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This Unit: Pipelining 

• Basic Pipelining 

• Pipeline control 

• Data Hazards 

• Software interlocks and 
scheduling 

• Hardware interlocks and 
stalling 

• Bypassing 

• Control Hazards 

• Fast and delayed branches 

• Branch prediction  

• Multi-cycle operations 

• Exceptions 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Readings 

• P+H 

• Chapter 4: Section 4.5-end of Chapter 4 
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Pipelining 

• Important performance technique 

• Improves insn throughput (rather than insn latency) 

• Laundry / SubWay analogy 

• Basic idea: divide instruction’s “work” into stages 

• When insn advances from stage 1 to 2 

• Allow next insn to enter stage 1 

• Etc. 

• Key idea: each instruction does same amount of work as 
before 

+ But insns enter and leave at a much faster rate 
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5 Stage Pipelined Datapath 

• Temporary values (PC,IR,A,B,O,D) re-latched every stage 

• Why? 5 insns may be in pipeline at once, they share a single PC? 

• Notice, PC not re-latched after ALU stage (why not?) 
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Pipeline Terminology 

• Five stage: Fetch, Decode, eXecute, Memory, Writeback 

• Latches (pipeline registers) named by stages they separate 

• PC, F/D, D/X, X/M, M/W 
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Aside: Not All Pipelines Have 5 Stages 

• H&P textbook uses well-known 5-stage pipe != all pipes have 
5 stages 

• Some examples 

• OpenRISC 1200: 4 stages 

• Sun UltraSPARC T1/T2 (Niagara/Niagara2): 6/8 stages 

• AMD Athlon: 10 stages 

• Pentium 4: 20 stages 

• ICQ: why does Pentium 4 have so many stages? 

• ICQ: how can you possibly break “work” to do single insn into 
that many stages? 

• Moral of the story: in ECE/CS 250, we focus on H&P 5-stage 
pipe, but don’t forget that this is just one example 
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Pipeline Example: Cycle 1 

• 3 instructions 
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Pipeline Example: Cycle 2 
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Pipeline Example: Cycle 3 
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Pipeline Example: Cycle 4 

• 3 instructions 
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Pipeline Example: Cycle 5 
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Pipeline Example: Cycle 6 
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Pipeline Example: Cycle 7 
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Pipeline Diagram 

• Pipeline diagram: shorthand for what we just saw 

• Across: cycles 

• Down: insns 

• Convention: X means lw $4,0($5) finishes execute stage and 
writes into X/M latch at end of cycle 4 

 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($5) F D X M W 

sw $6,4($7) F D X M W 



16 

What About Pipelined Control? 

• Should it be like single-cycle control? 

• But individual insn signals must be staged 

• How many different control units do we need? 

• One for each insn in pipeline? 

 

• Solution: use simple single-cycle control, but pipeline it 

• Single controller 

• Key idea: pass control signals with instruction through pipeline 
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Pipelined Control 
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Pipeline Performance Calculation 

• Single-cycle 

• Clock period = 50ns, CPI = 1 

• Performance = 50ns/insn 

 

• Pipelined 

• Clock period = 12ns  (why not 10ns?) 

• CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle) 

• Performance = 12ns/insn 

CPI = “Cycles Per Instruction”: 
Important performance metric! 
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Why Does Every Insn Take 5 Cycles? 

• Why not let add skip M and go straight to W? 

• It wouldn’t help: peak fetch still only 1 insn per cycle 

• Structural hazards: not enough resources per stage for 2 insns 
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Pipeline Hazards 

• Hazard: condition leads to incorrect execution if not fixed 

• “Fixing” typically increases CPI 

• Three kinds of hazards 

 

• Structural hazards 

• Two insns trying to use same circuit at same time 

• E.g., structural hazard on RegFile write port 

• Fix by proper ISA/pipeline design: 3 rules to follow 

• Each insn uses every structure exactly once 

• For at most one cycle 

• Always at same stage relative to F 

• Data hazards (next) 

• Control hazards (a little later) 
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Data Hazards 

• Let’s forget about branches and control for a while 

• The sequence of 3 insns we saw earlier executed fine… 

• But it wasn’t a real program 

• Real programs have data dependences 

• They pass values via registers and memory 
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Data Hazards 

• Would this “program” execute correctly on this pipeline? 

