
ECE/CS 250
Computer Architecture

Summer 2018

Multicore

Dan Sorin and Tyler Bletsch

Duke University

2

Multicore and Multithreaded Processors

• Why multicore?

• Thread-level parallelism

• Multithreaded cores

• Multiprocessors

• Design issues

• Examples

3

Readings

• Patterson and Hennessy

• Chapter 6

4

Why Multicore?

• Why is everything now multicore?

• This is a fairly new trend

• Reason #1: Running out of “ILP” that we can exploit

• Can’t get much better performance out of a single core that’s running a
single program at a time

• Reason #2: Power/thermal constraints

• Even if we wanted to just build fancier single cores at higher clock
speeds, we’d run into power and thermal obstacles

• Reason #3: Moore’s Law

• Lots of transistors  what else are we going to do with them?

• Historically: use transistors to make more complicated cores with bigger
and bigger caches

• But this strategy has run into problems

5

How do we keep multicores busy?

• Single core processors exploit ILP

• Multicore processors exploit TLP: thread-level parallelism

• What’s a thread?

• A program can have 1 or more threads of control

• Each thread has own PC

• All threads in a given program share resources (e.g., memory)

• OK, so where do we find more than one thread?

• Option #1: Multiprogrammed workloads

• Run multiple single-threaded programs at same time

• Option #2: Explicitly multithreaded programs

• Create a single program that has multiple threads that work together to
solve a problem

6

Parallel Programming

• How do we break up a problem into sub-problems that can be
worked on by separate threads?

• ICQ: How would you create a multithreaded program that
searches for an item in an array?

• ICQ: How would you create a multithreaded program that
sorts a list?

• Fundamental challenges

• Breaking up the problem into many reasonably sized tasks

• What if tasks are too small? Too big? Too few?

• Minimizing the communication between threads

• Why?

7

Writing a Parallel Program

• Would be nice if compiler could turn sequential code into
parallel code...

• Been an active research goal for years, no luck yet...

• Can use an explicitly parallel language or extensions to an
existing language

• Map/reduce (Google), Hadoop

• Pthreads

• Java threads

• Message passing interface (MPI)

• CUDA

• OpenCL

• High performance Fortran (HPF)

• Etc.

8

Parallel Program Challenges

• Parallel programming is HARD!

• Why?

• Problem: #cores is increasing, but parallel programming isn’t
getting easier  how are we going to use all of these
cores???

9

HPF Example

 forall(i=1:100, j=1:200){

 MyArray[i,j] = X[i-1, j] + X[i+1, j];

 }

// “forall” means we can do all i,j combinations in parallel

// I.e., no dependences between these operations

10

Some Problems Are “Easy” to Parallelize

• Database management system (DBMS)

• Web search (Google)

• Graphics

• Some scientific workloads (why?)

• Others??

11

Multicore and Multithreaded Processors

• Why multicore?

• Thread-level parallelism

• Multithreaded cores

• Multiprocessors

• Design issues

• Examples

12

Multithreaded Cores

• So far, our core executes one thread at a time

• Multithreaded core: execute multiple threads at a time

• Old idea … but made a big comeback fairly recently

• How do we execute multiple threads on same core?

• Coarse-grain switching

• Fine-grain switching

• Simultaneous multithreading (SMT)  “hyperthreading” (Intel)

• Benefits?

• Better instruction throughput

• Greater resource utilization

• Tolerates long latency events (e.g., cache misses)

• Cheaper than multiple complete cores

Multithreaded:

Two drive-throughs being

served by one kitchen

13

Multiprocessors

• Multiprocessors have been around a long time … just not on a
single chip

• Mainframes and servers with 2-64 processors

• Supercomputers with 100s or 1000s of processors

• Now, multiprocessor on a single chip

• “multicore processor” (sometimes “chip multiprocessor”)

• Why does “single chip” matter so much?

• ICQ: What’s fundamentally different about
having a multiprocessor that fits on one chip
vs. on multiple chips?

Multiprocessor:

Two drive-throughs, each

with its own kitchen

14

Multicore and Multithreaded Processors

• Why multicore?

• Thread-level parallelism

• Multithreaded cores

• Multiprocessors

• Design issues

• Examples

15

Multiprocessor Microarchitecture

• Many design issues unique to multiprocessors

• Interconnection network

• Communication between cores

• Memory system design

• Others?

