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INTRODUCTION 
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Course objective:  
Evolve your understanding of computers 

Input Output 

After 
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C PROGRAMMING 
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What is C? 

• The language of UNIX 

• Procedural language (no classes) 

• Low-level access to memory 

• Easy to map to machine language 

• Not much run-time stuff needed 

• Surprisingly cross-platform 

 

Why teach it now?   
To expand from basic programming to  

operating systems and embedded development. 

 

Also, as a case study to understand computer architecture in general. 
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Memory Layout and Bounds Checking 

• There is NO bounds checking in C 

• i.e., it’s legal (but not advisable) to refer to  
days_in_month[216] or  
days_in_month[-35]  ! 

• who knows what is stored there? 

… … 

Storage for array int days_in_month[12]; 

Storage for other stuff 
Storage for some more stuff 

(each location shown here is an int) 

DIFFERENT 

from Java! 



8 

Structures 

• Structures are sort of like Java objects 

• They have member variables 

• But they do NOT have methods! 

 

• Structure definition with struct keyword 
struct student_record { 

 int id; 

 float grade; 

} rec1, rec2; 

 

• Declare a variable of the structure type with struct keyword 
struct student_record onerec; 

• Access the structure member fields with dot (‘.’), e.g. structvar.member 
onerec.id = 12; 

onerec.grade = 79.3; 

DIFFERENT 

from Java! 
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Let’s look at memory addresses! 

• You can find the address of ANY variable with: 

& 
The address-of operator 

 

int v = 5; 

printf(“%d\n”,v); 

printf(“%p\n”,&v); 
$ gcc x4.c && ./a.out 
5 
0x7fffd232228c 

DIFFERENT 

from Java! 
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What’s a pointer? 

• It’s a memory address you treat as a variable 

• You declare pointers with: 

* 
The dereference operator 

int v = 5; 

int* p = &v; 

printf(“%d\n”,v); 

printf(“%p\n”,p); 
$ gcc x4.c && ./a.out 
5 
0x7fffe0e60b7c 

Append to any data type 

DIFFERENT 

from Java! 
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What’s a pointer? 

• You can look up what’s stored at a pointer! 

• You dereference pointers with: 

* 
The dereference operator 

int v = 5; 

int* p = &v; 

printf(“%d\n”,v); 

printf(“%p\n”,p); 

printf(“%d\n”,*p); 
$ gcc x4.c && ./a.out 
5 
0x7fffe0e60b7c 
5 

Prepend to any pointer variable or expression 

DIFFERENT 

from Java! 
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C Memory Allocation 

• void* malloc(nbytes) 

• Obtain storage for your data (like new in Java) 

• Often use sizeof(type) built-in returns bytes needed for type 

• int* my_ptr = malloc (64);  // 64 bytes = 16 ints 

• int* my_ptr = malloc (64*sizeof(int)); // 64 ints 

 

• free(ptr) 

• Return the storage when you are finished (no Java equivalent) 

• ptr must be a value previously returned from malloc 

 

 

ECE/CS 250 

DIFFERENT 

from Java! 
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DATA REPRESENTATIONS AND 
MEMORY 
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Decimal to binary using remainders 

14 

? Quotient Remain-
der 

457  2 = 228 1 

228  2 = 114 0 

114  2 = 57 0 

57  2 = 28 1 

28  2 = 14 0 

14  2 = 7 0 

7  2 = 3 1 

3  2 = 1 1 

1  2 = 0 1 111001001 
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Decimal to binary using comparison 

Num Compare 2n ≥ ? 

457 256 1 

201 128 1 

73 64 1 

9 32 0 

9 16 0 

9 8 1 

1 4 0 

1 2 0 

1 1 1 

111001001 
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Binary to/from hexadecimal 

• 01011011001000112 --> 

• 0101  1011  0010  00112 --> 

•    5      B       2       316 

Binary Hex 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 

1100 C 

1101 D 

1110 E 

1111 F 

    1       F     4       B16 --> 

0001  1111  0100  10112 --> 

00011111010010112 
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2’s Complement Integers 

• Use large positives to represent negatives  

• (-x) = 2n - x 

• This is 1’s complement + 1 

• (-x) = 2n - 1 - x + 1 

• So, just invert bits and add 1 

 

6-bit examples: 

0101102 = 2210 ; 1010102 = -2210 

110 = 0000012; -110 = 1111112 

010 = 0000002; -010 = 0000002   good! 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 -8 