•  Which insns would execute with correct inputs? 

•  add is writing its result into $3 in current cycle  

–  lw read $3 2 cycles ago  got wrong value 

–  addi read $3 1 cycle ago   got wrong value 

•  sw is reading $3 this cycle  OK (regfile timing: write first half) 

add $3,$2,$1 lw $4,0($3) sw $3,0($7) addi $6,1,$3 
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Memory Data Hazards 

• What about data hazards through memory? No 
•  lw following sw to same address in next cycle, gets right value 

•  Why? DMem read/write take place in same stage 

• Data hazards through registers? Yes (previous slide) 

•  Occur because register write is 3 stages after register read 

•  Can only read a register value 3 cycles after writing it  

sw $5,0($1) lw $4,0($1) 
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Fixing Register Data Hazards 

• Can only read register value 3 cycles after writing it 

 

• One way to enforce this: make sure programs can’t do it 

• Compiler puts two independent insns between write/read insn pair 

• If they aren’t there already 

• Independent means: “do not interfere with register in question” 

• Do not write it: otherwise meaning of program changes 

• Do not read it: otherwise create new data hazard 

• Code scheduling: compiler moves around existing insns to do this 

• If none can be found, must use NOPs 

 

• This is called software interlocks 

• MIPS: Microprocessor w/out Interlocking Pipeline Stages 
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Software Interlock Example 

sub $3,$2,$1 

lw $4,0($3) 

sw $7,0($3) 

add $6,$2,$8 

addi $3,$5,4 

 

• Can any of last 3 insns be scheduled between first two? 

•  sw $7,0($3)? No, creates hazard with sub $3,$2,$1 

•  add $6,$2,$8? OK 

•  addi $3,$5,4? YES...-ish. Technically. (but it hurts to think about) 

• Would work, since lw wouldn’t get its $3 from it due to delay 

• Makes code REALLY hard to follow – each instruction’s effects “happen” at 
different delays (memory writes “immediate”, register writes delayed, etc.) 

• Let’s not do this, and just add a nops where needed 

•  Still need one more insn, use nop 
sub $3,$2,$1 

add $6,$2,$8 

nop 

lw $4,0($3) 

sw $7,0($3) 

addi $3,$5,4 
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Software Interlock Performance 

• Software interlocks 
• 20% of insns require insertion of 1 nop 

• 5% of insns require insertion of 2 nops 

 

• CPI is still 1 technically 

• But now there are more insns 

• #insns = 1 + 0.20*1 + 0.05*2 = 1.3 

– 30% more insns (30% slowdown) due to data hazards 
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Hardware Interlocks 

• Problem with software interlocks? Not compatible 

• Where does 3 in “read register 3 cycles after writing” come from? 

• From structure (depth) of pipeline 

• What if next MIPS version uses a 7 stage pipeline? 

• Programs compiled assuming 5 stage pipeline will break 

 

• A better (more compatible) way: hardware interlocks 

• Processor detects data hazards and fixes them 

• Two aspects to this 

• Detecting hazards 

• Fixing hazards 
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Detecting Data Hazards 

• Compare F/D insn input register names with output register 
names of older insns in pipeline 

Hazard = 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 
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Fixing Data Hazards 

• Prevent F/D insn from reading (advancing) this cycle 
• Write nop into D/X.IR (effectively, insert nop in hardware) 

• Also clear the datapath control signals 

• Disable F/D latch and PC write enables (why?) 

• Re-evaluate situation next cycle 
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Hardware Interlock Example: cycle 1 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 

= 1 
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Hardware Interlock Example: cycle 2 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 

= 1 
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Hardware Interlock Example: cycle 3 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 

= 0 

Register 

File 

S 

X 

s1 s2 d 

 

 

 

 

 

 

 

 

IR 

A 

 

 

B 

 

 

 

 

IR 

 

 

O 

 

 

B 

 

 

IR 

F/D D/X X/M 

add $3,$2,$1 lw $4,0($3) 

hazard 

nop 

Data 

Mem 

a 

d 

O 

 

D 

 

 

 

 

 

IR 

M/W 



33 

Pipeline Control Terminology 

• Hardware interlock maneuver is called stall or bubble 

 

