
ECE/CS 250
Computer Architecture

Course review

Tyler Bletsch

Duke University

Includes work by
Daniel J. Sorin (Duke), Amir Roth (Penn), and Alvin Lebeck (Duke)

2

INTRODUCTION

3

Course objective:
Evolve your understanding of computers

Input Output

After

4

I/O Bus

memory bus

disk

CPU

Cache cache

Main
Memory

disk
controller

main

memory

disk

graphics
controller

network
interface

graphics Network

System Organization

I/O bridge

5

C PROGRAMMING

6

What is C?

• The language of UNIX

• Procedural language (no classes)

• Low-level access to memory

• Easy to map to machine language

• Not much run-time stuff needed

• Surprisingly cross-platform

Why teach it now?
To expand from basic programming to

operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

7

Memory Layout and Bounds Checking

• There is NO bounds checking in C

• i.e., it’s legal (but not advisable) to refer to
days_in_month[216] or
days_in_month[-35] !

• who knows what is stored there?

… …

Storage for array int days_in_month[12];

Storage for other stuff
Storage for some more stuff

(each location shown here is an int)

DIFFERENT

from Java!

8

Structures

• Structures are sort of like Java objects

• They have member variables

• But they do NOT have methods!

• Structure definition with struct keyword
struct student_record {

 int id;

 float grade;

} rec1, rec2;

• Declare a variable of the structure type with struct keyword
struct student_record onerec;

• Access the structure member fields with dot (‘.’), e.g. structvar.member
onerec.id = 12;

onerec.grade = 79.3;

DIFFERENT

from Java!

9

Let’s look at memory addresses!

• You can find the address of ANY variable with:

&
The address-of operator

int v = 5;

printf(“%d\n”,v);

printf(“%p\n”,&v);
$ gcc x4.c && ./a.out
5
0x7fffd232228c

DIFFERENT

from Java!

10

What’s a pointer?

• It’s a memory address you treat as a variable

• You declare pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c

Append to any data type

DIFFERENT

from Java!

11

What’s a pointer?

• You can look up what’s stored at a pointer!

• You dereference pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);

printf(“%d\n”,*p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c
5

Prepend to any pointer variable or expression

DIFFERENT

from Java!

12

C Memory Allocation

• void* malloc(nbytes)

• Obtain storage for your data (like new in Java)

• Often use sizeof(type) built-in returns bytes needed for type

• int* my_ptr = malloc (64); // 64 bytes = 16 ints

• int* my_ptr = malloc (64*sizeof(int)); // 64 ints

• free(ptr)

• Return the storage when you are finished (no Java equivalent)

• ptr must be a value previously returned from malloc

ECE/CS 250

DIFFERENT

from Java!

13

DATA REPRESENTATIONS AND
MEMORY

14

Decimal to binary using remainders

14

? Quotient Remain-
der

457  2 = 228 1

228  2 = 114 0

114  2 = 57 0

57  2 = 28 1

28  2 = 14 0

14  2 = 7 0

7  2 = 3 1

3  2 = 1 1

1  2 = 0 1 111001001

15

Decimal to binary using comparison

Num Compare 2n ≥ ?

457 256 1

201 128 1

73 64 1

9 32 0

9 16 0

9 8 1

1 4 0

1 2 0

1 1 1

111001001

16

Binary to/from hexadecimal

• 01011011001000112 -->

• 0101 1011 0010 00112 -->

• 5 B 2 316

Binary Hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

 1 F 4 B16 -->

0001 1111 0100 10112 -->

00011111010010112

17

2’s Complement Integers

• Use large positives to represent negatives

• (-x) = 2n - x

• This is 1’s complement + 1

• (-x) = 2n - 1 - x + 1

• So, just invert bits and add 1

6-bit examples:

0101102 = 2210 ; 1010102 = -2210

110 = 0000012; -110 = 1111112

010 = 0000002; -010 = 0000002  good!