1001 -7 

1010 -6 

1011 -5 

1100 -4 

1101 -3 

1110 -2 

1111 -1 
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Floating point 

• 32-bit float format: 

 

 

 

 

 

 

• 64-bit double format: 
(same thing, but with more bits) 
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Standardized ASCII (0-127) 
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Memory Layout 

Stack 

Data 

Text 

Reserved 0 

2n-1 

Typical 

Address 

Space 
Heap 

• Memory is array of bytes, but there 
are conventions as to what goes 
where in this array 

• Text: instructions (the program to 
execute) 

• Data: global variables 

• Stack: local variables and other 
per-function state; starts at top & 
grows down 

• Heap: dynamically allocated 
variables; grows up 

• What if stack and heap overlap???? 
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LEARNING ASSEMBLY LANGUAGE 
WITH MIPS 
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The MIPS architecture 

• 32-bit word size 

• 32 registers ($0 is zero, $31 is return address) 

• Fixed size 32-bit aligned instructions 

• Types of instructions: 

• Math and logic: 

• or $1, $2, $3 → $1 = $2 | $3 

• add $1, $2, $3 → $1 = $2 + $3 

• Loading constants: 

• li $1, 50 → $1 = 50 

• Memory: 

• lw $1, 4($2) → $1 = *($2 + 4) 

• sw $1, 4($2) → *($2 + 4) = $1 

• Control flow: 

• j label  → PC = label 

• bne $1, $2, label  → if ($1==$2) PC=label 
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Control Idiom: If-Then-Else 

• Control idiom: if-then-else 
if (A < B) A++;     // assume A in register $1 

else B++;           // assume B in $2 

 

   slt  $3,$1,$2  // if $1<$2, then $3=1 

   beqz $3,else      // branch to else if !condition 

   addi $1,$1,1 

   j    join          // jump to join 

  else: addi $2,$2,1  

  join: 
ICQ: assembler converts “else” 
operand of beqz into immediate  
what is the immediate? 
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16 s0 callee saves 

. . . 

23 s7 

24 t8 temporary (cont’d) 

25 t9 

26 k0 reserved for OS kernel 

27 k1 

28 gp pointer to global area 

29 sp stack pointer 

30 fp frame pointer 

31 ra return address 

0 zero constant 

1 at reserved for assembler 

2 v0 expression evaluation & 

3 v1 function results 

4 a0 arguments 

5 a1 

6 a2 

7 a3  

8 t0 temporary: caller saves 

. . . 

15 t7 

MIPS Register Usage/Naming Conventions 

Important: The only general purpose registers are the $s and $t registers. 

 

Everything else has a specific usage: 

$a = arguments, $v = return values, $ra = return address, etc. 

Also 32 floating-point registers: $f0 .. $f31 
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MIPS Instruction Formats 

• 3 variations on theme from previous slide 

• All MIPS instructions are either R, I, or J type 

• Note: all instructions have opcode as first 6 bits 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 
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msb lsb 

3          2          1           0 

little endian byte 0 

0          1          2           3 

big endian byte 0 

Memory Addressing Issue: Endian-ness 

Byte Order 

• Big Endian: byte 0 is 8 most significant bits IBM 360/370, 
Motorola 68k, MIPS, SPARC, HP PA-RISC 

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC 
Vax, DEC/Compaq Alpha 
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COMBINATIONAL LOGIC 
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Truth Tables 

• Map any number if inputs to any number of outputs 

• Example: 

(A & B) | !C 

 

Start with Empty TT 

Column Per Input 

Column Per Output 

 

Fill in Inputs 

Counting in Binary 

 

Compute Output  

  

A B C Output 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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Convert truth table to function 

• Given a Truth Table, find the formula? 

