
ECE/CS 250
Computer Architecture

Fall 2021

Caches and Memory Hierarchies

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Amir Roth (Penn), and Alvin Lebeck (Duke)

2

Where We Are in This Course Right Now

• So far:

• We know how to design a processor that can fetch, decode, and
execute the instructions in an ISA

• We have assumed that memory storage (for instructions and data) is a
magic black box

• Now:

• We learn why memory storage systems are hierarchical

• We learn about caches and SRAM technology for caches

• Next:

• We learn how to implement main memory

3

Readings

• Patterson and Hennessy

• Chapter 5

4

What is memory made of?

???

5

Computer layout (as far as you know so far)

processor

core

(CPU)

RANDOM ACCESS MEMORY

(RAM)

2N bytes of storage, where

N=32 or 64 (if 32-bit or 64-bit

ISA)

instruction fetch requests;

load requests;

stores

fetched instructions;

loaded data

Access latency of memory is proportional to its
size. Accessing 4GB of memory would take
hundreds of cycles → way too long.

6

What is RAM made of?

• We could implement RAM as a vast number of D flip-flops

• Too big! Our goal is density (bits/area)

• D Flip-flop is ~32 transistors!

Let’s use analog circuit properties to make more efficient RAM…

• Two main types of RAM:

• Static RAM (SRAM)

• Expensive, fast, usually fairly small

• Bits stored in two NOT gates (4 transistors)

• Dynamic RAM (DRAM)

• Cheap, slower, can be very large

• Bits stored in capacitors (with 1 transistor)

• Capacitors slowly drain and need to be refilled:
Need to refresh data in DRAM periodically (makes it slower)

Transistor

Capacitor

NOT

NOT

7

Static Random Access Memory (SRAM)

• Implemented as a big 2D array:

• One dimension is which word do
you want (“wordlines”)

• The other dimension are the bits of
that word (“bitlines”)

• Slides at end of deck go deeper

• Why “static”?

• A written bit maintains its value
(doesn’t leak out)

• But still volatile → bit loses
value if chip loses power

• Designed for speed

a
d

d
re

s
s

? ?

? ?

? ?

? ?

data

wordline

wordline

wordline

wordline

bitlinebitline

8

SRAM Executive Summary

• Large storage arrays cannot be implemented “digitally”

• Muxing and wire routing become impractical

• SRAM implementation exploits analog transistor properties

• Inverter pair bits much smaller than flip-flop bits

• Wordline/bitline arrangement makes for simple “grid-like” routing

• Basic understanding of reading and writing

• Wordlines select words (which address)

• To write, we overwhelm the inverter-pair

• Access latency proportional to √#bits * #ports

9© Daniel J. Sorin from Roth

Dynamic RAM (DRAM)

• DRAM: dynamic RAM

• Bits as capacitors (if charge, bit=1)

• “Pass transistors” as ports

• One transistor per bit/port

• “Dynamic” means

• Capacitors not connected to power/gnd

• Stored charge decays over time

• Must be explicitly refreshed

• Designed for density

a
d

d
re

s
s

data

wordline

bitline bitline

wordline

wordline

wordline

10© Daniel J. Sorin from Roth

Moore’s Law (DRAM chip capacity)

• Commodity DRAM parameters

• 16X increase in capacity every 8 years = 2X every 2 years

• Not quite 2X every 18 months (Moore’s Law) but still close

Year Capacity $/MB Access time

1980 64Kb $1500 250ns

1988 4Mb $50 120ns

1996 64Mb $10 60ns

2004 1Gb $0.5 35ns

2008 2Gb ~$0.15 20ns

2013 8Gb ~$0 <10ns

11© Daniel J. Sorin from Roth

Access Time and Cycle Time

• DRAM access much slower than SRAM

• More bits → longer wires

• SRAM access latency: 2–3ns

• DRAM access latency: 20-35ns

• DRAM cycle time also longer than access time

• Cycle time: time between start of consecutive accesses

• SRAM: cycle time = access time

• Begin second access as soon as first access finishes

• DRAM: cycle time = 2 * access time

• Why? Can’t begin new access while DRAM is refreshing row

12

How do we use SRAM and DRAM?

• Making a little embedded chip with 8kB RAM?

• Use SRAM. It’s fine.

• Making a laptop and need 8GB RAM?

• Can’t use SRAM – not practical

• Must use DRAM!

• But it’s big, so it’s slow!

