish it 

set 0 

set 9 
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How to Tag Books on Shelf 

• Still assuming direct-mapped shelf 

• How to tag book 1362? 

• Must distinguish it from other books that  
could be in same set 

• Other books that map to same set (2)? 

• 2, 12, 22, 32, … 112, 122, … 2002, etc. 

• Could tag with entire book number 

• But that’s overkill – we already know last digit 

• Tag for 1362 = 136 

set 0 

set 9 
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How to Find Book on Shelf 

• Consider direct-mapped shelf 

• How to find if book 1362 is on shelf? 

• Step 1: go to right set (set 2) 

• Step 2: check every frame in set 

• If tag of book in frame matches tag of  
requested book, then it’s a match (hit) 

• Else, it’s a miss 

set 0 

set 9 
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From Library/Book Analogy to Computer 

• If you understand this library/book analogy, then you’re 
ready for computer caches 

• Everything is similar in computer caches, but remember 
that computers use base-2 (not base-10) 
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Cache Structure 

• A cache (shelf) consists of frames, and each frame is the 
storage to hold one block of data (book) 

• Also holds a “valid” bit and a “tag” to label the block in that frame 

• Valid: if 1, frame holds valid data; if 0, data is invalid 

• Useful?  Yes.  Example: when you turn on computer, cache is full of 
invalid “data” (better examples later in course) 

• Tag: specifies which block is living in this frame 

• Useful?  Yes.  Far fewer frames than blocks of memory! 

valid “tag” block data 

1 [64-95] 32 bytes of valid data 

0 [0-31] 32 bytes of junk 

1 [0-31] 32 bytes of valid data 

1 [1024-1055] 32 bytes of valid data 
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Cache Structure 

• A cache (shelf) consists of frames, and each frame is the 
storage to hold one block of data (book) 

• Also holds a “valid” bit and a “tag” to label the block in that frame 

• Valid: if 1, frame holds valid data; if 0, data is invalid 

• Useful?  Yes.  Example: when you turn on computer, cache is full of 
invalid “data” (better examples later in course) 

• Tag: specifies which block is living in this frame 

• Useful?  Yes.  Far fewer frames than blocks of memory! 

valid “tag” block data 

1 [64-95] 32 bytes of valid data 

0 [0-31] 32 bytes of junk 

1 [0-31] 32 bytes of valid data 

1 [1024-1055] 32 bytes of valid data 

I write “tag” in quotes because I’m not using a proper tag, as we’ll see 

later.  I’m using “tag” now to label the block.  For example, a “tag” of 

[64-95] denotes that the block in this frame is the block that goes from 

address 64 to address 95.  This “tag” uniquely identifies the block, 

which is its purpose, but it’s overkill as we’ll see later. 
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Cache Example (very simplified for now) 

• When computer turned on, no valid data in cache 
(everything is zero, including valid bits) 

valid “tag” block data 

0 [0-31] 32 bytes of junk 

0 [0-31] 32 bytes of junk 

0 [0-31] 32 bytes of junk 

0 [0-31] 32 bytes of junk 
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Cache Example (very simplified for now) 

• Assume CPU asks for word (book chapters) at byte 
addresses [32-35] 

• Either due to a load or an instruction fetch 

• Word [32-35] is part of block [32-63] 

• Miss!  No blocks in cache yet 

• Fill cache (from lower level) with block [32-63] 

• don’t forget to set valid bit and write tag 

valid “tag” block data 

1 [32-63] 32 bytes of valid data 

0 [0-31] 32 bytes of junk 

0 [0-31] 32 bytes of junk 

0 [0-31] 32 bytes of junk 
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Cache Example (very simplified for now) 

• Assume CPU asks for word [1028-1031] 

• Either due to a load or an instruction fetch 

• Word [1028-1031] is part of block [1024-1055] 

• Miss!  