 

Write down every “true” case 

Then OR together: 

 

(!A & !B & !C) |  

(!A & !B & C)  | 

(!A & B & !C) | 

(A & B &!C) | 

(A & B &C) 

 

  

  

A B C Output 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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Boolean Function Simplification 

• Boolean expressions can be simplified by using the following 
rules (bitwise logical): 
• A & A = A                        A | A = A 

• A & 0 = 0                        A | 0 = A 

• A & 1 = A                        A | 1 = 1 

• A & !A = 0                       A | !A = 1 

 

• !!A  = A 

 

• & and | are both commutative and associative 

• & and | can be distributed:  A & (B | C) = (A & B) | (A & C) 

• & and | can be subsumed: A | (A & B) = A 

 

• DeMorgan’s Laws:  

!(A & B) = (!A) | (!B) 

!(A | B) = (!A) & (!B) 
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a 

b 

AND(a,b) a 

b 

OR(a,b) 

 Guide to Remembering your Gates 

XOR(a,b) a 

b 

Straight like an A Curved, like an O 
XOR looks like OR (curved line), 

but has two lines (like an X does) 

XNOR(a,b) 

a NOT(a) 

a 

b 

NAND(a,b) a 

b 

NOR(a,b) a 

b 

Circle means NOT 

(XNOR is 1-bit “equals” by the way) 
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Designing a 1-bit adder 

• So we’ll need to add three bits (including carry-in) 

• Two-bit output is the carry-out and the sum 

 

a   b   Cin 

0 + 0 + 0 = 00 

0 + 0 + 1 = 01 

0 + 1 + 0 = 01 

0 + 1 + 1 = 10 

1 + 0 + 0 = 01 

1 + 0 + 1 = 10 

1 + 1 + 0 = 10 

1 + 1 + 1 = 11 
Turn into expression,  

simplify,  

circuit-ify,  

yadda yadda yadda… 
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A 1-bit Full Adder 

a  b  Cin  Sum  Cout 

0  0  0    0    0 

0  0  1    1    0 

0  1  0    1    0 

0  1  1    0    1 

1  0  0    1    0 

1  0  1    0    1 

1  1  0    0    1 

1  1  1    1    1 

01101100 
 

 01101101 

+00101100 

 10011001 

a 

b 

Cin 

Cout 

Sum 

Logisim example 

basic_logic.circ : full-adder 
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Full AdderFull AdderFull AdderFull Adder

b0 b1 b2 b3 a0 a1 a2 a3 

Cout 

S0 S1 S2 S3 

Add/Sub 

Example: Adder/Subtractor 

Logisim example 

basic_logic.circ : 4bit-addsub 



35 

Add/sub 

C in 

C ou t 

Add/sub F 

2 

0 

1 

2 

3 

a 

b 

Q 

A   F         Q 

0   0        a + b 

1   0        a - b 

-    1      NOT b 

-    2      a OR b 

-    3      a AND b 

ALU Slice 

Logisim example 

basic_logic.circ : alu-slice 
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The ALU 

ALU Slice ALU Slice ALU Slice ALU Slice 

ALU control 

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1 

Q 0 Q 1 Q n-2 Q n-1 

Overflow Is non-zero? 

Logisim example 

basic_logic.circ : alu 
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SEQUENTIAL LOGIC 
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D flip flops 

• Stores one bit 

• Inputs: 

• The data D 

• The clock ‘>’ 

• An “enable” signal E 

• Outputs: 

• The stored bit output Q  
(and also its inverse !Q) 

• “Commits” the input bit on clock rise,  
and only if E is high 

DFF 

D Q 

E Q 

> 

Clock rise (bit gets saved at this time) 
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Register 

• Register: N flip flops working in parallel,  
where N is the word size 

 

DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
DFF 

D Q 

E Q 

> 
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Register file 

• A set of registers with multiple ports so numbered registers 
can be read/written. 

• How to write: 

• Use decoder to convert reg # to one hot 

• Send write data to all regs 

• Use one hot encoding of reg # to enable right reg 

• How to read: 

• 32 input mux (the way we’ve made it) not realistic 

• To do this: expand our world from {1,0} to {1, 0, Z} 

 

En0 

En1 

En30 

En31 

32 bit reg 

D Q 

E Q 

32 bit reg 

D Q 

E Q 

32 bit reg 

D Q 

E Q 

32 bit reg 

D Q 

E Q 

WrData 

En0 

En1 

En30 

En31 

… 
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FINITE STATE MACHINES 
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How FSMs are represented 

State 1 State 2 

3 / 0 

What input we need to see 
to do this state transition 

What we change the circuit output  
to as a result of this state transition 

7 / 1 

“Self-edges” are possible 
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FSM Types: Moore and Mealy 

• Recall: FSM = States + Transitions 

• Next state = function (current state, inputs) 

• Outputs = function (current state, inputs) 

 

• This is the most general case 

• Called a “Mealy Machine”  

• We will assume Mealy Machines from now on 

• A more restrictive FSM type is a “Moore Machine” 