• And it’s DRAM, so it’s even slower!

• CPU might otherwise be able to do 100+ instructions
in time it takes for ONE read from DRAM!

13

Introducing caching

14

Motivation

• Problem: Large memory must be made of DRAM;
DRAM is too dang slow

• Thing we have access to: some SRAM, which is fast, but small

• Can we duct tape the SRAM on top of the DRAM and
get the best of both worlds??????

• Answer: yes, but it’s a little complicated.

• We’ll start with an analogy…

15

An Analogy: Duke’s Library System

• Student keeps small subset of Duke library
books on bookshelf at home

• Books she’s actively reading/using

• Small subset of all books owned by Duke

• Fast access time

• If book not on her shelf, she goes to
Perkins

• Much larger subset of all books owned by Duke

• Takes longer to get books from Perkins

• If book not at Perkins, must get from off-
site storage

• Guaranteed (in my analogy) to get book at this
point

• Takes much longer to get books from here

Student

shelf

Perkins

Off-Site

storage

16

An Analogy: Duke’s Library System

• CPU keeps small subset of memory in its
level-1 (L1) cache

• Data it’s actively reading/using

• Small subset of all data in memory

• Fast access time

• If data not in CPU’s cache, CPU goes to
level-2 (L2) cache

• Much larger subset of all data in memory

• Takes longer to get data from L2 cache

• If data not in L2 cache, must get from main
memory

• Guaranteed to get data at this point

• Takes much longer to get data from here

CPU

L1 cache

L2 cache

Memory

17

Big Concept: Memory Hierarchy

• Use hierarchy of memory components

• Upper components (closer to CPU)

• Fast Small Expensive

• Lower components (further from CPU)

• Slow Big Cheap

• Bottom component (for now!) = what we have
been calling “memory” until now

• Make average access time close to L1’s

• How?

• Most frequently accessed data in L1

• L1 + next most frequently accessed in L2, etc.

• Automatically move data up & down hierarchy

CPU

L1

L2

L3

Memory

18

Some Terminology

• If we access a level of memory and find what we want →
called a hit

• If we access a level of memory and do NOT find what we
want → called a miss

19

Some Goals

• Key 1: High “hit rate” → high probability of finding what we
want at a given level

• Key 2: Low access latency

• Misses are expensive (take a long time)

• Try to avoid them

• But, if they happen, amortize their costs → bring in more than just the
specific word you want → bring in a whole block of data (multiple
words)

20

Blocks

• Block = a group of spatially contiguous and aligned bytes

• Typical sizes are 32B, 64B, 128B

• Spatially contiguous and aligned

• Example: 32B blocks

• Blocks = [address 0- address 31], [32-63], [64-95], etc.

• NOT:

• [13-44] = unaligned

• [0-22, 26-34] = not contiguous

• [0-20] = wrong size (not 32B)

21

Why Hierarchy Works For Duke Books

• Temporal locality

• Recently accessed book likely to be accessed again soon

• Spatial locality

• Books near recently accessed book likely to be accessed soon
(assuming spatially nearby books are on same topic)

22

Why Hierarchy Works for Memory

• Temporal locality

• Recently executed instructions likely to be executed again soon

• Loops

• Recently referenced data likely to be referenced again soon

• Data in loops, hot global data

• Spatial locality

• Insns near recently executed insns likely to be executed soon

• Sequential execution

• Data near recently referenced data likely to be referenced soon

• Elements in array, fields in struct, variables in stack frame

• Locality is one of the most important concepts in computer
architecture → don’t forget it!

23

Hierarchy Leverages Non-Uniform Patterns

• 10/90 rule (of thumb)

• For Instruction Memory:

• 10% of static insns account for 90% of executed insns

• Inner loops

• For Data Memory:

• 10% of variables account for 90% of accesses

• Frequently used globals, inner loop stack variables

• What if processor accessed every block with equal likelihood?
Small caches wouldn’t help much.

24

Memory Hierarchy: All About Performance

tavg = thit + %miss * tmiss

• tavg = average time to satisfy request at given level of hierarchy

• thit = time to hit (or discover miss) at given level

• tmiss = time to satisfy miss at given level

• Problem: hard to get low thit and %miss in one structure

• Large structures have low %miss but high thit

• Small structures have low thit but high %miss

• Solution: use a hierarchy of memory structures

“Ideally, one would desire an infinitely large memory capacity such that any
particular word would be immediately available … We are forced to recognize
the possibility of constructing a hierarchy of memories, each of which has a
greater capacity than the preceding but which is less quickly accessible.”