• Fill cache (from lower level) with block [1024-1055] 

valid “tag” block data 

1 [32-63] 32 bytes of valid data 

1 [1024-1055] 32 bytes of valid data 

0 [0-31] 32 bytes of junk 

0 [0-31] 32 bytes of junk 
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Cache Example (very simplified for now) 

• Assume CPU asks (again!) for word [1028-1031] 

• Hit!  Hooray for temporal locality 

• Assume CPU asks for word [1032-1035] 

• Hit!  Hooray for spatial locality 

• Assume CPU asks for word [0-3] 

• Miss!  Don’t forget those valid bits. 

valid “tag” block data 

1 [32-63] 32 bytes of valid data 

1 [1024-1055] 32 bytes of valid data 

0 [0-31] 32 bytes of junk 

0 [0-31] 32 bytes of junk 
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Where to Put Blocks in Cache 

• How to decide which frame holds which block? 

• And then how to find block we’re looking for? 

• Some more cache structure: 

• Divide cache into sets 

• A block can only go in its set 

• Each set holds some number of frames = set associativity 

• E.g., 4 frames per set = 4-way set-associative 

• The two extremes of set-associativity 

• Whole cache has just one set = fully associative 

• Most flexible (longest access latency) 

• Each set has 1 frame = 1-way set-associative = ”direct mapped” 

• Least flexible (shortest access latency) 
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Direct-Mapped (1-way) Cache 

• Assume 8B blocks 

• 8 sets, 1 way/set  8 frames 

• Each block can only be put into 
1 set (1 option) 

• Block [0-7]  set 0 

• Block [8-15]  set 1 

• Block [16-23]  set 2 

 … 

• Block [56-63]  set 7 

• Block [64-71]  set 0 

• Block [72-79]  set 1 

• Block [X-(X+7)]  set (X/8)%8 

• 1st 8=8B block, 2nd 8 = 8 sets 

way 0 

valid tag data 

set 0 

set 1 

set 2 

set 3 

set 4 

set 5 

set 6 

set 7 
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Direct-Mapped (1-way) Cache 

• Assume 8B blocks 

• Consider the following stream 
of 1-byte requests from the 
CPU:  

• 2, 11, 5, 50, 67, 51, 3 

• Which hit?  Which miss? 

way 0 

valid tag data 

set 0 

set 1 

set 2 

set 3 

set 4 

set 5 

set 6 

set 7 
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Problem with Direct Mapped Caches 

• Assume 8B blocks 

• Consider the following stream 
of 1-byte requests from the 
CPU:  

• 2, 67, 2, 67, 2, 67, 2, 67, … 

• Which hit?  Which miss? 

• Did we make good use of all of 
our cache capacity? 

way 0 

valid tag data 

set 0 

set 1 

set 2 

set 3 

set 4 

set 5 

set 6 

set 7 
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2-Way Set-Associativity 

• 4 sets, 2 ways/set  8 frames (just like our 1-way cache) 

• Block [0-7]  set 0 

• Block [8-15]  set 1 

• Block [16-23]  set 2 

• Block [24-31]  set 3 

• Block [32-39]  set 0 

• Etc. 

 

 

way 0 way 1 

valid tag data valid tag data 

set 0 

set 1 

set 2 

set 3 
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2-Way Set-Associativity 

• Assume the same pathological stream of CPU requests: 

• Byte addresses 2, 67, 2, 67, 2, 67, etc. 

• Which hit?  Which miss? 

• Now how about this: 2, 67, 131, 2, 67, 131, etc. 

• How much more associativity can we have? 

 

way 0 way 1 

valid tag data valid tag data 

set 0 

set 1 

set 2 

set 3 
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 Full Associativity 

• 1 set, 8 ways/set  8 frames (just like previous examples) 

• Block [0-7]  set 0 

• Block [8-15]  set 0 

• Block [16-23]  set 0 

• Etc. 

 

 

way 0 way 1 way 2 way 3 way 4 way 5 way 6 way 7 

v t d v t d v t d v t d v t d v t d v t d v t d 

set 
0 
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Mapping Addresses to Sets 

• MIPS has 32-bit addresses 

• Let’s break down address into three components 

• If blocks are 8B, then log28=3 bits required to identify a 
byte within a block.  These bits are called block offset. 

• Given block, offset (book chapter) tells you which byte within block 

• If there are S sets, then log2S bits required to identify the 
set.  These bits are called set index or just index. 

