
ECE/CS 250
Computer Architecture

Fall 2021

Processor Design: Datapath and Control

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Amir Roth (Penn)

2

Where We Are in This Course Right Now

• So far:

• We know what a computer architecture is

• We know what kinds of instructions it might execute

• We know how to perform arithmetic and logic in an ALU

• Now:

• We learn how to design a processor in which the ALU is just one
component

• Processor must be able to fetch instructions, decode them, and execute
them

• There are many ways to do this, even for a given ISA

• Next:

• We learn how to design memory systems

3

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Mapping an ISA to a datapath

• Control

• Exceptions

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

4

Readings

• Patterson and Hennessy

• Chapter 4: Sections 4.1-4.4

• Read this chapter carefully

• It has many more examples than I can cover in class

5

So You Have an ALU…

• Important reminder: a processor is just a big finite state
machine (FSM) that interprets some ISA

• Start with one instruction
add $3,$2,$4

• ALU performs just a small part of execution of instruction

• You have to read and write registers

• You have have to fetch the instruction to begin with

• What about loads and stores?

• Need some sort of memory interface

• What about branches?

• Need some hardware for that, too

6

Datapath and Control

• Datapath: registers, memories, ALUs (computation)

• Control: which registers read/write, which ALU operation

• Fetch: get instruction, translate into control

• Processor Cycle: Fetch  Decode  Execute

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch

7

Building a Processor for an ISA

• Fetch is pretty straightforward

• Just need a register (called the Program Counter or PC) to hold the
next address to fetch from instruction memory

• Provide address to instruction memory  instruction memory provides
instruction at that address

• Let’s start with the datapath

1. Look at ISA

2. Make sure datapath can implement every instruction

8

Datapath for MIPS ISA

• Consider only the following instructions
add $1,$2,$3

addi $1,$2,<value>

lw $1,4($3)

sw $1,4($3)

beq $1,$2,PC_relative_target

j Absolute_target

• Why only these?

• Most other instructions are similar from datapath viewpoint

• I leave the ones that aren’t for you to figure out

9

Review: A Register

• Register: DFF array with shared clock, write-enable (WE)

• Notice: both a clock and a WE (DFFWE = clock & registerWE)

• Convention I: clock represented by wedge

• Convention II: if no WE, DFF is written on every clock

DFF

DFF

DFF

D0

DN-1

D1

CLK
WE

Q0

Q1

QN-1

D Q

NN

WE

32 bit reg

D Q

E Q

Note: Above is the “classic” register we

learned before; we’re just introducing a

new symbol for the same thing

=

10

Uses of Registers

• A single register is good for some things

• PC: program counter

• Other things which aren’t the ISA registers (more later in semester)

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch

11

What About the ISA Registers?

• Register file: the ISA (“architectural”, ”visible”) registers

• Two read “ports” + one write “port”

• Maximum number of reads/writes in single instruction (R-type)

• Port: wires for accessing an array of data

• Data bus: width of data element (MIPS: 32 bits)

• Address bus: width of log2 number of elements (MIPS: 5 bits)

• Write enable: if it’s a write port

• M ports = M parallel and independent accesses

Register File

RS1VAL

RS2VAL

RDVAL

RDWE RS1 RS2

RD = dest reg

RS = source reg

12

Register File With Tri-State Read Ports

RS2RS1RDWE

RDVAL
RS2VAL

RS1VAL

13

Another Useful Component: Memory

• Memory: where instructions and data reside

• One read/write “port”: one access per cycle, either read or write

• One address bus

• One input data bus for writes, one output data bus for reads

• Actually, a more traditional definition of memory is

• One input/output data bus

• No clock  asynchronous “strobe” instead

Memory

DATAOUTDATAIN

WE

ADDRESS

14

Dramatis Personae

P

C
Mem

S

X

+

4

<<

2

+

Register

Memory

Register

File
rs1 rs2 rd

RDVAL
s1VAL

s2VAL

WE

Register File

ALU

In1

In2

Result

ALUop
(Which math to do)

Arithmetic Logic Unit

Shift left

by two bits

Adder

Adder that

always adds 4

Sign

extender

Converts to longer bit widths; preserves sign

(3) 0011 => 00000011 (still 3)

(-5) 1011 => 11111011 (still -5)

Mux

In1

In2

Which?

Result

Plain ol’

AND gate

15

Let’s Build A MIPS-like Datapath

16

Start With Fetch

• PC and instruction memory

• A +4 incrementer computes default next instruction PC

• Why +4 (and not +1)? What will it be for 16-bit Duke 250/16?