Burks, Goldstine, and Von Neumann, 1946

25

Memory Performance Equation

• For memory component M

• Access: read or write to M

• Hit: desired data found in M

• Miss: desired data not found in M

• Must get from another (slower) component

• Fill: action of placing data in M

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) M

• tmiss: time to read data into M from lower level

• Performance metric

• tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

Cache

thit

tmiss

%miss

26

Abstract Hierarchy Performance

tmiss-L3 = tavg-Mem

CPU

L1

L2

L3

Memory

tmiss-L2 = tavg-L3

tmiss-L1 = tavg-L2

tavg = tavg-L1

How do we compute tavg ?

=tavg-L1

=thit-L1 +(%miss-L1*tmiss-L1)

=thit-L1 +(%miss-L1*tavg-L2)

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tmiss-L2)))

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tavg-L3)))

= …

27

Typical Memory Hierarchy

• 1st level: L1 I$, L1 D$ (L1 insn/data caches)

• 2nd level: L2 cache (L2$)

• Also on same chip with CPU

• Made of SRAM (same circuit type as CPU)

• Managed in hardware

• This unit of ECE/CS 250

• 3rd level: main memory

• Made of DRAM

• Managed in software

• Next unit of ECE/CS 250

• 4th level: disk (swap space)

• Made of magnetic iron oxide discs

• Managed in software

• Course unit after main memory

• Could be other levels (e.g., Flash, PCM, tape, etc.)

CPU

D$

L2

Main

Memory

I$

Disk(swap)

Note: many

processors have L3$

between L2$ and

memory

28

Concrete Memory Hierarchy

• Much of today’s chips used for caches → important!

L2$

P

C

Insn

Mem

L1I$

Register

File

S

X

s1 s2 d

Data

Mem

L1D$

a

d

+

4

<<

2
<<

2 JP

BR

29

A Typical Die Photo

L2 Cache

Intel Pentium4

Prescott chip with

2MB L2$

30

A Closer Look at that Die Photo

Intel Pentium chip

with 2x16kB split

L1$

31

A Multicore Die Photo from IBM

IBM’s Xenon chip

with 3 PowerPC

cores

32

This Unit: Caches and Memory Hierarchies

• Memory hierarchy

• Cache organization

• Cache implementation

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

33

Back to Our Library Analogy

• This is a base-10 (not base-2) analogy

• Assumptions

• 1,000,000 books (blocks) in library (memory)

• Each book has 10 chapters (bytes)

• Every chapter of every book has its own unique number (address)

• E.g., chapter 3 of book 2 has number 23

• E.g., chapter 8 of book 110 has number 1108

• My bookshelf (cache) has room for 10 books

• Call each place for a book a “frame”

• The number of frames is the “capacity” of the shelf

• I make requests (loads, fetches) for 1 or more chapters at a time

• But everything else is done at book granularity (not chapter)

34

Organizing My Bookshelf (cache!)

• Two extreme organizations of flexibility (associativity)

• Most flexible: any book can go anywhere (i.e., in any frame)

• Least flexible: a given book can only go in one frame

• In between the extremes

• A given book can only go in a subset of frames (e.g., 1 or 10)

• If not most flexible, how to map book to frame?

35

Least Flexible Organization: Direct-mapped

• Least flexible (direct-mapped)

• Book X maps to frame X mod 10

• Book 0 in frame 0

• Book 1 in frame 1

• Book 9 in frame 9

• Book 10 in frame 0

• Etc.

• What happens if you want to keep book 3 and
book 23 on shelf at same time? You can’t!
Have to replace (evict) one to make room for
other.

frame 0

frame 9

This spot reserved

for a book ending in

‘0’ (0, 10, 20, etc.)

This spot reserved

for a book ending in

‘1’ (1, 11, 21, etc.)

This spot reserved

for a book ending in

‘9’ (9, 19, 29, etc.)

36

Most Flexible Organization: Fully Associative

• Keep same shelf capacity (10 frames)

• Allow a book to be in any frame

• fully-associative

• Whole shelf is one set

• Ten ways in this set

• Book could be in any way of set

• All books map to set 0 (only 1 set!)

set 0

way 0 way 1 way 9

You can put any

book in any of these

ten spots.

Go nuts.