• Rest of the bits (32 - 3 - log2S) specify the tag 

tag block offset index 
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Mapping Addresses to Sets 

• How many blocks map to the same set? 

• Let’s assume 8-byte blocks 

• 8=23  3 bits to specify block offset 

• Let’s assume we have direct-mapped cache with 256 sets 

• 256 sets =28 sets  8 bits to specify set index 

• 232 bytes of memory/(8 bytes/block) = 229 blocks 

• 229 blocks / 256 sets = 221 blocks / set 

• So that means we need 221 tags to distinguish between all 
possible blocks in the set  21 tag bits 

• Note: 21=32-3-8    

tag 

(21) 
block offset 

(3) 

index 

(8) 
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Mapping Addresses to Sets 

• Assume cache from previous slide (8B blocks, 256 sets) 

• Example: What do we do with the address 58? 

 0000 0000 0000 0000 0000 0000 0011 1010 

• offset = 2 (2nd byte in block) 

• index=7 (set 7) 

• tag = 0 

• This matches what we did before – recall: 

• Block [0-7]  set 0 

• Block [8-15]  set 1 

• Block [16-23]  set 2 

• etc. 

tag 

(21) 
block offset 

(3) 

index 

(8) 
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Mod vs  
the bits 

Base 10 Base 2 

num num/8 num%8 num num/8 num>>3 num&7 num%8 

0 0 0 0 0 0 0 0 

1 0 1 1 0 0 1 1 

2 0 2 10 0 0 10 10 

3 0 3 11 0 0 11 11 

4 0 4 100 0 0 100 100 

5 0 5 101 0 0 101 101 

6 0 6 110 0 0 110 110 

7 0 7 111 0 0 111 111 

8 1 0 1000 1 1 0 0 

9 1 1 1001 1 1 1 1 

10 1 2 1010 1 1 10 10 

11 1 3 1011 1 1 11 11 

12 1 4 1100 1 1 100 100 

13 1 5 1101 1 1 101 101 

14 1 6 1110 1 1 110 110 

15 1 7 1111 1 1 111 111 

16 2 0 10000 10 10 0 0 

17 2 1 10001 10 10 1 1 

18 2 2 10010 10 10 10 10 

19 2 3 10011 10 10 11 11 

20 2 4 10100 10 10 100 100 

21 2 5 10101 10 10 101 101 

22 2 6 10110 10 10 110 110 

23 2 7 10111 10 10 111 111 

24 3 0 11000 11 11 0 0 

25 3 1 11001 11 11 1 1 

26 3 2 11010 11 11 10 10 

27 3 3 11011 11 11 11 11 

28 3 4 11100 11 11 100 100 

29 3 5 11101 11 11 101 101 

30 3 6 11110 11 11 110 110 

31 3 7 11111 11 11 111 111 

32 4 0 100000 100 100 0 0 

33 4 1 100001 100 100 1 1 

34 4 2 100010 100 100 10 10 

35 4 3 100011 100 100 11 11 
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Cache Replacement Policies 

• Set-associative caches present a new design choice 

• On cache miss, which block in set to replace (kick out)? 

• Some options 

• Random 

• LRU (least recently used) 

• Fits with temporal locality, LRU = least likely to be used in future 

• NMRU (not most recently used)  

• An easier-to-implement approximation of LRU 

• NMRU=LRU for 2-way set-associative caches 
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ABCs of Cache Design 

• Architects control three primary aspects of cache design 

• And can choose for each cache independently 

• A = Associativity 

• B = Block size 

• C = Capacity of cache 

 

• Secondary aspects of cache design 

• Replacement algorithm 

• Some other more subtle issues we’ll discuss later 
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Analyzing Cache Misses: 3C Model 

• Divide cache misses into three categories 

• Compulsory (cold): never seen this address before 

• Easy to identify 

• Capacity: miss caused because cache is too small – would’ve been 
miss even if cache had been fully associative 

• Consecutive accesses to block separated by accesses to at least N 
other distinct blocks where N is number of frames in cache 

• Conflict: miss caused because cache associativity is too low – would’ve 
been hit if cache had been fully associative 