• Mechanism is called stall logic 

• Part of more general pipeline control mechanism 

• Controls advancement of insns through pipeline 

• Distinguished from pipelined datapath control 

• Controls datapath at each stage 

• Pipeline control controls advancement of datapath control 
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Pipeline Diagram with Data Hazards 

• Data hazard stall indicated with d* 

• Stall propagates to younger insns 

 

 

 

 

 

• This is not OK (why?) 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F d* d* D X M W 

sw $6,4($7) F D X M W 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F d* d* D X M W 

sw $6,4($7) F D X M W 
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Hardware Interlock Performance 

• Hardware interlocks: same as software interlocks 
• 20% of insns require 1 cycle stall (i.e., insertion of 1 nop) 

• 5% of insns require 2 cycle stall (i.e., insertion of 2 nops) 

 

• CPI = 1 + 0.20*1 + 0.05*2 = 1.3 

• So, either CPI stays at 1 and #insns increases 30% (software) 

• Or, #insns stays at 1 (relative) and CPI increases 30% (hardware) 

• Same difference 

 

• Anyway, we can do better 
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Observe 

• This situation seems broken 
•  lw $4,0($3) has already read $3 from regfile 

•  add $3,$2,$1 hasn’t yet written $3 to regfile 

• But fundamentally, everything is still OK 
•  lw $4,0($3) hasn’t actually used $3 yet 

•  add $3,$2,$1 has already computed $3 
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Bypassing 

• Bypassing 

• Reading a value from an intermediate (marchitectural) source 

• Not waiting until it is available from primary source (RegFile) 

• Here, we are bypassing the register file 

• Also called forwarding 
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WX Bypassing 

• What about this combination? 

• Add another bypass path and MUX input 

• First one was an MX bypass 

• This one is a WX bypass 
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ALUinB Bypassing 

• Can also bypass to ALU input B 
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WM Bypassing? 

• Does WM bypassing make sense? 

• Not to the address input (why not?)  

• Address input requires the ALU to compute;  
value is not ready anywhere in the CPU 

• But to the store data input, yes 
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Bypass Logic 

• Each MUX has its own, here it is for MUX ALUinA 

(D/X.IR.RS1 == X/M.IR.RD)  mux select = 0 

(D/X.IR.RS1 == M/W.IR.RD)  mux select = 1 

Else  mux select = 2 
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Bypass and Stall Logic 

• Two separate things 

• Stall logic controls pipeline registers 

• Bypass logic controls muxes 

• But complementary 

• For a given data hazard: if can’t bypass, must stall 

 

• Slide #40 shows full bypassing: all bypasses possible 

• Is stall logic still necessary? 
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Yes, Load Output to ALU Input 
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lw $3,0($2) add $4,$2,$3 

Our CPU’s stall condition! 

 

Stall = (D/X.IR.OP==LOAD) && (  
   (F/D.IR.RS1==D/X.IR.RD) ||  
   ((F/D.IR.RS2==D/X.IR.RD) && (F/D.IR.OP!=STORE)) 
 ) 

Intuition: “Stall if it's a load where rs1 is a data hazard for the next instruction, or 
where rs2 is a data hazard in a non-store next instruction”. This is because rs2 is safe 
in a store instruction, because it doesn’t use the X stage, and can be M/W bypassed. 
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Pipeline Diagram With Bypassing 

• Sometimes you will see it like this 

• Denotes that stall logic implemented at X stage, rather than D 

• Equivalent, doesn’t matter when you stall as long as you do 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F D X M W 

addi $6,$4,1 F d* D X M W 

sub $9,$10,$11 F D X M W 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F D X M W 

addi $6,$4,1 F D d* X M W 

sub $9,$10,$11 F D X M W 
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Pipelining and Multi-Cycle Operations 

• What if you wanted to add a multi-cycle operation? 

• E.g., 4-cycle multiply 

• P/W: separate output latch connects to W stage 

• Controlled by pipeline control and multiplier FSM 
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A Pipelined Multiplier 

• Multiplier itself is often pipelined: what does this mean? 

• Product/multiplicand register/ALUs/latches replicated 

• Can start different multiply operations in consecutive cycles 
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What about Stall Logic? 