37

In-between Flexibility (Associativity)

• Keep same shelf capacity (10 frames)

• Now allow a book to map to multiple frames

• Frames now grouped into sets

• If 2 frames/set, 2-way set-associative

• 1-to-1 mapping of book to set

• 1-to-many mapping of book to frame

• If 5 sets, book X maps to set X mod 5

• Book 0 in set 0

• Book 1 in set 1

• Book 4 in set 4

• Book 5 in set 0

• Etc.

set 0

set 4

way 0 way 1

These two spots

reserved for books

ending in ‘0’ or ‘5’

(0, 5, 10, 15, etc.)

These two spots

reserved for books

ending in ‘1’ or ‘6’

(1, 6, 11, 16, etc.)

These two spots

reserved for books

ending in ‘4’ or ‘9’

(4, 9, 14, 19, etc.)

38

Reminder about book/chapter numbers

• Remember how we’re numbering our books and chapters:

13625

• If we’re talking about a whole book (block),
discard the chapter number:

1362 <- Book number

Book number Chapter number

40

Tagging Books on Shelf

• Let’s go back to direct-mapped organization (w/10 sets)

• How do we find if book is on shelf?

• Consider book 1362

• At library, just go to location 1362 and it’s there

• But shelf doesn’t have 1362 locations

• OK, so go to set 1362%10=2

• If book is on shelf, it’s there

• But same is true for other books!

• Books 2, 12, 22, 32, etc.

• How do we know which one is there?

• Must tag each book to distinguish it

set 0

set 9

41

How to Tag Books on Shelf

• Still assuming direct-mapped shelf

• How to tag book 1362?

• Must distinguish it from other books that
could be in same set

• Other books that map to same set (2)?

• 2, 12, 22, 32, … 112, 122, … 2002, etc.

• Could tag with entire book number

• But that’s overkill – we already know last digit

• Tag for 1362 = 136

set 0

set 9

42

How to Find Book on Shelf

• Consider direct-mapped shelf

• How to find if book 1362 is on shelf?

• Step 1: go to right set (set 2)

• Step 2: check every frame in set

• If tag of book in frame matches tag of
requested book, then it’s a match (hit)

• Else, it’s a miss

set 0

set 9

43

Revisiting book/chapter numbers

• Remember how we’re numbering our books and chapters:

13625

• If we’re talking about a whole book (block),
discard the chapter number:

1362 <- Book number

• Now we’re shaving off a digit to distinguish:

• Index (which set?)
vs.

• Tag (of all the books that could go in this set, which is this one?)

• Putting it together:

13625

Book number Chapter number

Tag Chapter number
Index

44

From Library/Book Analogy to Computer

• If you understand this library/book analogy, then you’re
ready for computer caches

• Everything is similar in computer caches, but remember
that computers use base-2 (not base-10)

45

Cache Structure

• A cache (shelf) consists of frames, and each frame is the
storage to hold one block of data (book)

• Also holds a “valid” bit and a “tag” to label the block in that frame

• Valid: if 1, frame holds valid data; if 0, data is invalid

• Useful? Yes. Example: when you turn on computer, cache is full of
invalid “data” (better examples later in course)

• Tag: specifies which block is living in this frame

• Useful? Yes. Far fewer frames than blocks of memory!

valid “tag” block data

1 [64-95] 32 bytes of valid data

0 [0-31] 32 bytes of junk

1 [0-31] 32 bytes of valid data

1 [1024-1055] 32 bytes of valid data

46

Cache Structure

• A cache (shelf) consists of frames, and each frame is the
storage to hold one block of data (book)

• Also holds a “valid” bit and a “tag” to label the block in that frame

• Valid: if 1, frame holds valid data; if 0, data is invalid

• Useful? Yes. Example: when you turn on computer, cache is full of
invalid “data” (better examples later in course)

• Tag: specifies which block is living in this frame

• Useful? Yes. Far fewer frames than blocks of memory!

valid “tag” block data

1 [64-95] 32 bytes of valid data

0 [0-31] 32 bytes of junk

1 [0-31] 32 bytes of valid data

1 [1024-1055] 32 bytes of valid data

I write “tag” in quotes because I’m not using a proper tag, as we’ll see

later. I’m using “tag” now to label the block. For example, a “tag” of

[64-95] denotes that the block in this frame is the block that goes from

address 64 to address 95. This “tag” uniquely identifies the block,

which is its purpose, but it’s overkill as we’ll see later.