• Outputs = function (current state) 

 

“Mealy Machine” 

developed in 1955  

by George H. Mealy 

“Moore Machine” 

developed in 1956 

by Edward F. Moore 
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State Transition Diagram  Truth Table 

Current State Input Next state Output 

Start 3 Saw 3 0 (closed) 

Start Not 3 Start 0 

Saw 3 8 Saw 38 0 

Saw 3 3 Saw 3 0 

Saw 3 Not 8 or 3 Start 0 

Saw 38 4 Saw 384 1 (open) 

Saw 38 3 Saw 3 0 

Saw 38 Not 4 or 3 Start 0 

Saw 384 Any Saw 384 1 

start saw 3 

3/0 

{0-2,4-9}/0 

saw 

38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 

384 

4/1 

{0-9}/1 
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State Transition Diagram  Truth Table 

Current State Input Next state Output 

00 (start) 3 01 0 (closed) 

00 Not 3 00 0 

01 8 10 0 

01 3 01 0 

01 Not 8 or 3 00 0 

10 4 11 1 (open) 

10 3 01 0 

10 Not 4 or 3 00 0 

11 Any 11 1 

4 states  2 flip-flops to hold the current state of the FSM 

inputs to flip-flops are D1D0 

outputs of flip-flops are Q1Q0 
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State Transition Diagram  Truth Table 

Q1 Q0 Input D1 D0 Output 

0 0 3 0 1 0 (closed) 

0 0 Not 3 0 0 0 

0 1 8 1 0 0 

0 1 3 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 4 1 1 1 (open) 

1 0 3 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

Input can be 0-9  requires 4 bits 

input bits are in3, in2, in1, in0 
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State Transition Diagram  Truth Table 

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 
(all binary combos other than 00011) 

0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 
(all binary combos other than 01000 & 00011) 

0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 
(all binary combos other than 00100 & 00011) 

0 0 0 

1 1 Any 1 1 1 

From here, it’s just like combinational logic design! 

Write out product-of-sums equations, optimize, and build. 
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State Transition Diagram  Truth Table 

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

 

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

 

D0 = do the same thing 

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 
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State Transition Diagram  Truth Table 

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

Remember, these represent DFF outputs …and these are the DFF inputs 

The DFFs are how we store the state. 
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Truth Table  Sequential Circuit 

D1      Q1  

FF1 
!Q1 

D0      Q0  

FF0 
!Q0 

 

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0) 

in3 

in2 

in1 

in0 

output 

Not pictured 
Follow a similar procedure for D0… 
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CPU DATAPATH AND CONTROL 
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How Is Control Implemented? 

 

P 

C 

Insn 

Mem 

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

a 

d 

+ 

4 

<< 

2 
<< 

2 

Rwe 

ALUinB 

DMwe 

JP 

ALUop 

BR 

Rwd 

Rdst 

Control 



53 

Exceptions 

• Exceptions and interrupts 

• Infrequent (exceptional!) events 

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer 

 

• Handling requires intervention from operating system 

• End program: divide-by-0, protection fault, illegal insn, ^C 

• Fix and restart program: I/O, page fault, ^Z, timer 

 

• Handling should be transparent to application code 

• Don’t want to (can’t) constantly check for these using insns 

• Want “Fix and restart” equivalent to “never happened” 
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CACHING 
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Big Concept: Memory Hierarchy 

• Use hierarchy of memory components 

• Upper components (closer to CPU) 

• Fast  Small  Expensive 

• Lower components (further from CPU) 

• Slow  Big  Cheap 

• Bottom component (for now!) = what we have 
been calling “memory” until now 

 

• Make average access time close to L1’s 

• How? 

• Most frequently accessed data in L1 

• L1 + next most frequently accessed in L2, etc. 