P

C

Insn

Mem

+

4

17

First Instruction: add $rd, $rs, $rt

• Add register file and ALU

P

C

Insn

Mem

Register

File

Op(6) rs(5) rt(5) rd(5) Sh(5) Func(6)R-type

s1 s2 d

+

4

rs

rt

rs + rt

18

Second Instruction: addi $rt, $rs, imm

• Destination register can now be either rd or rt

• Add sign extension unit and mux into second ALU input

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5)I-type Immed(16)

s1 s2 d

+

4

rs

Extended(imm)

sign extension (sx) unit

19

Third Instruction: lw $rt, imm($rs)

• Add data memory, address is ALU output (rs+imm)

• Add register write data mux to select memory output or ALU output

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5)I-type Immed(16)

s1 s2 d

Data

Mem

a

d

+

4

20

Fourth Instruction: sw $rt, imm($rs)

• Add path from second input register to data memory data input

• Disable RegFile’s WE signal

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5)I-type Immed(16)

s1 s2 d

Data

Mem

a

d

+

4

?

21

Fifth Instruction: beq $1,$2,target

• Add left shift unit (why?) and adder to compute PC-relative branch target

• Add mux to do what?

P

C

Insn

Mem

Register

File

S

X

Op(6) rs(5) rt(5)I-type Immed(16)

s1 s2 d

Data

Mem

a

d

+

4

<<

2

+

z

22

Sixth Instruction: j

• Add shifter to compute left shift of 26-bit immediate

• Add additional PC input mux for jump target

P

C

Insn

Mem

Register

File

S

X

Op(6)J-type Immed(26)

s1 s2 d

Data

Mem

a

d

+

4

<<

2

+

<<

2

23

Seventh, Eight, Ninth Instructions

• Are these the paths we would need for all instructions?
sll $1,$2,4 // shift left logical

• Like an arithmetic operation, but need a shifter too

slt $1,$2,$3 // set less than (slt)

• Like subtract, but need to write the condition bits, not the result

• Need zero extension unit for condition bits

• Need additional input to register write data mux

jal absolute_target // jump and link

• Like a jump, but also need to write PC+4 into $ra ($31)

• Need path from PC+4 adder to register write data mux

• Need to be able to specify $31 as an implicit destination

jr $31 // jump register

• Like a jump, but need path from register read to PC write mux

24

Clock Timing

• Must deliver clock(s) to avoid races

• Can’t write and read same value at same clock edge

• Particularly a problem for RegFile and Memory

• May create multiple clock edges (from single input clock) by
using buffers (to delay clock) and inverters

• For Homework 4 (the Duke 250/16 CPU):

• Keep the clock SIMPLE and GLOBAL

• You may need to do the PC on falling edge and everything else on
rising edge

• Changing clock edges in this way will separate PC++ from logic

• Otherwise, if the PC changes while the operation is occurring, the
instruction bits will change before the answer is computed ->
non-deterministic behavior 

• Note: A cheap way to make something trigger on the other clock
edge is to NOT the clock on the way in to that component

25

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Clocking strategies

• Mapping an ISA to a datapath

• Control

• Exceptions

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

26

What Is Control?

• 9 signals control flow of data through this datapath

• MUX selectors, or register/memory write enable signals

• Datapath of current microprocessor has 100s of control signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

27

Example: Control for add

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

BR=0

JP=0

Rwd=0

DMwe=0ALUop=0

ALUinB=0Rdst=1

Rwe=1

• Rwe: Register Write Enable

• Rdst: Register Destination chooser

• ALUinB: ALU input B chooser

• ALUop: ALU operation (multi-bit)

• DMwe: Data Memory Write Enable

• Rwd: Register Write Data chooser

• BR: Branch?

• JP: Jump?

28

Example: Control for sw

• Difference between a sw and an add is 5 signals

• 3 if you don’t count the X (“don’t care”) signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe=0

ALUinB=1

DMwe=1

JP=0

ALUop=0

BR=0

Rwd=X

Rdst=X

29

Example: Control for beq $1,$2,target

• Difference between a store and a branch is only 4 signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe=0

ALUinB=0

DMwe=0

JP=0

ALUop=1

BR=1

Rwd=X

Rdst=X

30

How Is Control Implemented?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control?

31

Implementing Control

• Each instruction has a unique set of control signals

• Most signals are function of opcode

• Some may be encoded in the instruction itself

• E.g., the ALUop signal is some portion of the MIPS Func field

+ Simplifies controller implementation

– Requires careful ISA design

• Options for implementing control

1. Use instruction type to look up control signals in a table

2. Design combinational logic whose outputs are control signals

• Either way, goal is same: turn instruction into control signals

32

Control Implementation: ROM

• ROM (read only memory): like a RAM but unwritable

• Bits in data words are control signals

• Lines indexed by opcode

• Example: ROM control for our simple datapath

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd

add 0 0 0 0 0 1 1 0

addi 0 0 1 0 0 1 0 0

lw 0 0 1 0 0 1 0 1

sw 0 0 1 0 1 0 0 0

beq 1 0 0 1 0 0 0 0

j 0 1 0 0 0 0 0 0

opcode

33

ROM vs. Combinational Logic

• A control ROM is fine for 6 insns and 9 control signals

• A real machine has 100+ insns and 300+ control signals

• Even “RISC”s have lots of instructions

• 30,000+ control bits (~4KB)

– Not huge, but hard to make fast

• Control must be faster than datapath

• Alternative: combinational logic

• It’s that thing we know how to do! Nice!