47

Cache Example (very simplified for now)

• When computer turned on, no valid data in cache
(everything is zero, including valid bits)

valid “tag” block data

0 [0-31] 32 bytes of junk

0 [0-31] 32 bytes of junk

0 [0-31] 32 bytes of junk

0 [0-31] 32 bytes of junk

48

Cache Example (very simplified for now)

• Assume CPU asks for word (book chapters) at byte
addresses [32-35]

• Either due to a load or an instruction fetch

• Word [32-35] is part of block [32-63]

• Miss! No blocks in cache yet

• Fill cache (from lower level) with block [32-63]

• don’t forget to set valid bit and write tag

valid “tag” block data

1 [32-63] 32 bytes of valid data

0 [0-31] 32 bytes of junk

0 [0-31] 32 bytes of junk

0 [0-31] 32 bytes of junk

49

Cache Example (very simplified for now)

• Assume CPU asks for word [1028-1031]

• Either due to a load or an instruction fetch

• Word [1028-1031] is part of block [1024-1055]

• Miss!

• Fill cache (from lower level) with block [1024-1055]

valid “tag” block data

1 [32-63] 32 bytes of valid data

1 [1024-1055] 32 bytes of valid data

0 [0-31] 32 bytes of junk

0 [0-31] 32 bytes of junk

50

Cache Example (very simplified for now)

• Assume CPU asks (again!) for word [1028-1031]

• Hit! Hooray for temporal locality

• Assume CPU asks for word [1032-1035]

• Hit! Hooray for spatial locality

• Assume CPU asks for word [0-3]

• Miss! Don’t forget those valid bits.

valid “tag” block data

1 [32-63] 32 bytes of valid data

1 [1024-1055] 32 bytes of valid data

0 [0-31] 32 bytes of junk

0 [0-31] 32 bytes of junk

51

Where to Put Blocks in Cache

• How to decide which frame holds which block?

• And then how to find block we’re looking for?

• Some more cache structure:

• Divide cache into sets

• A block can only go in its set

• Each set holds some number of frames = set associativity

• E.g., 4 frames per set = 4-way set-associative

• The two extremes of set-associativity

• Whole cache has just one set = fully associative

• Most flexible (longest access latency)

• Each set has 1 frame = 1-way set-associative = ”direct mapped”

• Least flexible (shortest access latency)

52

Mod vs
the bits

Base 10 Base 2

num num/8 num%8 num num/8 num>>3 num&7 num%8

0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 1

2 0 2 10 0 0 10 10

3 0 3 11 0 0 11 11

4 0 4 100 0 0 100 100

5 0 5 101 0 0 101 101

6 0 6 110 0 0 110 110

7 0 7 111 0 0 111 111

8 1 0 1000 1 1 0 0

9 1 1 1001 1 1 1 1

10 1 2 1010 1 1 10 10

11 1 3 1011 1 1 11 11

12 1 4 1100 1 1 100 100

13 1 5 1101 1 1 101 101

14 1 6 1110 1 1 110 110

15 1 7 1111 1 1 111 111

16 2 0 10000 10 10 0 0

17 2 1 10001 10 10 1 1

18 2 2 10010 10 10 10 10

19 2 3 10011 10 10 11 11

20 2 4 10100 10 10 100 100

21 2 5 10101 10 10 101 101

22 2 6 10110 10 10 110 110

23 2 7 10111 10 10 111 111

24 3 0 11000 11 11 0 0

25 3 1 11001 11 11 1 1

26 3 2 11010 11 11 10 10

27 3 3 11011 11 11 11 11

28 3 4 11100 11 11 100 100

29 3 5 11101 11 11 101 101

30 3 6 11110 11 11 110 110

31 3 7 11111 11 11 111 111

32 4 0 100000 100 100 0 0

33 4 1 100001 100 100 1 1

34 4 2 100010 100 100 10 10

35 4 3 100011 100 100 11 11

Divide and modulo by

powers of two is like

splitting up bit fields!

Example:

11101 (29 decimal)

Want to split last 3 bits?

11101

^ ^

3 5

By div and mod:

29 / 23 = 29/8 = 3

29 % 23 = 29%8 = 5

While learning, we’ll

show div and mod.

Then we’ll switch to

bits!