• Automatically move data up&down hierarchy 

CPU 

L1 

L2 

L3 

Memory 
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Terminology 

• Hit: Access a level of memory and find what we want 

• Miss: Access a level of memory and DON’T find what we want 

 

• Block: a group of spatially contiguous and aligned bytes 

 

• Temporal locality: Recently accessed stuff likely to be 
accessed again soon 

• Spatial locality: Stuff near recently accessed thing likely to 
be accessed soon 
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Memory Performance Equation 

• For memory component L1 

• Access: read or write to L1 

• Hit: desired data found in L1 

• Miss: desired data not found in L1 

• Must get from another (slower) component 

• Fill: action of placing data in L1 

 

• %miss (miss-rate): #misses / #accesses 

• thit: time to read data from (write data to) L1 

• tmiss: time to read data into M from lower level 

 

• Performance metric 

• tavg: average access time 

tavg = thit + (%miss * tmiss) 

CPU 

L1 

thit 

tmiss 

%miss 
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Abstract Hierarchy Performance 

tmiss-M3 = tavg-M4 

CPU 

L1 

L2 

L3 

M 

tmiss-M2 = tavg-M3 

tmiss-M1 = tavg-M2 

tavg = tavg-M1 

How do we compute tavg ? 

=tavg-L1 

=thit-L1 +(%miss-L1*tmiss-L1) 

=thit-L1 +(%miss-L1*tavg-L2) 

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tmiss-L2))) 

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tavg-L3))) 

= … 

 

Note: Miss at level X = access at level X+1 
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Where to Put Blocks in Cache 

• How to decide which frame holds which block? 

• And then how to find block we’re looking for? 

• Some more cache structure: 

• Divide cache into sets 

• A block can only go in its set  there is a 1-to-1 mapping from 
block address to set 

• Each set holds some number of frames = set associativity 

• E.g., 4 frames per set = 4-way set-associative 

• At extremes 

• Whole cache has just one set = fully associative 

• Most flexible (longest access latency) 

• Each set has 1 frame = 1-way set-associative = ”direct mapped” 

• Least flexible (shortest access latency) 
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Cache structure math 

• Given capacity, block_size, ways (associativity), and 
word_size. 

• Cache parameters: 

• num_frames = capacity / block_size 

• sets = num_frames / ways = capacity / block_size / ways 

• Address bit fields: 

• offset_bits = log2(block_size) 

• index_bits = log2(sets) 

• tag_bits = word_size - index_bits - offset_bits 

• Numeric way to get offset/index/tag from address: 

• block_offset = addr % block_size 

• index = (addr / block_size) % sets 

• tag = addr / (sets*block_size) 
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Cache Replacement Policies 

• Set-associative caches present a new design choice 

• On cache miss, which block in set to replace (kick out)? 

• Some options 

• Random 

• LRU (least recently used) 

• Fits with temporal locality, LRU = least likely to be used in future 

• NMRU (not most recently used)  

• An easier-to-implement approximation of LRU 

• NMRU=LRU for 2-way set-associative caches 

• FIFO (first-in first-out) 

• When is this a good idea? 
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ABCs of Cache Design 

• Architects control three primary aspects of cache design 

• And can choose for each cache independently 

• A = Associativity 

• B = Block size 

• C = Capacity of cache 

 

• Secondary aspects of cache design 

• Replacement algorithm 

• Some other more subtle issues we’ll discuss later 
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Analyzing Cache Misses: 3C Model 

• Divide cache misses into three categories 

• Compulsory (cold): never seen this address before 

• Easy to identify 

• Capacity: miss caused because cache is too small – would’ve been 
miss even if cache had been fully associative 

• Consecutive accesses to block separated by accesses to at least N 
other distinct blocks where N is number of frames in cache 

• Conflict: miss caused because cache associativity is too low – would’ve 
been hit if cache had been fully associative 

• All other misses 
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Stores: Write-Through vs. Write-Back 

• When to propagate new value to (lower level) memory? 

• Write-through: immediately (as soon as store writes to this level) 

+ Conceptually simpler 

+ Uniform latency on misses 

– Requires additional bandwidth to next level 

• Write-back: later, when block is replaced from this level 

• Requires additional “dirty” bit per block  why? 

+ Minimal bandwidth to next level 

• Only write back dirty blocks 

– Non-uniform miss latency 

• Miss that evicts clean block: just a fill from lower level 

• Miss that evicts dirty block: writeback dirty block and then fill 
from lower level 
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Stores: Write-allocate vs. Write-non-allocate 

• What to do on a write miss? 

