
ECE/CS 250 – Prof. Bletsch
Recitation #09

Intel x86 and Free Exploration

Objective: In this recitation, you will explore real-world practicalities of computer architecture.

DIRECTIONS: This recitation collects previous “time allowing” activities and introduces a few new ones.

Pick one or two and do them during recitation. After that, you can use the time to work on the current

homework, continue to explore these tasks, develop your own experiments to run or free-form questions

to ask, or use the time for final exam Q&A with the TAs.

1. Do the Intel x86 Extra Credit
Take a look at the extra credit. Install IDA Free and poke at it. Try to work it out. Have fun!

2. Pipelining: Types of Dependences and the Hazards They Create
There are multiple kinds of data dependences in programs. For the pipeline we learned in lecture, the

one that can lead to hazards is RAW (read-after-write). You can also have WAR (write-after-read) and

WAW (write-after-write) dependencies, which would affect designs that do out-of-order execution.

It’s useful to be able to identify RAW, WAR, and WAW dependences through registers and through

memory. There’s no need to worry about RAR (read-after-read), since these “dependences” are never

problematic.

Some dependences lead to hazards and some don’t. Whether a dependence leads to a hazard is a

function of the pipeline design.

(a) Construct a 2-line MIPS code snippet that has a RAW dependence through a register.

(b) Construct a 3-line MIPS code snippet in which the 2nd and 3rd instructions have RAW

dependences on the register written by the 1st instruction.

(c) Construct a 2-line MIPS code snippet that has a RAW dependence through memory.

(d) Construct a 2-line MIPS code snippet that may or may not have a RAW dependence through

memory. (Think about how you might not be able to tell if there’s a RAW dependence!)

(e) Construct a 2-line MIPS code snippet that has a WAR dependence through a register.

(f) Construct a 2-line MIPS code snippet that has a WAW dependence through a register.

(g) Construct a 3 or 4 line MIPS code snippet that has at least one RAW, WAR, and WAW

dependence.

3. Pipelining in the Real World
Time permitting, break up into groups of 3 or 4 people each, and in each group, pick one of these real-

world processors. UTAs will help to make sure that every group has a different processor.

1. Intel’s Core i7, code name: Broadwell

2. Intel’s Atom, code name: Cedarville

3. AMD’s Bobcat, code name: Llano

4. ARM’s Cortex-M7

5. IBM’s Power7

6. Qualcomm’s Scorpion CPU

7. Alpha 21364 (also called EV7)

8. Atmel ATMEGA328 microcontroller1

 Now learn as much as you can about your chosen processor:

(a) What is the ISA?

(b) How many registers does it have?

(c) How many stages are in its pipeline?

(d) What are those stages? Don’t be worried if many stage names don’t make sense yet, e.g.,

“register renaming”, “wakeup”, etc.

(e) What is the clock frequency? (There is likely to be a range of frequencies.)

(f) What are the sizes and associativities of the caches (L1I, L1D, L2, L3)? What are the cache block

sizes?

(g) What are the sizes and associativities of the TLBs?

4. Running out of Virtual Memory
On a 64-bit machine, it might appear you could never possibly run out of virtual memory. But what

happens if you write a recursive program that (due to a bug) never reaches its base case? Try this. What

happens?

5. Running out of Physical Memory
You can never actually run out of physical memory, but you can try to use more memory than you have,

in which case the computer spends a lot of its time paging (servicing page faults). Open up the Task

Manager to see how much memory you’re currently using. Now start launching programs that use a lot

of memory. What do you see in the Task Manager?

1 This is a microcontroller rather than a CPU, meaning it has many general-purpose IO pins for interfacing with custom
circuits. You’ll find that it’s different from the CPUs in this exercise in a few other ways, too.

6. Caches and Memory in the Real World
1) How much cache is in your laptop? You may need to google your CPU model number to find out.

To find your CPU model:

a. Windows: open up the Start menu (bottom right – Windows logo), then right click on

the “Computer” option, then choose “Properties”.

• On Windows, you can also check using a program called CPU-Z, which will

directly interrogate the processor and find the amount of cache.

b. Mac: go to “Apple Logo” > System Report.

c. Linux: do “cat /proc/cpuinfo” at the command line.

2) How much physical memory do you have? On a Windows machine, you can hit ctrl-alt-delete and

then from there open up the Task Manager; in the Task Manager, click on the “Performance” tab.

On a Linux machine, you can type “top” at the command line and see much the same information.

Once again, I recommend looking at both Windows and Linux.

3) How much disk space do you have? Can you see how much is being used for “swap” (i.e., to hold

pages that don’t currently fit in physical memory? This is an aspect of “virtual memory”, which

we’ll cover next.

7. Benchmarking memory and cache
1) Download the program “memdance.c” from the course site and compile it with:

 g++ -O3 -o memdance memdance.c

This program is a simple benchmark to measure the rate of random memory access to a block of

memory of a given size for a given duration of a time. Run it without arguments for help.

2) Use this program on the machine of your choice to measure the memory throughput for

different buffer sizes. Just run it as “./memdance default”, and it will cycle through buffer

sizes of 1MB, 2MB, 4MB, 8MB, 16MB, 32MB, 64MB, and 128MB for 3 seconds per test.

3) Compare the results to the cache size found in Task 1, especially the lowest level cache (L3 on

most modern systems). What do you observe? What’s the percentage difference between the

fastest and slowest rate? What does this tell you about the importance of cache to software

performance?

ALL DONE?

You did every task? Wow. Well, don’t head out yet –

work on the current homework and talk to the TAs for

help. You can leave if your homework tester shows all

passing and you’ve turned in all the written & code

materials.