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

18

Floating point

• 32-bit float format:

• 64-bit double format:
(same thing, but with more bits)

19

Standardized ASCII (0-127)

20

Memory Layout

Stack

Data

Text

Reserved 0

2n-1

Typical

Address

Space
Heap

• Memory is array of bytes, but there
are conventions as to what goes
where in this array

• Text: instructions (the program to
execute)

• Data: global variables

• Stack: local variables and other
per-function state; starts at top &
grows down

• Heap: dynamically allocated
variables; grows up

• What if stack and heap overlap????

21

LEARNING ASSEMBLY LANGUAGE
WITH MIPS

22

The MIPS architecture

• 32-bit word size

• 32 registers ($0 is zero, $31 is return address)

• Fixed size 32-bit aligned instructions

• Types of instructions:

• Math and logic:

• or $1, $2, $3 → $1 = $2 | $3

• add $1, $2, $3 → $1 = $2 + $3

• Loading constants:

• li $1, 50 → $1 = 50

• Memory:

• lw $1, 4($2) → $1 = *($2 + 4)

• sw $1, 4($2) → *($2 + 4) = $1

• Control flow:

• j label → PC = label

• bne $1, $2, label → if ($1==$2) PC=label

23

Control Idiom: If-Then-Else

• Control idiom: if-then-else
if (A < B) A++; // assume A in register $1

else B++; // assume B in $2

 slt $3,$1,$2 // if $1<$2, then $3=1

 beqz $3,else // branch to else if !condition

 addi $1,$1,1

 j join // jump to join

 else: addi $2,$2,1

 join:
ICQ: assembler converts “else”
operand of beqz into immediate 
what is the immediate?

24

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

MIPS Register Usage/Naming Conventions

Important: The only general purpose registers are the $s and $t registers.

Everything else has a specific usage:

$a = arguments, $v = return values, $ra = return address, etc.

Also 32 floating-point registers: $f0 .. $f31

25

MIPS Instruction Formats

• 3 variations on theme from previous slide

• All MIPS instructions are either R, I, or J type

• Note: all instructions have opcode as first 6 bits

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type

Op(6) Rs(5) Rt(5) Immed(16) I-type

Op(6) Target(26) J-type

26

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Memory Addressing Issue: Endian-ness

Byte Order

• Big Endian: byte 0 is 8 most significant bits IBM 360/370,
Motorola 68k, MIPS, SPARC, HP PA-RISC

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC
Vax, DEC/Compaq Alpha

27

COMBINATIONAL LOGIC

28

Truth Tables

• Map any number if inputs to any number of outputs

• Example:

(A & B) | !C

Start with Empty TT

Column Per Input

Column Per Output

Fill in Inputs

Counting in Binary

Compute Output

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

29

Convert truth table to function

• Given a Truth Table, find the formula?

Write down every “true” case

Then OR together:

(!A & !B & !C) |

(!A & !B & C) |

(!A & B & !C) |

(A & B &!C) |

(A & B &C)

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

30

Boolean Function Simplification

• Boolean expressions can be simplified by using the following
rules (bitwise logical):
• A & A = A A | A = A

• A & 0 = 0 A | 0 = A

• A & 1 = A A | 1 = 1

• A & !A = 0 A | !A = 1

• !!A = A

• & and | are both commutative and associative

• & and | can be distributed: A & (B | C) = (A & B) | (A & C)

• & and | can be subsumed: A | (A & B) = A

• DeMorgan’s Laws:

!(A & B) = (!A) | (!B)

!(A | B) = (!A) & (!B)

31

a

b

AND(a,b) a

b

OR(a,b)

 Guide to Remembering your Gates

XOR(a,b) a

b

Straight like an A Curved, like an O
XOR looks like OR (curved line),

but has two lines (like an X does)

XNOR(a,b)

a NOT(a)

a

b

NAND(a,b) a

b

NOR(a,b) a

b

Circle means NOT

(XNOR is 1-bit “equals” by the way)

32

Designing a 1-bit adder

• So we’ll need to add three bits (including carry-in)