• Write-allocate: read block from lower level, write value into it 

+ Decreases read misses 

– Requires additional bandwidth 

• Use with write-back 

• Write-non-allocate: just write to next level 

– Potentially more read misses 

+ Uses less bandwidth 

• Use with write-through 
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Example cache trace 

Term Value Equation 

cache size 4096 given 

block size 32 given 

ways 2 given 

frames 128 cache size / block size 

sets 64 frames / ways 

bits:index 6 log2(sets) 

bits:offset 5 log2(block size) 

bits:tag 53 64 minus the above 

addr-dec addr-hex tag index offset result 

38 0026 0 1 6 miss compulsory 

30 001E 0 0 30 miss compulsory 

62 003E 0 1 30 hit 

5 0005 0 0 5 hit 

2049 0801 1 0 1 miss compulsory 

2085 0825 1 1 5 miss compulsory 

60 003C 0 1 28 hit 

4130 1022 2 1 2 miss compulsory 

2085 0825 1 1 5 miss conflict 
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VIRTUAL MEMORY 
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Cache 

Copy if popular 

Figure: caching vs. virtual memory 
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RAM 
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(or SSD) 

Hard disk 

Load if needed 

Drop 

• Faster 

• More expensive 

• Lower capacity 

• Slower 

• Cheaper 

• Higher capacity 

Swap out (RW) or drop (RO) 
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High level operation 

69 

SEGFAULT 

OK (fast) 

OK (fast) 

OK (but slow) 

! 

Virtual memory 

Memory map 

Physical memory 

HDD/SSD storage 
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Demand Paging 

 

Memory 
reference 

Is in physical 
memory? 

Success 

Is page stored on 
disk? 

Load it, success 

Invalid reference, 
abort! 

Y 

N 

N 

Y 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Address translation 

71 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 

 



72 

Steps in Handling a Page Fault 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Translation Buffer 

• Functionality problem? Add indirection! 

• Performance problem? Add cache! 

 

• Address translation too slow? 

• Cache translations in translation buffer (TB) 

• Small cache: 16–64 entries, often fully assoc 

+ Exploits temporal locality in PT accesses 

+ OS handler only on TB miss 

CPU 

D$ 

L2 

Main 

Memory 

I$ 

TB 

VPN PPN 

VPN PPN 

VPN PPN 

“tag” “data” PA 

VA 

VA 

VA VA 
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Virtual Physical Caches 

• Compromise: virtual-physical caches 

• Indexed by VAs 

• Tagged by PAs 

• Cache access and address translation in parallel 

+ No context-switching/aliasing problems  

+ Fast: no additional thit cycles 

 

• A TB that acts in parallel with a cache is a TLB 

• Translation Lookaside Buffer 

 

• Common organization in processors today 

 

CPU 

D$ 

L2 

Main 

Memory 

I$ TLB 

PA 

PA 

VA VA 

TLB 
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What Happens if There is no Free Frame? 

• Page replacement – find some page in memory, but not 
really in use, page it out 

• Algorithm? 

• Want an algorithm which will result in minimum number of page faults 

• This decision is just like choosing the caching replacement algorithm! 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Thrashing 

• If a process does not have “enough” pages, the page-fault 
rate is very high 

• Page fault to get page 

• Replace existing frame 

• But quickly need replaced frame back 

• This leads to: 

• Low CPU utilization 

• Operating system thinking that it needs to increase the degree of 
multiprogramming 

• Another process added to the system 
 

• Thrashing  a process is busy swapping pages in and out 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Working-set model 

•   working-set window  a fixed number of page references  
Example:  10,000 instructions 
 

• WSSi (working set of Process Pi) = 
total number of pages referenced in the most recent  (varies in time) 

• if  too small will not encompass entire locality 

• if  too large will encompass several localities 

• if  =   will encompass entire program 
 

• D =  WSSi  total demand frames  

• Approximation of locality 
 

• if D > m  Thrashing 
 

• Policy if D > m, then suspend or swap out one of the processes 

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Virtual memory summary 

• Address translation via page table 

• Page table turns VPN to PPN (noting the valid bit) 

• Page is marked ‘i’? Page fault. 

• If OS has stored page on disk, load and resume 

• If not, this is invalid access, kill app (seg fault) 

• Governing policies: 

• Keep a certain number of frames loaded per app 

• Kick out frames based on a replacement algorithm (like LRU, etc.) 

• Looking up page table in memory too slow, so cache it: 

• The Translation Buffer (TB) is a hardware cache for the page table 

• When applied at the same time as caching (as is common),  
it’s called a Translation Lookaside Buffer (TLB).  

• Working set size tells you how many pages you need over a time 
window. 

• DRAM is slower than SRAM, but denser. Needs constant refreshing of data. 

