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Multicore and Multithreaded Processors 

• Why multicore? 

• Thread-level parallelism 

• Multithreaded cores 

• Multiprocessors 

• Design issues 

• Examples 
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Readings 

• Patterson and Hennessy 

• Chapter 6 
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Why Multicore? 

• Why is everything now multicore? 

• This is a fairly new trend 

• Reason #1: Running out of “ILP” that we can exploit 

• Can’t get much better performance out of a single core that’s running a 
single program at a time 

• Reason #2: Power/thermal constraints 

• Even if we wanted to just build fancier single cores at higher clock 
speeds, we’d run into power and thermal obstacles  

• Reason #3: Moore’s Law 

• Lots of transistors  what else are we going to do with them? 

• Historically: use transistors to make more complicated cores with bigger 
and bigger caches 

• But this strategy has run into problems 
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How do we keep multicores busy? 

• Single core processors exploit ILP 

• Multicore processors exploit TLP: thread-level parallelism 

• What’s a thread? 

• A program can have 1 or more threads of control 

• Each thread has own PC 

• All threads in a given program share resources (e.g., memory) 

• OK, so where do we find more than one thread? 

• Option #1: Multiprogrammed workloads 

• Run multiple single-threaded programs at same time 

• Option #2: Explicitly multithreaded programs 

• Create a single program that has multiple threads that work together to 
solve a problem 
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Parallel Programming 

• How do we break up a problem into sub-problems that can be 
worked on by separate threads? 

• ICQ: How would you create a multithreaded program that 
searches for an item in an array? 

• ICQ: How would you create a multithreaded program that 
sorts a list? 

 

• Fundamental challenges 

• Breaking up the problem into many reasonably sized tasks 

• What if tasks are too small?  Too big?  Too few? 

• Minimizing the communication between threads 

• Why? 
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Writing a Parallel Program 

• Would be nice if compiler could turn sequential code into 
parallel code... 

• Been an active research goal for years, no luck yet... 

• Can use an explicitly parallel language or extensions to an 
existing language 

• Map/reduce (Google), Hadoop 

• Pthreads 

• Java threads 

• Message passing interface (MPI) 

• CUDA 

• OpenCL 

• High performance Fortran (HPF) 

• Etc. 
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Parallel Program Challenges 

• Parallel programming is HARD! 

• Why? 

• Problem: #cores is increasing, but parallel programming isn’t 
getting easier   how are we going to use all of these 
cores??? 
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HPF Example 

 forall(i=1:100, j=1:200){ 

    MyArray[i,j] = X[i-1, j] + X[i+1, j]; 

 } 

  

// “forall” means we can do all i,j combinations in parallel 

// I.e., no dependences between these operations 
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Some Problems Are “Easy” to Parallelize 

• Database management system (DBMS) 

• Web search (Google) 

• Graphics 

• Some scientific workloads (why?) 

• Others?? 
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Multicore and Multithreaded Processors 

• Why multicore? 

• Thread-level parallelism 

• Multithreaded cores 

• Multiprocessors 

• Design issues 

• Examples 
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Multithreaded Cores 

• So far, our core executes one thread at a time 

• Multithreaded core: execute multiple threads at a time 

• Old idea … but made a big comeback fairly recently 

• How do we execute multiple threads on same core? 

• Coarse-grain switching 

• Fine-grain switching 

• Simultaneous multithreading (SMT)  “hyperthreading” (Intel) 

• Benefits? 

• Better instruction throughput 

• Greater resource utilization 

• Tolerates long latency events (e.g., cache misses) 

• Cheaper than multiple complete cores 

 
Multithreaded: 

Two drive-throughs being  

served by one kitchen 
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Multiprocessors 

• Multiprocessors have been around a long time … just not on a 
single chip 

• Mainframes and servers with 2-64 processors 

• Supercomputers with 100s or 1000s of processors 

• Now, multiprocessor on a single chip 

• “multicore processor” (sometimes “chip multiprocessor”) 

• Why does “single chip” matter so much? 

• ICQ: What’s fundamentally different about  
having a multiprocessor that fits on one chip  
vs. on multiple chips? 

Multiprocessor: 

Two drive-throughs, each 

with its own kitchen 
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Multicore and Multithreaded Processors 

• Why multicore? 

• Thread-level parallelism 

• Multithreaded cores 

• Multiprocessors 

• Design issues 

• Examples 
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Multiprocessor Microarchitecture 

• Many design issues unique to multiprocessors 

• Interconnection network 

• Communication between cores 

• Memory system design 

• Others? 
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Interconnection Networks 

• Networks have many design aspects 

• We focus on one design aspect here (topology)  see ECE 552 (CS 
550) and ECE 652 (CS 650) for more on this 

 

• Topology is the structure of the interconnect 

• Geometric property  topology has nice mathematical properties 

 

• Direct vs Indirect Networks 

• Direct: All switches attached to host nodes (e.g., mesh) 

• Indirect: Many switches not attached to host nodes (e.g., tree) 
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Direct Topologies: k-ary d-cubes 

• Often called k-ary n-cubes 

 

• General class of regular, direct topologies 

• Subsumes rings, tori, cubes, etc. 