16

Interconnection Networks

• Networks have many design aspects

• We focus on one design aspect here (topology)  see ECE 552 (CS
550) and ECE 652 (CS 650) for more on this

• Topology is the structure of the interconnect

• Geometric property  topology has nice mathematical properties

• Direct vs Indirect Networks

• Direct: All switches attached to host nodes (e.g., mesh)

• Indirect: Many switches not attached to host nodes (e.g., tree)

17

Direct Topologies: k-ary d-cubes

• Often called k-ary n-cubes

• General class of regular, direct topologies

• Subsumes rings, tori, cubes, etc.

• d dimensions

• 1 for ring

• 2 for mesh or torus

• 3 for cube

• Can choose arbitrarily large d, except for cost of switches

• k switches in each dimension

• Note: k can be different in each dimension (e.g., 2,3,4-ary 3-cube)

18

Examples of k-ary d-cubes (for N cores)

• 1D Ring = k-ary 1-cube

• d = 1 [always]

• k = N [always] = 4 [here]

• Ave dist = ?

• 2D Torus = k-ary 2-cube

• d = 2 [always]

• k = logdN (always) = 3 [here]

• Ave dist = ?

19

k-ary d-cubes in Real World

• Compaq Alpha 21364 (and 21464, R.I.P.)

• 2D torus (k-ary 2-cube)

• Cray T3D and T3E

• 3D torus (k-ary, 3-cube)

• Intel’s MIC (formerly known as Larrabee)

• 1D ring

• Intel’s SandyBridge (one flavor of core i7)

• 2D mesh

20

Indirect Topologies

• Indirect topology – most switches not attached to nodes

• Some common indirect topologies

• Crossbar

• Tree

• Butterfly

• Each of the above topologies comes in many flavors

21

Indirect Topologies: Crossbar

• Crossbar = single switch that directly connects n inputs to
m outputs

• Logically equivalent to m n:1 muxes

• Very useful component that is used frequently

in0

in1

in2

in3

out0 out3 out2 out1 out4

24

Indirect Topologies: Butterflies

• Multistage: nodes at ends, switches in middle

• Exactly one path between each pair of nodes

• Each node sees a tree rooted at itself

26

Indirect Networks in Real World (ancient)

• Thinking Machines CM-5 (really old machine)

• Fat tree

• Sun UltraEnterprise E10000 (old machine)

• 4 trees (interleaved by address)

• And lots and lots of buses!

27

Multiprocessor Microarchitecture

• Many design issues unique to multiprocessors

• Interconnection network

• Communication between cores

• Memory system design

• Others?

28

Communication Between Cores (Threads)

• How should threads communicate with each other?

• Two popular options

• Shared memory

• Perform loads and stores to shared addresses

• Requires synchronization (can’t read before write)

• Message passing

• Send messages between threads (cores)

• No shared address space

29

What is (Hardware) Shared Memory?

• Take multiple microprocessors

• Implement a memory system with a single global physical
address space (usually)

• Special HW does the “magic” of cache coherence

30

Some (Old) Memory System Options

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shar ed memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

31

A (Newer) Memory System Option

L2 cache

Core

L1

I$
L1

D$

Core

L1

I$
L1

D$

Core

L1

I$
L1

D$

To off-chip DRAM

32

Cache Coherence

• According to Webster’s dictionary …

• Cache: a secure place of storage

• Coherent: logically consistent

• Cache Coherence: keep storage logically consistent

• Coherence requires enforcement of 2 properties per block

1) At any time, only one writer or >=0 readers of block

• Can’t have writer at same time as other reader or writer

2) Data propagates correctly

• A request for a block gets the most recent value

33

Cache Coherence Problem (Step 1)

CPU2 CPU1

x
(lives at address in $5)

Interconnection Network

Main Memory

T
im

e

lw $3, 0($5)

Assume $5 is the same in both CPUs and refers to a shared memory address

CPU2 loads from address $5, it’s a cache miss, so we load that block into CPU2’s cache.

34

Cache Coherence Problem (Step 2)

CPU2 CPU1

x
(lives at address in $5)

Interconnection Network

Main Memory

T
im

e

lw $3, 0($5)

Assume $5 is the same in both CPUs and refers to a shared memory address

CPU1 also loads from address $5, it’s a cache miss, so we load that block into CPU1’s cache.

lw $2, 0($5)

35

Cache Coherence Problem (Step 3a)

CPU2 CPU1

x
(lives at address in $5)

Interconnection Network

Main Memory

T
im

e

lw $3, 0($5)

Assume $5 is the same in both CPUs and refers to a shared memory address

CPU1 also stores a different value into that same memory location.