Stall = (OldStallLogic) || 

     (F/D.IR.RS1 == D/P0.IR.RD) || (F/D.IR.RS2 == D/P0.IR.RD) || 

     (F/D.IR.RS1 == P0/P1.IR.RD) || (F/D.IR.RS2 == P0/P1.IR.RD) || 

     (F/D.IR.RS1 == P1/P2.IR.RD) || (F/D.IR.RS2 == P1/P2.IR.RD) 
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Actually, It’s Somewhat Nastier 

• What does this do?  Hint: think about structural hazards 

Stall = (OldStallLogic) ||  

   (F/D.IR.RD != null && D/P0.IR.RD != null)  
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File 
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Pipeline Diagram with Multiplier 

• This is the situation that the previous logic tries to avoid 

• Two instructions trying to write RegFile in same cycle 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 

sub $6,$1,$8 F d* d* d* D X M W 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 

sub $6,$1,$8 F D X M W 

add $5,$6,$10 F D X M W 
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Honestly, It’s Even Nastier Than That 

• And what about this?  (“WAR” hazard) 

Stall = (OldStallLogic) ||  

   (F/D.IR.RD == D/P0.IR.RD) ||  
(F/D.IR.RD == P0/P1.IR.RD)  

Register 

File 

s1 s2 d 
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More Multiplier Nasties 

• This is the situation that the previous slide tries to avoid 

• Mis-ordered writes to the same register 

• Compiler thinks add gets $4 from addi, actually gets it from mul 

 

 

 

 

 

 

 

 

 

• Multi-cycle operations complicate pipeline logic 

• They’re not impossible, but they require more complexity 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 

addi $4,$1,1 F D X M W 

… 

… 

add $10,$4,$6 F D X M 
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Control Hazards 

• Control hazards 

• Must fetch post branch insns before branch outcome is known 

• Default: assume “not-taken” (at fetch, can’t tell if it’s a branch) 
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Branch Recovery  

• Branch recovery: what to do when branch is taken 

• Flush insns currently in F/D and D/X (they’re wrong) 

• Replace with NOPs 

+ Haven’t yet written to permanent state (RegFile, DMem) 

PC 
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Mem 
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File 
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Control Hazard Pipeline Diagram 

• Control hazards indicated with c* (or not at all) 

• Penalty for taken branch is 2 cycles 

1 2 3 4 5 6 7 8 9 

addi $3,$0,1 F D X M W 

bnez $3,targ F D X M W 

sw $6,4($7) c* c* F D X M W 
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Branch Performance 

• Again, measure effect on CPI (clock period is fixed) 

 

• Back of the envelope calculation 

• Branch: 20%, load: 20%, store: 10%, other: 50% 

• 75% of branches are taken (why so many taken?) 

 

• CPI if no branches = 1 

• CPI with branches = 1 + 0.20*0.75*2 = 1.3 

– Branches cause 30% slowdown 

• How do we reduce this penalty? 
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Option 1: Fast Branches 

• Fast branch: resolves in Decode stage, not Execute 

• Test must be comparison to zero or equality, no time for ALU 

+ New taken branch penalty is only 1 

– Need additional comparison insns (slt) for complex tests 

– Must be able to bypass into decode now, too 

PC 
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Mem 

Register 

File 
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Option 2: Delayed Branches 

• Delayed branch: don’t flush insn immediately following 

• As if branch takes effect one insn later 

• ISA modification  compiler accounts for this behavior 

• Insert insns independent of branch into branch delay slot(s) 

PC 
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Mem 

Register 

File 
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X/M 

nop 

 

 

O 

 

B 

 

IR 

PC 

 

 

 

A 

 

 

B 

 

IR 

PC 

 

 

 

 

 

 

 

 

IR 

S 

X 



58 

Improved Branch Performance? 

• Same parameters 

• Branch: 20%, load: 20%, store: 10%, other: 50% 

• 75% of branches are taken 

 

• Fast branches 

• 25% of branches have complex tests that require extra insn 

• CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.25*1(extra insn) = 1.2 

 

• Delayed branches 

• 50% of delay slots can be filled with insns, others need nops 

• CPI = 1 + 0.20*0.50*1(branch) + 0.20*0.50*1(extra insn) = 1.25 

– Bad idea: painful for compiler, gains are minimal 

– E.g., delayed branches in SPARC architecture (Sun computers) 

– Also MIPS (but not in SPIM by default) 
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Option 3: Dynamic Branch Prediction 

• Dynamic branch prediction: guess outcome 

• Start fetching from guessed address 

• Flush on mis-prediction 
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Inside A Branch Predictor 

• Two parts 

• Target buffer: maps PC to taken target 

• Direction predictor: maps PC to taken/not-taken 

• What does it mean to “map PC”? 