• All other misses 
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3C Example 

• Assume 8B blocks 

• Consider the following stream 
of 1-byte requests from the 
CPU:  

• 2, 11, 5, 50, 67, 128, 256, 512, 
1024, 2 

• Is the last access a capacity miss 
or a conflict miss? 

way 0 

valid tag data 

set 0 

set 1 

set 2 

set 3 

set 4 

set 5 

set 6 

set 7 

Location Set 

2 0 

11 1 

5 0 

50 6 

67 0 

128 0 

256 0 

512 0 

1024 0 

2 0 
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ABCs of Cache Design and 3C Model 

• Associativity (increase, all else equal) 

+ Decreases conflict misses 

– Increases thit 

• Block size (increase, all else equal) 

– Increases conflict misses 

+ Decreases compulsory misses 

± Increases or decreases capacity misses 

• Negligible effect on thit 

• Capacity (increase, all else equal) 

+ Decreases capacity misses 

– Increases thit 

 

more columns (ways),  

fewer rows (sets), 

same area 

 

fewer rows (sets), 

bigger blocks, 

same area 

more area via  

more rows (sets) 
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Inclusion/Exclusion 

• If L2 holds superset of every block in L1, then L2 is inclusive 
with respect to L1 

• If L2 holds no block that is in L1, then L2 and L1 are 
exclusive 

• L2 could be neither inclusive nor exclusive 

• Has some blocks in L1 but not all 

• This issue matters a lot for multicores, but not a major issue 
in this class 

 

• Same issue for L3/L2 
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Stores: Write-Through vs. Write-Back 

• When to propagate new value to (lower level) memory? 

• Write-through: immediately (as soon as store writes to this level) 

+ Conceptually simpler 

+ Uniform latency on misses 

– Requires additional bandwidth to next level 

• Write-back: later, when block is replaced from this level 

• Requires additional “dirty” bit per block  why? 

+ Minimal bandwidth to next level 

• Only write back dirty blocks 

– Non-uniform miss latency 

• Miss that evicts clean block: just a fill from lower level 

• Miss that evicts dirty block: writeback dirty block and then fill 
from lower level 
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Stores: Write-allocate vs. Write-non-allocate 

• What to do on a write miss? 

• Write-allocate: read block from lower level, write value into it 

+ Decreases read misses 

– Requires additional bandwidth 

• Use with write-back 

• Write-non-allocate: just write to next level 

– Potentially more read misses 

+ Uses less bandwidth 

• Use with write-through 
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Optimization: Write Buffer 

• Write buffer: between cache and memory 

• Write-through cache? Helps with store misses 

+ Write to buffer to avoid waiting for next level 

• Store misses become store hits 

• Write-back cache? Helps with dirty misses 

+ Allows you to do read (important part) first 

1. Write dirty block to buffer 

2. Read new block from next level to cache 

3. Write buffer contents to next level 

 

 

$ 

Next Level 

1 

2 
3 
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Typical Processor Cache Hierarchy 

• First level caches: optimized for thit and parallel access 

• Insns and data in separate caches (I$, D$)  why? 

• Capacity: 8–64KB, block size: 16–64B, associativity: 1–4 

• Other: write-through or write-back 

• thit: 1–4 cycles 

• Second level cache (L2): optimized for %miss 

• Insns and data in one cache for better utilization 

• Capacity: 128KB–1MB, block size: 64–256B, associativity: 4–16 

• Other: write-back 

• thit: 10–20 cycles 

• Third level caches (L3): also optimized for %miss 

• Capacity: 2–16MB 

• thit: ~30 cycles 
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Performance Calculation Example  

• Parameters 

• Reference stream: 20% stores, 80% loads 

• L1 D$: thit = 1ns, %miss = 5%, write-through + write-buffer 

• L2: thit = 10ns, %miss = 20%, write-back, 50% dirty blocks 

• Main memory: thit = 50ns, %miss = 0% 

• What is tavgL1D$ without an L2? 

• Write-through+write-buffer means all stores effectively hit 

• tmissL1D$ = thitM 

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*thitM = 1ns+(0.8*0.05*50ns) = 3ns 

• What is tavgD$ with an L2? 