• Two-bit output is the carry-out and the sum

a b Cin

0 + 0 + 0 = 00

0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10

1 + 1 + 0 = 10

1 + 1 + 1 = 11
Turn into expression,

simplify,

circuit-ify,

yadda yadda yadda…

33

A 1-bit Full Adder

a b Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

01101100

 01101101

+00101100

 10011001

a

b

Cin

Cout

Sum

Logisim example

basic_logic.circ : full-adder

34

Full AdderFull AdderFull AdderFull Adder

b0 b1 b2 b3 a0 a1 a2 a3

Cout

S0 S1 S2 S3

Add/Sub

Example: Adder/Subtractor

Logisim example

basic_logic.circ : 4bit-addsub

35

Add/sub

C in

C ou t

Add/sub F

2

0

1

2

3

a

b

Q

A F Q

0 0 a + b

1 0 a - b

- 1 NOT b

- 2 a OR b

- 3 a AND b

ALU Slice

Logisim example

basic_logic.circ : alu-slice

36

The ALU

ALU Slice ALU Slice ALU Slice ALU Slice

ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow Is non-zero?

Logisim example

basic_logic.circ : alu

37

SEQUENTIAL LOGIC

38

D flip flops

• Stores one bit

• Inputs:

• The data D

• The clock ‘>’

• An “enable” signal E

• Outputs:

• The stored bit output Q
(and also its inverse !Q)

• “Commits” the input bit on clock rise,
and only if E is high

DFF

D Q

E Q

>

Clock rise (bit gets saved at this time)

39

Register

• Register: N flip flops working in parallel,
where N is the word size

DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>

40

Register file

• A set of registers with multiple ports so numbered registers
can be read/written.

• How to write:

• Use decoder to convert reg # to one hot

• Send write data to all regs

• Use one hot encoding of reg # to enable right reg

• How to read:

• 32 input mux (the way we’ve made it) not realistic

• To do this: expand our world from {1,0} to {1, 0, Z}

En0

En1

En30

En31

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

WrData

En0

En1

En30

En31

…

41

FINITE STATE MACHINES

42

How FSMs are represented

State 1 State 2

3 / 0

What input we need to see
to do this state transition

What we change the circuit output
to as a result of this state transition

7 / 1

“Self-edges” are possible

43

FSM Types: Moore and Mealy

• Recall: FSM = States + Transitions

• Next state = function (current state, inputs)

• Outputs = function (current state, inputs)

• This is the most general case

• Called a “Mealy Machine”

• We will assume Mealy Machines from now on

• A more restrictive FSM type is a “Moore Machine”

• Outputs = function (current state)

“Mealy Machine”

developed in 1955

by George H. Mealy

“Moore Machine”

developed in 1956

by Edward F. Moore

44

State Transition Diagram  Truth Table

Current State Input Next state Output

Start 3 Saw 3 0 (closed)

Start Not 3 Start 0

Saw 3 8 Saw 38 0

Saw 3 3 Saw 3 0

Saw 3 Not 8 or 3 Start 0

Saw 38 4 Saw 384 1 (open)

Saw 38 3 Saw 3 0

Saw 38 Not 4 or 3 Start 0

Saw 384 Any Saw 384 1

start saw 3

3/0

{0-2,4-9}/0

saw

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

45

State Transition Diagram  Truth Table

Current State Input Next state Output

00 (start) 3 01 0 (closed)

00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)

10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states  2 flip-flops to hold the current state of the FSM

inputs to flip-flops are D1D0

outputs of flip-flops are Q1Q0

46

State Transition Diagram  Truth Table

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Input can be 0-9  requires 4 bits

input bits are in3, in2, in1, in0

47

State Transition Diagram  Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3
(all binary combos other than 00011)

0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3
(all binary combos other than 01000 & 00011)

0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3
(all binary combos other than 00100 & 00011)

0 0 0

1 1 Any 1 1 1

From here, it’s just like combinational logic design!

Write out product-of-sums equations, optimize, and build.

48

State Transition Diagram  Truth Table

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D0 = do the same thing

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

49

State Transition Diagram  Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Remember, these represent DFF outputs …and these are the DFF inputs

The DFFs are how we store the state.