53

Direct-Mapped (1-way) Cache

• Assume 8B blocks

• 4 sets, 1 way/set → 4 frames

• Each block can only be put into
1 set (1 option)

• Block [0-7] → set 0

• Block [8-15] → set 1

• Block [16-23] → set 2

• Block [24-31] → set 3

• Block [32-39] → set 0

• Block [40-47] → set 1

• Block [48-55] → set 2

• Block [56-63] → set 3

• …

• Block [X-(X+7)] → set (X/8)%4

way 0

valid tag data

set 0

set 1

set 2

set 3

54

Direct-Mapped (1-way) Cache

• Assume 8B blocks

• Consider the following stream
of 1-byte requests from the
CPU:

• 2, 11, 5, 50, 67, 51, 3

• Which hit? Which miss?

• First find
out where
they live:

way 0

valid tag data

set 0

set 1

set 2

set 3Address Blk# Set

2 0 0

11 1 1

5 0 0

50 6 2

67 8 0

51 6 2

3 0 0

512 64 0

1024 128 0

2 0 0

Set=Blk# % NumSets

Blk#=(Addr/Blocksize)

55

Problem with Direct Mapped Caches

• Assume 8B blocks

• Consider the following stream
of 1-byte requests from the
CPU:

• 2, 35, 2, 35, 2, 35, 2, 35, …

• Which hit? Which miss?

• Did we make good use of all of
our cache capacity?

way 0

valid tag data

set 0

set 1

set 2

set 3

Address Set

2 0

35 0

56

2-Way Set-Associativity

• 2 sets, 2 ways/set → 4 frames (just like our 1-way cache)

• Block [0-7] → set 0

• Block [8-15] → set 1

• Block [16-23] → set 0

• Block [24-31] → set 1

• Block [32-39] → set 0

• Etc.

way 0 way 1

valid tag data valid tag data

set 0

set 1

57

2-Way Set-Associativity

• Assume the same pathological stream of CPU requests:

• Byte addresses 2, 35, 2, 35, 2, 35, etc.

• Which hit? Which miss?

• Now how about this: 2, 35, 65, 2, 35, 67, etc.

• How much more associativity can we have?

way 0 way 1

valid tag data valid tag data

set 0

set 1

58

Full Associativity

• 1 set, 4 ways/set → 4 frames (just like previous examples)

• Block [0-7] → set 0

• Block [8-15] → set 0

• Block [16-23] → set 0

• Etc.

way 0 way 1 way 2 way 3

v t d v t d v t d v t d

set 0

59

Mapping Addresses to Sets

• MIPS has 32-bit addresses

• Let’s break down address into three components

• If blocks are 8B, then log28=3 bits required to identify a
byte within a block. These bits are called block offset.

• Given block, offset (book chapter) tells you which byte within block

• If there are S sets, then log2S bits required to identify the
set. These bits are called set index or just index.

• Rest of the bits (32 - 3 - log2S) specify the tag

Tag Index Block offset

60

Mapping Addresses to Sets

• How many blocks map to the same set?

• Let’s assume 8-byte blocks

• 8=23
→ 3 bits to specify block offset

• Let’s assume we have direct-mapped cache with 256 sets

• 256 sets =28 sets → 8 bits to specify set index

• 232 bytes of memory/(8 bytes/block) = 229 blocks

• 229 blocks / 256 sets = 221 blocks / set

• So that means we need 221 tags to distinguish between all
possible blocks in the set → 21 tag bits

• Note: 21=32-3-8 ☺

Tag
(21 bits)

Index
(8 bits)

Block offset
(3 bits)

61

Mapping Addresses to Sets

• Assume cache from previous slide (8B blocks, 256 sets)

• Example: What do we do with the address 58?

0000 0000 0000 0000 0000 0000 0011 1010

• offset = 2 (2nd byte in block)

• index=7 (set 7)

• tag = 0

• This matches what we did before – recall:

• Block [0-7] → set 0

• Block [8-15] → set 1

• Block [16-23] → set 2

• etc.

Tag
(21 bits)

Index
(8 bits)

Block offset
(3 bits)

62

Cache Replacement Policies

• Set-associative caches present a new design choice

• On cache miss, which block in set to replace (kick out)?

• Some options

• Random

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used)

• An easier-to-implement approximation of LRU

• NMRU=LRU for 2-way set-associative caches

63

ABCs of Cache Design

• Architects control three primary aspects of cache design

• And can choose for each cache independently

• A = Associativity

• B = Block size

• C = Capacity of cache

• Secondary aspects of cache design

• Replacement algorithm

• Some other more subtle issues we’ll discuss later

64←word_size→

Cache structure math: cache design

• Given associativity (ways), block_size, capacity, and
word_size.