WOW! 
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I/O 
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Protection and access 

• I/O should be protected, with device access limited to OS 

 

• User processes request I/O through the OS (not directly) 

 

• User processes do so by triggering an interrupt, 
this causes the OS to take over and service the request 

 

• The interrupt/exception facility is implemented in hardware, 
but triggers OS software 
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Connectivity 

• Bus: A communication linkage with two or more devices on it 

• Various topologies are possible 

CPU ($) 

Main 

Memory Disk 
kbd 

DMA DMA 

display NIC 

I/O ctrl 

“System” (memory-I/O) bus 

CPU 

I/O I/O 

I/O 

Mem 

Proc-Mem 

adapter 

I/O I/O 

Backplane 

CPU Mem 
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Communication models 

• Polling: Ask continuously 

• Often a waste of processor time 

 

• Interrupts: Have disk alert the CPU when data is ready 

• But if data packets are small, this interrupt overhead can add up 

 

• Direct Memory Access (DMA): The device itself can put the 
requested data directly into RAM without the CPU being 
involved 

• The CPU is alerted via interrupt when the whole transaction is done 

• Complication!  

• Now memory can change without notice; interferes with cache 

• Solution: cache listens on bus for DMA traffic, drops changed data 
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PIPELINING 
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5 Stage Pipelined Datapath 

• Temporary values (PC,IR,A,B,O,D) re-latched every stage 

• Why? 5 insns may be in pipeline at once, they share a single PC? 

• Notice, PC not re-latched after ALU stage (why not?) 

PC 
Insn 

Mem 

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

a 

d 

+ 
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<< 
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Pipeline Diagram 

• Pipeline diagram: shorthand for what we just saw 

• Across: cycles 

• Down: insns 

• Convention: X means lw $4,0($5) finishes execute stage and 
writes into X/M latch at end of cycle 4 

 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($5) F D X M W 

sw $6,4($7) F D X M W 
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Pipeline Hazards 

• Hazard: condition leads to incorrect execution if not fixed 

• “Fixing” typically increases CPI 

• Three kinds of hazards 

 

• Structural hazards 

• Two insns trying to use same circuit at same time 

• Fix by proper ISA/pipeline design:  
Each insn uses every structure exactly once for at most one cycle, always at same stage relative to 
Fetch 

• Data hazards  

• Result of dependencies: Need data before it’s ready 

• Solve by (a) stalling pipeline (inject NOPs) and (b) having bypasses provide data before it formally 
hits destination memory/register. 

• Control hazards 

• Result of jump/branch not being resolved until late in pipeline 

• Solve by flushing instructions that shouldn’t have been happening after branch is resolved 

• This incurs overhead: wasted time! Reduce with: 

• Fast branches: Add hardware to resolve branch sooner 

• Delayed branch: Always execute instruction after a branch (complicates compiler) 

• Branch prediction: Add hardware to speculate on if/where the branch goes 
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Stalling and Bypassing together 

Stall = (D/X.IR.OP == LOAD) && 

          ((F/D.IR.RS1 == D/X.IR.RD) ||  

           ((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))  

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

a 

d 

 

 

 

 

 

 

 

 

IR 

A 

 

 

B 

 

 

 

 

IR 

 

 

O 

 

 

B 

 

 

IR 

O 

 

D 

 

 

 

 

 

IR 

F/D D/X X/M M/W 

lw $3,0($2) 

stall 

nop 

add $4,$2,$3 

lw $3,0($2) add $4,$2,$3 
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Pipeline Diagram: Data Hazard 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F D X M W 

addi $6,$4,1 F d* D X M W 

• Even with bypasses, stalls are sometimes necessary 

• Examples: 

• Memory load -> ALU operation 

• Memory load -> Address component of memory load/store 

 

• Example pipeline diagram for a stall due to a data hazard: 
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Pipeline Diagram: Control Hazard 

• Control hazards indicated with c* (or not at all) 

• “Default” penalty for taken branch is 2 cycles: 

 

 

 

 

 

• Fast branches reduce the penalty to 1 cycle: 

1 2 3 4 5 6 7 8 9 

addi $3,$0,1 F D X M W 

bnez $3,targ F D X M W 

sw $6,4($7) c* c* F D X M W 

1 2 3 4 5 6 7 8 9 

addi $3,$0,1 F D X M W 

bnez $3,targ F D X M W 

sw $6,4($7) c* F D X M W 
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MULTICORE 
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Types of parallelism 

• Pipelining tries to exploit instruction-level parallelism 
(ILP) 

• “How can we simultaneously do steps in this otherwise sequential 
process?” 