 

• d dimensions 

• 1 for ring 

• 2 for mesh or torus 

• 3 for cube 

• Can choose arbitrarily large d, except for cost of switches 

 

• k switches in each dimension 

• Note: k can be different in each dimension (e.g., 2,3,4-ary 3-cube)  
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Examples of k-ary d-cubes (for N cores) 

• 1D Ring = k-ary 1-cube 

• d = 1 [always] 

• k = N [always] = 4 [here] 

• Ave dist = ? 

 

 

 

• 2D Torus = k-ary 2-cube 

• d = 2 [always] 

• k = logdN (always) = 3 [here] 

• Ave dist = ? 
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k-ary d-cubes in Real World 

• Compaq Alpha 21364 (and 21464, R.I.P.) 

• 2D torus  (k-ary 2-cube) 

• Cray T3D and T3E 

• 3D torus  (k-ary, 3-cube) 

• Intel’s MIC (formerly known as Larrabee) 

• 1D ring 

• Intel’s SandyBridge (one flavor of core i7) 

• 2D mesh 
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Indirect Topologies 

• Indirect topology – most switches not attached to nodes 

• Some common indirect topologies 

• Crossbar 

• Tree 

• Butterfly 

• Each of the above topologies comes in many flavors 
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Indirect Topologies: Crossbar 

• Crossbar = single switch that directly connects n inputs to 
m outputs 

• Logically equivalent to m n:1 muxes 

• Very useful component that is used frequently 

in0 

in1 

in2 

in3 

out0 out3 out2 out1 out4 
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Indirect Topologies: Butterflies 

•  Multistage: nodes at ends, switches in middle 

•  Exactly one path between each pair of nodes 

•  Each node sees a tree rooted at itself 
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Indirect Networks in Real World (ancient)  

• Thinking Machines CM-5 (really old machine) 

• Fat tree 

• Sun UltraEnterprise E10000 (old machine) 

• 4 trees (interleaved by address) 

• And lots and lots of buses! 
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Multiprocessor Microarchitecture 

• Many design issues unique to multiprocessors 

• Interconnection network 

• Communication between cores 

• Memory system design 

• Others? 
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Communication Between Cores (Threads) 

• How should threads communicate with each other? 

• Two popular options 

• Shared memory 

• Perform loads and stores to shared addresses 

• Requires synchronization (can’t read before write) 

• Message passing 

• Send messages between threads (cores) 

• No shared address space 
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What is (Hardware) Shared Memory? 

• Take multiple microprocessors 

 

• Implement a memory system with a single global physical 
address space (usually) 

• Special HW does the “magic” of cache coherence 
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Some (Old) Memory System Options 
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A (Newer) Memory System Option 
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Cache Coherence 

• According to Webster’s dictionary … 

• Cache: a secure place of storage 

• Coherent: logically consistent 

 

• Cache Coherence: keep storage logically consistent 

• Coherence requires enforcement of 2 properties per block 

 

1) At any time, only one writer or >=0 readers of block 

• Can’t have writer at same time as other reader or writer 

2) Data propagates correctly 

• A request for a block gets the most recent value 
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Cache Coherence Problem (Step 1) 

CPU2 CPU1 

x 
(lives at address in $5) 

Interconnection Network 

Main Memory 

T
im

e
 

lw $3, 0($5) 

Assume $5 is the same in both CPUs and refers to a shared memory address 

CPU2 loads from address $5, it’s a cache miss, so we load that block into CPU2’s cache. 



34 

Cache Coherence Problem (Step 2) 

CPU2 CPU1 

x 
(lives at address in $5) 

Interconnection Network 

Main Memory 

T
im

e
 

lw $3, 0($5) 

Assume $5 is the same in both CPUs and refers to a shared memory address 

CPU1 also loads from address $5, it’s a cache miss, so we load that block into CPU1’s cache. 

lw $2, 0($5) 
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Cache Coherence Problem (Step 3a) 

CPU2 CPU1 

x 
(lives at address in $5) 

Interconnection Network 

Main Memory 

T
im

e
 

lw $3, 0($5) 

Assume $5 is the same in both CPUs and refers to a shared memory address 

CPU1 also stores a different value into that same memory location. 

If it’s a write-back cache, then only the cache changes. 

lw $2, 0($5) 
addi $2, $2, 97 

store $2, 0($5) 
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Cache Coherence Problem (Step 3b) 

CPU2 CPU1 

x 
(lives at address in $5) 

Interconnection Network 

Main Memory 

T
im

e
 

lw $3, 0($5) 

Assume $5 is the same in both CPUs and refers to a shared memory address 

CPU1 also stores a different value into that same memory location. 