• Cache parameters:

• num_frames = capacity / block_size

• sets = num_frames / ways = capacity / block_size / ways

• Address bit fields:

• offset_bits = log2(block_size)

• index_bits = log2(sets)

• tag_bits = word_size - index_bits - offset_bits

Tag
←tag_bits→

Index
←index_bits→

Block offset
←offset_bits→

65

Cache structure math: address decomposition

• Way to get offset/index/tag from address (bitwise & numeric):

• block_offset = addr & ones(offset_bits)
= addr % block_size

• index = (addr >> offset_bits) & ones(index_bits)
= (addr / block_size) % sets

• tag = addr >> (offset_bits+index_bits)
= addr / (sets*block_size)

Tag
←tag_bits→

Index
←index_bits→

Block offset
←offset_bits→

66

Cache structure math: example

• Example: a 16-bit computer with a 1kB 4-way cache,
block size 16

value units eqn

wordsize 16 bits given

associativity (ways) 4 ways given

block size 16 bytes given

capacity 1024 bytes given

num frames 64 frames capacity / block_size

sets 16 sets num_frames / ways

offest bits 4 bits lg(block_size)

index bits 4 bits lg(sets)

tag bits 8 bits wordsize-index_bits-offset_bits

Decimal 0 Hex
addr/(sets*block_size) (addr/block_size)%sets addr%block_size addr[15:8] addr[7:4] addr[3:0]

addr tag index block_offset addr tag index block_offset
0 0 0 0 0000 0 0 0
1 0 0 1 0001 0 0 1
2 0 0 2 0002 0 0 2

16 0 1 0 0010 0 1 0
32 0 2 0 0020 0 2 0
48 0 3 0 0030 0 3 0

256 1 0 0 0100 1 0 0
512 2 0 0 0200 2 0 0
768 3 0 0 0300 3 0 0

67

Analyzing Cache Misses: 3C Model

• Divide cache misses into three categories

• Compulsory (cold): never seen this address before

• Easy to identify

• Capacity: miss caused because cache is too small – would’ve been
miss even if cache had been fully associative

• Consecutive accesses to block separated by accesses to at least N
other distinct blocks where N is number of frames in cache

• Conflict: miss caused because cache associativity is too low – would’ve
been hit if cache had been fully associative

• All other misses

Got a miss. Seen this
block before?

How many unique blocks
were seen since this one

was last seen (including it)?

Cold miss Capacity miss Conflict miss

Y

N > Capacity (in frames) < Capacity (in frames)

68

3C Example

• Assume 8B blocks

• Consider the following stream
of 1-byte requests from the
CPU:

• 2, 11, 5, 50, 67, 128, 256, 512,
1024, 2

• Is the last access a capacity miss
or a conflict miss?

way 0

valid tag data

set 0

set 1

set 2

set 3

set 4

set 5

set 6

set 7

Location Set

2 0

11 1

5 0

50 6

67 0

128 0

256 0

512 0

1024 0

2 0

69

ABCs of Cache Design and 3C Model

• Associativity (increase, all else equal)

+ Decreases conflict misses

– Increases thit

• Block size (increase, all else equal)

– Increases conflict misses

+ Decreases compulsory misses

± Increases or decreases capacity misses

• Negligible effect on thit

• Capacity (increase, all else equal)

+ Decreases capacity misses

– Increases thit

more columns (ways),

fewer rows (sets),

same area

fewer rows (sets),

bigger blocks,

same area

more area via

more rows (sets)

70

Inclusion/Exclusion

• If L2 holds superset of every block in L1, then L2 is inclusive
with respect to L1

• If L2 holds no block that is in L1, then L2 and L1 are
exclusive

• L2 could be neither inclusive nor exclusive

• Has some blocks in L1 but not all

• This issue matters a lot for multicores, but not a major issue
in this class

• Same issue for L3/L2

71

Stores: Write-Through vs. Write-Back

• When to propagate new value to (lower level) memory?

• Write-through: immediately (as soon as store writes to this level)

+ Conceptually simpler

+ Uniform latency on misses

– Requires additional bandwidth to next level

• Write-back: later, when block is replaced from this level

• Requires additional “dirty” bit per block → why?