• Use some PC bits as index into an array of data items (like Regfile) 

PC 

Predicted direction (taken/not taken) 

Predicted target (if taken) 
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More About “Mapping PCs” 

• If array of data has N entries 

• Need log(N) bits to index it 

• Which log(N) bits to choose? 

• Least significant log(N) after the least significant 2, why? 

• LS 2 are always 0 (PCs are aligned on 4 byte boundaries) 

• Least significant change most often  gives best distribution  

• What if two PCs have same pattern in that subset of bits? 

• Called aliasing 

• We get a nonsense target (intended for another PC) 

• That’s OK, it’s just a guess anyway, we can recover if it’s wrong 

PC[lgN+2:2] 

PC[31:0] 
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Updating A Branch Predictor 

• How do targets and directions get into branch predictor? 

• From previous instances of branches 

• Predictor “learns” branch behavior as program is running 

• Branch X was taken last time, probably will be taken next time 

 

• Branch predictor needs a write port, too (not in my ppt) 

• New prediction written only if old prediction is wrong 
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Types of Branch Direction Predictors 

• Predict same as last time we saw this same branch PC 

• 1 bit of state per predictor entry (take or don’t take) 

• For what code will this work well?  When will it do poorly? 

• Use 2-level saturating counter 

• 2 bits of state per predictor entry 

• 11, 10 = take, 01, 00 = don’t take 

• Why is this usually better? 

• And every other possible predictor you could think of! 

• ICQ: Think of other ways to predict branch direction 

 

• Dynamic branch prediction is one of most important problems 
in computer architecture 
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Branch Prediction Performance 

• Same parameters 

• Branch: 20%, load: 20%, store: 10%, other: 50% 

• 75% of branches are taken 

 

• Dynamic branch prediction 

• Assume branches predicted with 75% accuracy 

• CPI = 1 + 0.20*(0.25)*2 = 1.05 

 

• Branch (esp. direction) prediction was a hot research topic 

• Accuracies now 90-95% 
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Pipelining And Exceptions 

• Remember exceptions? 

– Pipelining makes them nasty 

 

• 5 instructions in pipeline at once 

 

• Exception happens, how do you know which instruction caused it? 

• Exceptions propagate along pipeline in latches 

• Two exceptions happen, how do you know which one to take first? 

• One belonging to oldest insn 

• When handling exception, have to flush younger insns 

• Piggy-back on branch mis-prediction machinery to do this 

 

 

• Just FYI – we’ll solve this problem in ECE 552 (CS 550) 
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Pipeline Performance Summary 

• Base CPI is 1, but hazards increase it 

 

• Remember: nothing magical about a 5 stage pipeline 

• Pentium4 (first batch) had 20 stage pipeline 

 

• Increasing pipeline depth (#stages)  

+ Reduces clock period (that’s why companies do it) 

– But increases CPI 

• Branch mis-prediction penalty becomes longer 

• More stages between fetch and whenever branch computes 

• Non-bypassed data hazard stalls become longer 

• More stages between register read and write 

• At some point, CPI losses offset clock gains, question is when? 
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Instruction-Level Parallelism (ILP) 

• Pipelining: a form of instruction-level parallelism (ILP) 

• Parallel execution of insns from a single sequential program 

 

• There are ways to exploit ILP 

• We’ll discuss this a bit more at end of semester, and then we’ll really 
cover it in great depth in ECE 552 (CS 550) 

 

• We’ll also talk a bit about thread-level parallelism (TLP) and 
how it’s exploited by multithreaded and multicore processors 
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Summary 

• Principles of pipelining 

• Pipelining a datapath and controller 

• Performance and pipeline diagrams 

• Data hazards 

• Software interlocks and code scheduling 

• Hardware interlocks and stalling 

• Bypassing 

• Control hazards 

• Branch prediction 

 

Next up: Multicore Processors 