• tmissL1D$ = tavgL2 

• Write-back (no buffer) means dirty misses cost double 

• tavgL2 = thitL2+(1+%dirty)*%missL2*thitM = 10ns+(1.5*0.2*50ns) =25ns 

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*tavgL2 = 1ns+(0.8*0.05*25ns) =2ns 
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Cost of Tags 

• “4KB cache” means cache holds 4KB of data 

• Called capacity 

• Tag storage is considered overhead (not included in capacity) 

• Calculate tag overhead of 4KB cache with 1024 4B frames 

• Not including valid bits 

• 4B frames  2-bit offset 

• 1024 frames  10-bit index 

• 32-bit address – 2-bit offset – 10-bit index = 20-bit tag 

• 20-bit tag * 1024 frames = 20Kb tags = 2.5KB tags 

• 63% overhead  much higher than usual because blocks are so small 
(and cache is small) 
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Two (of many possible) Optimizations 

• Victim buffer: for conflict misses 

• Prefetching: for capacity/compulsory misses 
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Victim Buffer 

• Conflict misses: not enough associativity 

• High-associativity is expensive, but also rarely needed 

• 3 blocks mapping to same 2-way set and accessed (ABC)* 

 

• Victim buffer (VB): small FA cache (e.g., 4 entries) 

• Sits on I$/D$ fill path 

• VB is small  very fast 

• Blocks kicked out of I$/D$ placed in VB 

• On miss, check VB: hit ? Place block back in I$/D$ 

• 4 extra ways, shared among all sets 

+ Only a few sets will need it at any given time 

+ Very effective in practice 

I$/D$ 

L2 

VB 
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Prefetching 

• Prefetching: put blocks in cache proactively/speculatively 

• Key: anticipate upcoming miss addresses accurately 

• Can do in software or hardware 

 

• Simple example: next block prefetching 

• Miss on address X  anticipate miss on X+block-size 

• Works for insns: sequential execution 

• Works for data: arrays 

 

• Timeliness: initiate prefetches sufficiently in advance 

• Accuracy: don’t evict useful data 

I$/D$ 

L2 

prefetch logic 
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Cache structure math summary 

• Given capacity, block_size, ways (associativity), and 
word_size. 

• Cache parameters: 

• num_frames = capacity / block_size 

• sets = num_frames / ways = capacity / block_size / ways 

• Address bit fields: 

• offset_bits = log2(block_size) 

• index_bits = log2(sets) 

• tag_bits = word_size - index_bits - offset_bits 

• Way to get offset/index/tag from address (bitwise & numeric): 

• block_offset = addr & ones(offset_bits) = addr % block_size 

• index  = (addr >> offset_bits) & ones(index_bits) 
 = (addr / block_size) % sets 

• tag = addr >> (offset_bits+index_bits) = addr / (sets*block_size) 

ones(n) = a string of n ones = ((1<<n)-1) 
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What this means to the programmer 

• If you’re writing code, you want good performance. 

 

• The cache is crucial to getting good performance. 

 

• The effect of the cache is influenced by the order of 
memory accesses. 

 

CONCLUSION:  

The programmer can change the order of  
memory accesses to improve performance! 
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Cache performance matters! 

• A HUGE component of software performance is how it 
interacts with cache 

• Example: 

Assume that x[i][j] is stored next to x[i][j+1] in memory  
(“row major order”). 

Which will have fewer cache misses?  

for (k = 0; k < 100; k++) 

 for (j = 0; j < 100; j++) 

  for (i = 0; i < 5000; i++) 

   x[i][j] = 2 * x[i][j]; 

 

for (k = 0; k < 100; k++) 

 for (i = 0; i < 5000; i++) 

  for (j = 0; j < 100; j++) 

   x[i][j] = 2 * x[i][j]; 

A 

B 
Adapted from Lebeck and Porter (creative commons) 
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This Unit: Caches and Memory Hierarchies 

• Memory hierarchy 

• Cache organization 

• Cache implementation 

Application 

OS 

Firmware Compiler 

I/O 

Memory 

Digital Circuits 

Gates & Transistors 

CPU 



72 

How to Build Large Storage Components? 