50

Truth Table  Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

Not pictured
Follow a similar procedure for D0…

51

CPU DATAPATH AND CONTROL

52

How Is Control Implemented?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control

53

Exceptions

• Exceptions and interrupts

• Infrequent (exceptional!) events

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer

• Handling requires intervention from operating system

• End program: divide-by-0, protection fault, illegal insn, ^C

• Fix and restart program: I/O, page fault, ^Z, timer

• Handling should be transparent to application code

• Don’t want to (can’t) constantly check for these using insns

• Want “Fix and restart” equivalent to “never happened”

54

CACHING

55

Big Concept: Memory Hierarchy

• Use hierarchy of memory components

• Upper components (closer to CPU)

• Fast  Small  Expensive

• Lower components (further from CPU)

• Slow  Big  Cheap

• Bottom component (for now!) = what we have
been calling “memory” until now

• Make average access time close to L1’s

• How?

• Most frequently accessed data in L1

• L1 + next most frequently accessed in L2, etc.

• Automatically move data up&down hierarchy

CPU

L1

L2

L3

Memory

56

Terminology

• Hit: Access a level of memory and find what we want

• Miss: Access a level of memory and DON’T find what we want

• Block: a group of spatially contiguous and aligned bytes

• Temporal locality: Recently accessed stuff likely to be
accessed again soon

• Spatial locality: Stuff near recently accessed thing likely to
be accessed soon

57

Memory Performance Equation

• For memory component L1

• Access: read or write to L1

• Hit: desired data found in L1

• Miss: desired data not found in L1

• Must get from another (slower) component

• Fill: action of placing data in L1

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) L1

• tmiss: time to read data into M from lower level

• Performance metric

• tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

L1

thit

tmiss

%miss

58

Abstract Hierarchy Performance

tmiss-M3 = tavg-M4

CPU

L1

L2

L3

M

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

How do we compute tavg ?

=tavg-L1

=thit-L1 +(%miss-L1*tmiss-L1)

=thit-L1 +(%miss-L1*tavg-L2)

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tmiss-L2)))

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tavg-L3)))

= …

Note: Miss at level X = access at level X+1

59

Where to Put Blocks in Cache

• How to decide which frame holds which block?

• And then how to find block we’re looking for?

• Some more cache structure:

• Divide cache into sets

• A block can only go in its set  there is a 1-to-1 mapping from
block address to set

• Each set holds some number of frames = set associativity

• E.g., 4 frames per set = 4-way set-associative

• At extremes

• Whole cache has just one set = fully associative

• Most flexible (longest access latency)

• Each set has 1 frame = 1-way set-associative = ”direct mapped”

• Least flexible (shortest access latency)

60

Cache structure math

• Given capacity, block_size, ways (associativity), and
word_size.

• Cache parameters:

• num_frames = capacity / block_size

• sets = num_frames / ways = capacity / block_size / ways

• Address bit fields:

• offset_bits = log2(block_size)

• index_bits = log2(sets)

• tag_bits = word_size - index_bits - offset_bits

• Numeric way to get offset/index/tag from address:

• block_offset = addr % block_size

• index = (addr / block_size) % sets

• tag = addr / (sets*block_size)

61

Cache Replacement Policies

• Set-associative caches present a new design choice

• On cache miss, which block in set to replace (kick out)?

• Some options

• Random

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used)

• An easier-to-implement approximation of LRU

• NMRU=LRU for 2-way set-associative caches

• FIFO (first-in first-out)

• When is this a good idea?

62

ABCs of Cache Design

• Architects control three primary aspects of cache design

• And can choose for each cache independently

• A = Associativity

• B = Block size

• C = Capacity of cache

• Secondary aspects of cache design

• Replacement algorithm

• Some other more subtle issues we’ll discuss later

63

Analyzing Cache Misses: 3C Model

• Divide cache misses into three categories

• Compulsory (cold): never seen this address before

• Easy to identify

• Capacity: miss caused because cache is too small – would’ve been
miss even if cache had been fully associative

• Consecutive accesses to block separated by accesses to at least N
other distinct blocks where N is number of frames in cache

• Conflict: miss caused because cache associativity is too low – would’ve
been hit if cache had been fully associative

• All other misses

64

Stores: Write-Through vs. Write-Back

• When to propagate new value to (lower level) memory?