• Exploits observation: many signals have few 1s or few 0s

34

ALUinB

Control Implementation Combinational Logic with a
Decoder (one-hot representation)

• Example: combinational logic control for our simple datapath

opcode add

addi

lw

sw

beq

j

BR JP DMwe Rwd Rdst ALUopRwe

35

Datapath and Control Timing

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

Control (ROM or combinational logic)

Read IMem Read Registers

(Read Control ROM)

Read DMEM Write DMEM
Write Registers

Write PC

How do we sub-divide timing like this? Pipelining! (Covered later)

36

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Clocking strategies

• Mapping an ISA to a datapath

• Control

• Exceptions

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

37

Exceptions

• Exceptions and interrupts

• Infrequent (exceptional!) events

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer

• Handling requires intervention from operating system

• End program: divide-by-0, protection fault, illegal insn, ^C

• Fix and restart program: I/O, page fault, ^Z, timer

• Handling should be transparent to application code

• Don’t want to (can’t) constantly check for these using insns

• Want “Fix and restart” equivalent to “never happened”

38

Exception Handling

• What does exception handling look like to software?

• When exception happens…

• Control transfers to OS at pre-specified exception handler address

• OS has privileged access to registers user processes do not see

• These registers hold information about exception

• Cause of exception (e.g., page fault, arithmetic overflow)

• Other exception info (e.g., address that caused page fault)

• PC of application insn to return to after exception is fixed

• OS uses privileged (and non-privileged) registers to do its “thing”

• OS returns control to user application

• Same mechanism available programmatically via SYSCALL

39

MIPS Exception Handling

• MIPS uses registers to hold state during exception handling

• These registers live on “coprocessor 0”

• $14: EPC (holds PC of user program during exception handling)

• $13: exception type (SYSCALL, overflow, etc.)

• $8: virtual address (that produced page/protection fault)

• $12: exception mask (which exceptions trigger OS)

• Exception registers accessed using two privileged
instructions mfc0, mtc0

• Privileged = user process can’t execute them

• mfc0: move (register) from coprocessor 0 (to user reg)

• mtc0: move (register) to coprocessor 0 (from user reg)

• Privileged instruction rfe restores user mode

• Kernel executes this instruction to restore user program

40

MIPS Exception Handling

• MIPS uses registers to hold state during exception handling

• These registers live on “coprocessor 0”

• $14: EPC (holds PC of user program during exception handling)

• $13: exception type (SYSCALL, overflow, etc.)

• $8: virtual address (that produced page/protection fault)

• $12: exception mask (which exceptions trigger OS)

• Exception registers accessed using two privileged
instructions mfc0, mtc0

• Privileged = user process can’t execute them

• mfc0: move (register) from coprocessor 0 (to user reg)

• mtc0: move (register) to coprocessor 0 (from user reg)

• Privileged instruction rfe restores user mode

• Kernel executes this instruction to restore user program

41

Implementing Exceptions

• Why do architects care about exceptions?

• Because we use datapath and control to implement them

• More precisely… to implement aspects of exception handling

• Recognition of exceptions

• Transfer of control to OS

• Privileged OS mode

• Later in semester, we’ll talk more about exceptions (b/c we
need them for I/O)

42

Datapath with Support for Exceptions

• Co-processor register (CR) file needn’t be implemented as RF

• Independent registers connected directly to pertinent muxes

• PSR (processor status register): in privileged mode?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

I

R
B

A

O

D

Co-procesor

Register File

P

S

R

ALUinAC

PCwC

CRwd CRwe

PSRs

PSRr

43

Summary

• We now know how to build a fully functional processor

• But …

• We’re still treating memory as a black box (actually two green boxes, to
be precise)

• Our fully functional processor is slow. Really, really slow.

44

“Single-Cycle” Performance

• Useful metric: cycles per instruction (CPI)

+ Easy to calculate for single-cycle processor: CPI = 1

• Seconds/program = (insns/program) * 1 CPI * (N seconds/cycle)

• ICQ: How many cycles/second in 3.8 GHz processor?

– Slow!

• Clock period must be elongated to accommodate longest operation

• In our datapath: lw

• Goes through five structures in series: insn mem, register file
(read), ALU, data mem, register file again (write)

• No one will buy a machine with a slow clock

• Not even your grandparents!

• Biggest issue: data memory itself is sloooooooooooooooooooooooow

• Next up: Speed up data memory!

• Later on: Faster processor cores!

45

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Clocking strategies

• Mapping an ISA to a datapath

• Control

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Next up: Memory Systems