• Functionally, we could implement large storage as a vast 
number of D flip-flops 

• But for big storage, our goal is density (bits/area) 

• And FFs are big: ~32 transistors per bit 

• It turns out we can get much better density 

• And this is what we do for caches (and for register files) 
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Static Random Access Memory (SRAM) 

• Reality: large storage arrays implemented in “analog” way 

• Bits as cross-coupled inverters, not flip-flops 

• Inverters: 2 gates = 4 transistors per bit 

• Flip-flops: 8 gates =~32 transistors per bit 

• Ports implemented as shared buses called bitlines (next slide) 

• Called SRAM (static random access memory) 

• “Static”  a written bit maintains its value (doesn’t leak out) 

• But still volatile  bit loses value if chip loses power 

• Example: storage array with two 2-bit words 

Word 0 

Word 1 

Bit 0 Bit 1 
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• To write (a 1): 

1. Drive bit lines (bit=1, bit=0) 

2. Select row 

• To read: 

1. Pre-charge bit and bit to Vdd (set to 1) 

2. Select row 

3. Cell pulls one line lower (pulls towards 0) 

4. Sense amp on column detects difference between bit and bit 

bit bit 

word 6-Transistor SRAM Cell 

bit bit 

word 
(row select) 

1 0 

0 1 

One Static RAM Cell 
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Typical SRAM Organization: 16-word x 4-bit 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

- + Sense Amp - + Sense Amp - + Sense Amp - + Sense Amp 

: : : : 

Word 0 

Word 1 

Word 15 

Dout 0 Dout 1 Dout 2 Dout 3 

- + 
Wr Driver & 

Precharger - + 
Wr Driver & 

Precharger - + 
Wr Driver & 

Precharger - + 
Wr Driver & 

Precharger 

A
d

d
ress D

eco
d

er
 

WrEn 

Precharge 

Din 0 Din 1 Din 2 Din 3 

A0 

A1 

A2 

A3 
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• Write Enable is usually active low (WE_L) 

• Din and Dout are combined (D) to save pins: 

• A new control signal, output enable (OE_L) is needed 

• WE_L is asserted (Low), OE_L is de-asserted (High) 

• D serves as the data input pin 

• WE_L is de-asserted (High), OE_L is asserted (Low) 

• D is now the data output pin 

• Both WE_L and OE_L are asserted: 

• Result is unknown.  Don’t do that!!! 

A 

D OE_L 

2 N words 

x  M bit 

SRAM 

N 

M 

WE_L 

Logic Diagram of a Typical SRAM 
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SRAM Executive Summary 

• Large storage arrays cannot be implemented “digitally” 

• Muxing and wire routing become impractical 

• SRAM implementation exploits analog transistor properties 

• Inverter pair bits much smaller than flip-flop bits 

• Wordline/bitline arrangement makes for simple “grid-like” routing 

• Basic understanding of reading and writing 

• Wordlines select words 

• Overwhelm inverter-pair to write 

• Drain pre-charged line or swing voltage to read 

• Access latency proportional to √#bits * #ports 

 

• You must understand important properties of SRAM 

• Will help when we talk about DRAM (next unit) 
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Basic Cache Structure 

• Basic cache: array of block frames 

• Example: 4KB cache made up of 1024 4B frames 

• To find frame: decode part of address 

• Which part? 

• 32-bit address 

• 4B blocks  2 LS bits locate byte within block 

• These are called offset bits 

• 1024 frames  next 10 bits find frame 

• These are the index bits 

• Note: nothing says index must be these bits 

• But these work best (think about why) 

0 

1 

1021 

1022 

1023 

2 

3 

[31:12] 

data 

[11:2] << 

CPU address 

1024*32b 

SRAM 

bitlines 

w
o

rd
lin

e
s
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Basic Cache Structure 

• Each frame can hold one of 220 blocks 

• All blocks with same index bit pattern 

• How to know which if any is currently there? 

• To each frame attach tag and valid bit 

• Compare frame tag to address tag bits 

• No need to match index bits (why?) 