• Write-through: immediately (as soon as store writes to this level)

+ Conceptually simpler

+ Uniform latency on misses

– Requires additional bandwidth to next level

• Write-back: later, when block is replaced from this level

• Requires additional “dirty” bit per block  why?

+ Minimal bandwidth to next level

• Only write back dirty blocks

– Non-uniform miss latency

• Miss that evicts clean block: just a fill from lower level

• Miss that evicts dirty block: writeback dirty block and then fill
from lower level

65

Stores: Write-allocate vs. Write-non-allocate

• What to do on a write miss?

• Write-allocate: read block from lower level, write value into it

+ Decreases read misses

– Requires additional bandwidth

• Use with write-back

• Write-non-allocate: just write to next level

– Potentially more read misses

+ Uses less bandwidth

• Use with write-through

66

Example cache trace

Term Value Equation

cache size 4096 given

block size 32 given

ways 2 given

frames 128 cache size / block size

sets 64 frames / ways

bits:index 6 log2(sets)

bits:offset 5 log2(block size)

bits:tag 53 64 minus the above

addr-dec addr-hex tag index offset result

38 0026 0 1 6 miss compulsory

30 001E 0 0 30 miss compulsory

62 003E 0 1 30 hit

5 0005 0 0 5 hit

2049 0801 1 0 1 miss compulsory

2085 0825 1 1 5 miss compulsory

60 003C 0 1 28 hit

4130 1022 2 1 2 miss compulsory

2085 0825 1 1 5 miss conflict

67

VIRTUAL MEMORY

68

C
A

C
H

IN
G

Cache

Copy if popular

Figure: caching vs. virtual memory

68

RAM

V
IR

T
U

A
L

 M
E

M
O

R
Y

(or SSD)

Hard disk

Load if needed

Drop

• Faster

• More expensive

• Lower capacity

• Slower

• Cheaper

• Higher capacity

Swap out (RW) or drop (RO)

69

High level operation

69

SEGFAULT

OK (fast)

OK (fast)

OK (but slow)

!

Virtual memory

Memory map

Physical memory

HDD/SSD storage

70

Demand Paging

Memory
reference

Is in physical
memory?

Success

Is page stored on
disk?

Load it, success

Invalid reference,
abort!

Y

N

N

Y

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

71

Address translation

71

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

72

Steps in Handling a Page Fault

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

73 © Daniel J. Sorin from Roth 73

Translation Buffer

• Functionality problem? Add indirection!

• Performance problem? Add cache!

• Address translation too slow?

• Cache translations in translation buffer (TB)

• Small cache: 16–64 entries, often fully assoc

+ Exploits temporal locality in PT accesses

+ OS handler only on TB miss

CPU

D$

L2

Main

Memory

I$

TB

VPN PPN

VPN PPN

VPN PPN

“tag” “data” PA

VA

VA

VA VA

74 © Daniel J. Sorin from Roth 74

Virtual Physical Caches

• Compromise: virtual-physical caches

• Indexed by VAs

• Tagged by PAs

• Cache access and address translation in parallel

+ No context-switching/aliasing problems

+ Fast: no additional thit cycles

• A TB that acts in parallel with a cache is a TLB

• Translation Lookaside Buffer

• Common organization in processors today

CPU

D$

L2

Main

Memory

I$ TLB

PA

PA

VA VA

TLB

75

What Happens if There is no Free Frame?

• Page replacement – find some page in memory, but not
really in use, page it out

• Algorithm?

• Want an algorithm which will result in minimum number of page faults

• This decision is just like choosing the caching replacement algorithm!

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

76

Thrashing

• If a process does not have “enough” pages, the page-fault
rate is very high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the degree of
multiprogramming

• Another process added to the system

• Thrashing  a process is busy swapping pages in and out

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

77

Working-set model

•   working-set window  a fixed number of page references
Example: 10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

• if  too small will not encompass entire locality

• if  too large will encompass several localities

• if  =   will encompass entire program

• D =  WSSi  total demand frames

• Approximation of locality

• if D > m  Thrashing

• Policy if D > m, then suspend or swap out one of the processes

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

78

Virtual memory summary

• Address translation via page table

• Page table turns VPN to PPN (noting the valid bit)

• Page is marked ‘i’? Page fault.