• Multicore tries to exploit thread-level parallelism 

• “How can we simultaneously do multiple processes?” 

 

• Thread: A program has one (or more) threads of control 

• A thread has its own PC 

• Threads in a program share resources, especially memory 

(e.g. sharing a page table) 
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Two cases of multiple threads 

• Multiprogramming: run multiple programs at once 

 

• Multithreaded programming: write software to explicitly 
take advantage of multiple threads (divide problem into 
parallel tasks) 
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Multiprocessors 

• Multiprocessors: have more than one CPU core 

• Historically: multiple discrete physical chips 

• Now: a single chip with multiple cores 

Multiprocessor: 

Two drive-throughs, each 

with its own kitchen 
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Challenges of multicore 

• Two main challenges: 

• Topologies of connection (rings, cubes, meshes, buses, etc.) 

 

 

 

 

• Cache coherence: If each core has a cache, then each CPU can have 
a diverging view of memory !! (BAD) 

• Solution: Intelligent caches that use snooping on the memory bus 
to spot sharing and react accordingly 

• Different coherence algorithms (performance/complexity tradeoffs) 

 
Store / OwnGETX 

Valid OtherGETX/ -- 

Invalid 

OtherGETS / -- 

Load / OwnGETS 

Load / -- 

Store / OwnGETX 

OtherGETS / -- 

OtherGETX / -- 

Load /-- 

M 

-/OtherGETX 

Store / OwnGETX 
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I 

Store / -- 

-/OtherGETS 
Store / OwnGETX 

Load / OwnGETS 

OtherBusRdX / -- 

Load / -- 
-/OtherGETS 

Writeback / OwnPUTX 

Writeback / -- 
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INTEL X86 
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Basic differences 

MIPS Intel x86 

Word size Originally: 32-bit (MIPS I in 1985) 
Now: 64-bit (MIPS64 in 1999) 

Originally: 16-bit (8086 in 1978) 
Later: 32-bit (80386 in 1985) 
Now: 64-bit (Pentium 4’s in 2005) 

Design RISC CISC 

ALU ops Register = Register ⦻ Register 

(3 operand) 

Register ⦻= <Reg|Memory> 

(2 operand) 

Registers 32 8 (32-bit) or 16 (64-bit) 

Instruction size 32-bit fixed Variable: originally 8- to 48-bit,  
can be longer now (up to 15 *bytes*!) 

Branching Condition in register (e.g. “slt”) Condition codes set implicitly 

Endian Either (typically big) Little 

Variants and 
extensions 

Just 32- vs. 64-bit, plus some 
graphics extensions in the 90s 

A bajillion (x87, IA-32, MMX, 3DNow!, 
SSE, SSE2, PAE, x86-64, SSE3, SSE4, 
SSE5, AVX, AES, FMA) 

Market share Small but persistent (embedded) 80% server, similar for consumer 
(defection to ARM for mobile is recent) 



97 

• Registers:  

• General: eax ebx ecx edx edi esi 

• Stack: esp ebp 

• Instruction pointer: eip 

• Complex instruction set 

• Instructions are variable-sized & unaligned 

• Hardware-supported call stack 

• call / ret 

• Parameters on the stack,  
return value in eax 

• Little-endian 

• Assembly language summary: 
• Moving data? Use ‘mov’. 

• All ALU ops are 2-operand (add eax, ebx → eax+=ebx) 

• Can do a memory load/store anywhere 

• Address can be fairly complex expression: [0x123 + eax + 4*ebx] 

 

mov  eax, 5 

mov  [ebx], 6 

add  eax, edi 

push eax 

pop  esi 

call 0x12345678 

ret 

jmp  0x87654321 

jmp  eax 

call eax 
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Binary modification 
(applies to *all* ISAs) 

• Can disassemble binaries (turn into human-readable assembly) 

• Do a bunch of cross-referencing to understand functionality 
(that’s what IDA Pro does) 

• Basic blocks of code ending in branches form a flow chart 

• Identify behavior and make inferences on author intent 

 

• Can modify by overwriting binary with new instructions 
(can also insert instructions, but this changes layout of binary 
program, so various pointers have to be updated) 

 

• Cheap and easy technique on x86: overwrite stuff you don’t 
want with NOP (0x90) 
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THE END 