• Lookup algorithm 

• Read frame indicated by index bits 

• If (tag matches && valid bit set) 

then Hit  data is good 

Else Miss  data is no good, wait 

0 

1 

1021 

1022 

1023 

2 

3 

1:0 [31:12] 

data 

[11:2] << 

CPU 
address 

== 

hit/miss 
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Set-Associativity 

• Set-associativity 

• Block can reside in one of few frames 

• Frame groups called sets 

• Each frame in set called a way 

• This is 2-way set-associative (SA) 

• 1-way  direct-mapped (DM) 

• 1-set  fully-associative (FA) 

 

+ Reduces conflicts 

– Increases thit: additional mux 

 

512 

513 

1022 

1023 

514 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

510 

511 

2 

== 

ways 

s
e

ts
 



81 

Set-Associativity 

• Lookup algorithm 

• Use index bits to find set 

• Read data/tags in all frames in parallel 

• Any (match && valid bit)? 

• Then Hit  

• Else Miss 

 

• Notice tag/index/offset bits 

 

512 

513 

1022 

1023 

514 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

510 

511 

2 

== 
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NMRU and Miss Handling 

• Add MRU field to each set 

• MRU data is encoded “way” 

• Hit? update MRU 

• Fill? write enable ~MRU 

 

 

 

512 

513 

1023 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

511 

== 

W
E

 

data from memory 

~ 

W
E
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Physical Cache Layout 

• Logical layout 

• Data and tags mixed together 

• Physical layout 

• Data and tags in separate RAMs 

• Often multiple sets per line 

• As square as possible 

• Not shown here 

512 

513 

1022 

1023 

514 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

510 

511 

2 

== 
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Full-Associativity 

• How to implement full (or at least high) associativity? 

• Doing it this way is terribly inefficient 

• 1K matches are unavoidable, but 1K data reads + 1K-to-1 mux? 

1 1023 

1:0 [31:2] << 

CPU 

== 

0 1022 

== == == 
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Normal RAM vs Content Addressable Memory 

RAM 

• Cell number 5, what are 
you storing? 

CAM 

• Attention all cells, will the 
owner of data “5” please 
stand up? 
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Full-Associativity with CAMs 

• CAM: content addressable memory 

• Array of words with built-in comparators 

• Matchlines instead of bitlines 

• Output is “one-hot” encoding of match 

 

• FA cache? 

• Tags as CAM 

• Data as RAM 

0 

1 

1022 

1023 

1:0 [31:2] << 

== 

== 

== 

== 
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CAM Upshot 

• CAMs are effective but expensive 

– Matchlines are very expensive (for nasty circuit-level reasons) 

• CAMs are used but only for 16 or 32 way (max) associativity 

• See an example soon 

• Not for 1024-way associativity 

– No good way of doing something like that 

+ No real need for it either 
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Stores: Tag/Data Access 

• Reads: read tag and data in parallel 

• Tag mis-match  data is garbage (OK) 

• Writes: read tag, write data in parallel? 

• Tag mis-match  clobbered data (oops) 

• For SA cache, which way is written? 

 

• Writes are a pipelined 2 cycle process 

• Cycle 1: match tag 

• Cycle 2: write to matching way 

1022 

1023 

1:0 [31:11] 

data 

[10:2] 

<< 

address 

== 

hit/miss 

0 

1 

2 

1:0 [10:2] data 

data 
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Stores: Tag/Data Access 

• Cycle 1: check tag 

• Hit?  Write data next cycle 

• Miss?  Depends (write-alloc or  
write-no-alloc) 

1022 

1023 

1:0 [31:11] 

data 

[10:2] 

<< 

address 

== 

hit/miss 

0 

1 

2 

1:0 [10:2] data 

data 
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Stores: Tag/Data Access 

• Cycle 2 (if hit): write data 

1022 

1023 

1:0 [31:11] 

data 

[10:2] 

<< 

address 

== 

hit/miss 

0 

1 

2 

1:0 [10:2] data 

data 
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This Unit: Caches and Memory Hierarchies 

• Memory hierarchy 

• Cache organization 

• Cache implementation 
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