• If OS has stored page on disk, load and resume

• If not, this is invalid access, kill app (seg fault)

• Governing policies:

• Keep a certain number of frames loaded per app

• Kick out frames based on a replacement algorithm (like LRU, etc.)

• Looking up page table in memory too slow, so cache it:

• The Translation Buffer (TB) is a hardware cache for the page table

• When applied at the same time as caching (as is common),
it’s called a Translation Lookaside Buffer (TLB).

• Working set size tells you how many pages you need over a time
window.

• DRAM is slower than SRAM, but denser. Needs constant refreshing of data.

WOW!

79

I/O

80

Protection and access

• I/O should be protected, with device access limited to OS

• User processes request I/O through the OS (not directly)

• User processes do so by triggering an interrupt,
this causes the OS to take over and service the request

• The interrupt/exception facility is implemented in hardware,
but triggers OS software

81

Connectivity

• Bus: A communication linkage with two or more devices on it

• Various topologies are possible

CPU ($)

Main

Memory Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (memory-I/O) bus

CPU

I/O I/O

I/O

Mem

Proc-Mem

adapter

I/O I/O

Backplane

CPU Mem

82

Communication models

• Polling: Ask continuously

• Often a waste of processor time

• Interrupts: Have disk alert the CPU when data is ready

• But if data packets are small, this interrupt overhead can add up

• Direct Memory Access (DMA): The device itself can put the
requested data directly into RAM without the CPU being
involved

• The CPU is alerted via interrupt when the whole transaction is done

• Complication!

• Now memory can change without notice; interferes with cache

• Solution: cache listens on bus for DMA traffic, drops changed data

83

PIPELINING

84 © Daniel J. Sorin from Roth 84

5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not re-latched after ALU stage (why not?)

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

85 © Daniel J. Sorin from Roth 85

Pipeline Diagram

• Pipeline diagram: shorthand for what we just saw

• Across: cycles

• Down: insns

• Convention: X means lw $4,0($5) finishes execute stage and
writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($5) F D X M W

sw $6,4($7) F D X M W

86 © Daniel J. Sorin from Roth 86

Pipeline Hazards

• Hazard: condition leads to incorrect execution if not fixed

• “Fixing” typically increases CPI

• Three kinds of hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• Fix by proper ISA/pipeline design:
Each insn uses every structure exactly once for at most one cycle, always at same stage relative to
Fetch

• Data hazards

• Result of dependencies: Need data before it’s ready

• Solve by (a) stalling pipeline (inject NOPs) and (b) having bypasses provide data before it formally
hits destination memory/register.

• Control hazards

• Result of jump/branch not being resolved until late in pipeline

• Solve by flushing instructions that shouldn’t have been happening after branch is resolved

• This incurs overhead: wasted time! Reduce with:

• Fast branches: Add hardware to resolve branch sooner

• Delayed branch: Always execute instruction after a branch (complicates compiler)

• Branch prediction: Add hardware to speculate on if/where the branch goes

87 © Daniel J. Sorin from Roth 87

Stalling and Bypassing together

Stall = (D/X.IR.OP == LOAD) &&

 ((F/D.IR.RS1 == D/X.IR.RD) ||

 ((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))

Register

File

S

X

s1 s2 d

Data

Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)

stall

nop

add $4,$2,$3

lw $3,0($2) add $4,$2,$3

88 © Daniel J. Sorin from Roth 88

Pipeline Diagram: Data Hazard

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F d* D X M W

• Even with bypasses, stalls are sometimes necessary

• Examples:

• Memory load -> ALU operation

• Memory load -> Address component of memory load/store

• Example pipeline diagram for a stall due to a data hazard:

89 © Daniel J. Sorin from Roth 89

Pipeline Diagram: Control Hazard

• Control hazards indicated with c* (or not at all)

• “Default” penalty for taken branch is 2 cycles:

• Fast branches reduce the penalty to 1 cycle:

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* c* F D X M W

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* F D X M W

90

MULTICORE

91

Types of parallelism

• Pipelining tries to exploit instruction-level parallelism
(ILP)

• “How can we simultaneously do steps in this otherwise sequential
process?”