If it’s a write-back cache, then only the cache changes.

lw $2, 0($5)
addi $2, $2, 97

store $2, 0($5)

36

Cache Coherence Problem (Step 3b)

CPU2 CPU1

x
(lives at address in $5)

Interconnection Network

Main Memory

T
im

e

lw $3, 0($5)

Assume $5 is the same in both CPUs and refers to a shared memory address

CPU1 also stores a different value into that same memory location.

If it’s a write-through cache, then memory also changes.

The cache coherence problem will occur either way!

lw $2, 0($5)
addi $2, $2, 97

store $2, 0($5)

37

Cache Coherence Problem (Step 4)

CPU2 CPU1

x
(lives at address in $5)

Interconnection Network

Main Memory

T
im

e

lw $3, 0($5)

Assume $5 is the same in both CPUs and refers to a shared memory address

CPU2 loads the thing at address $5 again, and it’s a cache hit, so we get the OLD value!

PROBLEM!! CPU2’s cache is stale!!

The correct value is in CPU1’s cache (if write-back) or main memory (if write-through, as shown).

lw $2, 0($5)
addi $2, $2, 97

store $2, 0($5)

lw $3, 0($5)

.

.

.
HIT!

38

Snooping Cache-Coherence Protocols

• Each cache controller “snoops” all bus transactions

• Transaction is relevant if it is for a block this cache contains

• Take action to ensure coherence

• Invalidate

• Update

• Supply value to requestor if Owner

• Actions depend on the state of the block and the protocol

• Main memory controller also snoops on bus

• If no cache is owner, then memory is owner

• Simultaneous operation of independent controllers

39

Processor and Bus Actions

• Processor:

• Load

• Store

• Writeback on replacement of modified block

• Bus

• GetShared (GETS): Get without intent to modify, data could come from
memory or another cache

• GetExclusive (GETX): Get with intent to modify, must invalidate all
other caches’ copies

• PutExclusive (PUTX): cache controller puts contents on bus and
memory is updated

• Definition: cache-to-cache transfer occurs when another cache satisfies
GETS or GETX request

• Let’s draw it!

40

Simple 2-State Invalidate Snooping Protocol

• Write-through, no-
write-allocate
cache

• Proc actions: Load,
Store

• Bus actions: GETS,
GETX

Store / OwnGETX

Valid OtherGETX/ --

Invalid

OtherGETS / --

Load / OwnGETS

Load / --

Notation: observed event / action taken

Store / OwnGETX

OtherGETS / --

OtherGETX / --

41

A 3-State Write-Back Invalidation Protocol

• 2-State Protocol

+ Simple hardware and protocol

• Uses lots of bandwidth (every write goes on bus!)

• 3-State Protocol (MSI)

• Modified

• One cache exclusively has valid (modified) copy  Owner

• Memory is stale

• Shared

• >= 1 cache and memory have valid copy (memory = owner)

• Invalid (only memory has valid copy and memory is owner)

• Must invalidate all other copies before entering Modified state

• Requires bus transaction (order and invalidate)

42

MSI State Diagram

Load /--

M

OtherGETX/-

Store / OwnGETX

S

I

Store / --

OtherGETS/-
Store / OwnGETX

Load / OwnGETS

OtherGETX / --

Load / --
OtherGETS/--

Writeback / OwnPUTX

Writeback / --

Note: we never take any action on an OtherPUTX

43

An MSI Protocol Example

• Single writer, multiple reader protocol

• Why Modified to Shared in line 4?

• What if not in any cache? Memory responds

• Read then Write produces 2 bus transactions

• Slow and wasteful of bandwidth for a common sequence of actions

Proc Action P1 State P2 state P3 state Bus Act Data from

initially I I I

1. P1 load u I➔S I I GETS Memory

2. P3 load u S I I➔S GETS Memory

3. P3 store u S➔I I S➔M GETX Memory or P1 (?)

4. P1 load u I➔S I M➔S GETS P3’s cache

5. P2 load u S I➔S S GETS Memory

44

Multicore and Multithreaded Processors

• Why multicore?

• Thread-level parallelism

• Multithreaded cores

• Multiprocessors

• Design issues

• Examples

45

Some Real-World Multicores

• Intel/AMD 2/4/8/12/16-core chips

• Pretty standard

• Sun’s Niagara (UltraSPARC T1-T3)

• 4-16 simple, in-order, multithreaded cores

• Sun’s Rock processor: 16 cores

• Cell Broadband Engine: in PlayStation 3

• Intel’s MIC/Larrabee chip: 80 simple x86 cores in a ring

• Cisco CRS-1 Processor: 188 in-order cores

• Graphics processing units (GPUs): hundreds of “cores”