If it’s a write-through cache, then memory also changes.  

The cache coherence problem will occur either way! 

lw $2, 0($5) 
addi $2, $2, 97 

store $2, 0($5) 
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Cache Coherence Problem (Step 4) 

CPU2 CPU1 

x 
(lives at address in $5) 

Interconnection Network 

Main Memory 

T
im

e
 

lw $3, 0($5) 

Assume $5 is the same in both CPUs and refers to a shared memory address 

CPU2 loads the thing at address $5 again, and it’s a cache hit, so we get the OLD value! 

PROBLEM!! CPU2’s cache is stale!! 

The correct value is in CPU1’s cache (if write-back) or main memory (if write-through, as shown). 

lw $2, 0($5) 
addi $2, $2, 97 

store $2, 0($5) 

lw $3, 0($5) 

. 

. 

. 
HIT! 
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Snooping Cache-Coherence Protocols 

• Each cache controller “snoops” all bus transactions 

• Transaction is relevant if it is for a block this cache contains 

• Take action to ensure coherence 

• Invalidate 

• Update 

• Supply value to requestor if Owner 

• Actions depend on the state of the block and the protocol 

• Main memory controller also snoops on bus  

• If no cache is owner, then memory is owner 

 

• Simultaneous operation of independent controllers 
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Processor and Bus Actions 

• Processor:  

• Load  

• Store 

• Writeback on replacement of modified block 

• Bus 

• GetShared (GETS): Get without intent to modify, data could come from 
memory or another cache 

• GetExclusive (GETX): Get with intent to modify, must invalidate all 
other caches’ copies 

• PutExclusive (PUTX): cache controller puts contents on bus and 
memory is updated 

• Definition: cache-to-cache transfer occurs when another cache satisfies 
GETS or GETX request 

• Let’s draw it! 
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Simple 2-State Invalidate Snooping Protocol 

• Write-through, no-
write-allocate 
cache 

 

• Proc actions: Load, 
Store 

 

• Bus actions: GETS, 
GETX 

Store / OwnGETX 

Valid OtherGETX/ -- 

Invalid 

OtherGETS / -- 

Load / OwnGETS 

Load / -- 

Notation:  observed event / action taken 

Store / OwnGETX 

OtherGETS / -- 

OtherGETX / -- 
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A 3-State Write-Back Invalidation Protocol 

• 2-State Protocol 

+ Simple hardware and protocol 

• Uses lots of bandwidth (every write goes on bus!) 

• 3-State Protocol (MSI) 

•  Modified 

• One cache exclusively has valid (modified) copy  Owner 

• Memory is stale 

•  Shared 

• >= 1 cache and memory have valid copy (memory = owner) 

•  Invalid (only memory has valid copy and memory is owner) 

• Must invalidate all other copies before entering Modified state 

• Requires bus transaction (order and invalidate) 
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MSI State Diagram 

Load /-- 

M 

OtherGETX/- 

Store / OwnGETX 

S 

I 

Store / -- 

OtherGETS/- 
Store / OwnGETX 

Load / OwnGETS 

OtherGETX / -- 

Load / -- 
OtherGETS/-- 

Writeback / OwnPUTX 

Writeback / -- 

Note: we never take any action on an OtherPUTX  
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An MSI Protocol Example 

• Single writer, multiple reader protocol 

• Why Modified to Shared in line 4? 

• What if not in any cache?  Memory responds 

• Read then Write produces 2 bus transactions 

• Slow and wasteful of bandwidth for a common sequence of actions 

Proc Action P1 State P2 state P3 state Bus Act Data from 

initially I I I 

1. P1 load u I➔S I I GETS Memory 

2. P3 load u S I I➔S GETS Memory 

3. P3 store u S➔I I S➔M GETX Memory or P1 (?) 

4. P1 load u I➔S I M➔S GETS P3’s cache 

5. P2 load u S I➔S S GETS Memory 
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Multicore and Multithreaded Processors 

• Why multicore? 

• Thread-level parallelism 

• Multithreaded cores 

• Multiprocessors 

• Design issues 

• Examples 
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Some Real-World Multicores 

• Intel/AMD 2/4/8/12/16-core chips 

• Pretty standard 

• Sun’s Niagara (UltraSPARC T1-T3) 

• 4-16 simple, in-order, multithreaded cores 

• Sun’s Rock processor: 16 cores 

• Cell Broadband Engine: in PlayStation 3 

• Intel’s MIC/Larrabee chip: 80 simple x86 cores in a ring 

• Cisco CRS-1 Processor: 188 in-order cores 

• Graphics processing units (GPUs): hundreds of “cores” 