• Multicore tries to exploit thread-level parallelism

• “How can we simultaneously do multiple processes?”

• Thread: A program has one (or more) threads of control

• A thread has its own PC

• Threads in a program share resources, especially memory

(e.g. sharing a page table)

92

Two cases of multiple threads

• Multiprogramming: run multiple programs at once

• Multithreaded programming: write software to explicitly
take advantage of multiple threads (divide problem into
parallel tasks)

93

Multiprocessors

• Multiprocessors: have more than one CPU core

• Historically: multiple discrete physical chips

• Now: a single chip with multiple cores

Multiprocessor:

Two drive-throughs, each

with its own kitchen

94

Challenges of multicore

• Two main challenges:

• Topologies of connection (rings, cubes, meshes, buses, etc.)

• Cache coherence: If each core has a cache, then each CPU can have
a diverging view of memory !! (BAD)

• Solution: Intelligent caches that use snooping on the memory bus
to spot sharing and react accordingly

• Different coherence algorithms (performance/complexity tradeoffs)

Store / OwnGETX

Valid OtherGETX/ --

Invalid

OtherGETS / --

Load / OwnGETS

Load / --

Store / OwnGETX

OtherGETS / --

OtherGETX / --

Load /--

M

-/OtherGETX

Store / OwnGETX
S

I

Store / --

-/OtherGETS
Store / OwnGETX

Load / OwnGETS

OtherBusRdX / --

Load / --
-/OtherGETS

Writeback / OwnPUTX

Writeback / --

95

INTEL X86

96

Basic differences

MIPS Intel x86

Word size Originally: 32-bit (MIPS I in 1985)
Now: 64-bit (MIPS64 in 1999)

Originally: 16-bit (8086 in 1978)
Later: 32-bit (80386 in 1985)
Now: 64-bit (Pentium 4’s in 2005)

Design RISC CISC

ALU ops Register = Register ⦻ Register

(3 operand)

Register ⦻= <Reg|Memory>

(2 operand)

Registers 32 8 (32-bit) or 16 (64-bit)

Instruction size 32-bit fixed Variable: originally 8- to 48-bit,
can be longer now (up to 15 *bytes*!)

Branching Condition in register (e.g. “slt”) Condition codes set implicitly

Endian Either (typically big) Little

Variants and
extensions

Just 32- vs. 64-bit, plus some
graphics extensions in the 90s

A bajillion (x87, IA-32, MMX, 3DNow!,
SSE, SSE2, PAE, x86-64, SSE3, SSE4,
SSE5, AVX, AES, FMA)

Market share Small but persistent (embedded) 80% server, similar for consumer
(defection to ARM for mobile is recent)

97

• Registers:

• General: eax ebx ecx edx edi esi

• Stack: esp ebp

• Instruction pointer: eip

• Complex instruction set

• Instructions are variable-sized & unaligned

• Hardware-supported call stack

• call / ret

• Parameters on the stack,
return value in eax

• Little-endian

• Assembly language summary:
• Moving data? Use ‘mov’.

• All ALU ops are 2-operand (add eax, ebx → eax+=ebx)

• Can do a memory load/store anywhere

• Address can be fairly complex expression: [0x123 + eax + 4*ebx]

mov eax, 5

mov [ebx], 6

add eax, edi

push eax

pop esi

call 0x12345678

ret

jmp 0x87654321

jmp eax

call eax

98

Binary modification
(applies to *all* ISAs)

• Can disassemble binaries (turn into human-readable assembly)

• Do a bunch of cross-referencing to understand functionality
(that’s what IDA Pro does)

• Basic blocks of code ending in branches form a flow chart

• Identify behavior and make inferences on author intent

• Can modify by overwriting binary with new instructions
(can also insert instructions, but this changes layout of binary
program, so various pointers have to be updated)

• Cheap and easy technique on x86: overwrite stuff you don’t
want with NOP (0x90)

99

THE END