+ Minimal bandwidth to next level

• Only write back dirty blocks

– Non-uniform miss latency

• Miss that evicts clean block: just a fill from lower level

• Miss that evicts dirty block: writeback dirty block and then fill
from lower level

72

Stores: Write-allocate vs. Write-non-allocate

• What to do on a write miss?

• Write-allocate: read block from lower level, write value into it

+ Decreases read misses

– Requires additional bandwidth

• Use with write-back

• Write-non-allocate: just write to next level

– Potentially more read misses

+ Uses less bandwidth

• Use with write-through

73

Cache behavior summary

Your cache is:

Write-through, write-no-allocate Write-back, write-allocate

We try to load And it's… in the cache
LOAD HIT: Take the block from cache and find
the word the CPU wanted and provide it. < Same as that

We try to load And it's… not in the cache

LOAD MISS: Go to the next lower level and fetch
the whole block, storing it in cache. We may
have to evict something to make room. Finally,
give the CPU the word it wanted.

< Same as that, *but* if the block we decide to
evict is dirty, we have to write the changes out to
the next lower level before evicting.

We try to store And it's… in the cache
STORE HIT: Commit the change to the copy in
cache *and* to the next lower level.

STORE HIT: Commit the change to the copy in
cache and *don't* change it in the next lower
level. Now this cache has the most up to date
copy, and the level under us is out of date. Mark
this block "dirty" so we remember to flush these
changes during eviction later.

We try to store And it's… not in the cache

STORE MISS: Commit the change to the next
lower level. Do *not* put the block into this
cache (that's "write-no-allocate").

STORE MISS: Bring the whole block into cache,
evicting something else if needed (and flushing it
to the lower level if it was dirty). Now that it's in
cache, update it in cache and mark it dirty, as
above.

74

Optimization: Write Buffer

• Write buffer: between cache and memory

• Write-through cache? Helps with store misses

+ Write to buffer to avoid waiting for next level

• Store misses become store hits

• Write-back cache? Helps with dirty misses

+ Allows you to do read (important part) first

1. Write dirty block to buffer

2. Read new block from next level to cache

3. Write buffer contents to next level

$

Next Level

1

2
3

75

Typical Processor Cache Hierarchy

• First level caches: optimized for thit and parallel access

• Insns and data in separate caches (I$, D$) → why?

• Capacity: 8–64KB, block size: 16–64B, associativity: 1–4

• Other: write-through or write-back

• thit: 1–4 cycles

• Second level cache (L2): optimized for %miss

• Insns and data in one cache for better utilization

• Capacity: 128KB–1MB, block size: 64–256B, associativity: 4–16

• Other: write-back

• thit: 10–20 cycles

• Third level caches (L3): also optimized for %miss

• Capacity: 2–16MB

• thit: ~30 cycles

76

Performance Calculation Example

• Parameters

• Reference stream: 20% stores, 80% loads

• L1 D$: thit = 1ns, %miss = 5%, write-through + write-buffer

• L2: thit = 10ns, %miss = 20%, write-back, 50% dirty blocks

• Main memory: thit = 50ns, %miss = 0%

• What is tavgL1D$ without an L2?

• Write-through+write-buffer means all stores effectively hit

• tmissL1D$ = thitM

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*thitM = 1ns+(0.8*0.05*50ns) = 3ns

• What is tavgD$ with an L2?

• tmissL1D$ = tavgL2

• Write-back (no buffer) means dirty misses cost double

• tavgL2 = thitL2+(1+%dirty)*%missL2*thitM = 10ns+(1.5*0.2*50ns) =25ns

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*tavgL2 = 1ns+(0.8*0.05*25ns) =2ns

77

Cost of Tags

• “4KB cache” means cache holds 4KB of data

• Called capacity

• Tag storage is considered overhead (not included in capacity)

• Calculate tag overhead of 4KB cache with 1024 4B frames

• Not including valid bits

• 4B frames → 2-bit offset

• 1024 frames → 10-bit index

• 32-bit address – 2-bit offset – 10-bit index = 20-bit tag

• 20-bit tag * 1024 frames = 20Kb tags = 2.5KB tags

• 63% overhead → much higher than usual because blocks are so small
(and cache is small)

78

Cache structure math summary

• Given capacity, block_size, ways (associativity), and
word_size.

• Cache parameters:

• num_frames = capacity / block_size

• sets = num_frames / ways = capacity / block_size / ways

• Address bit fields:

• offset_bits = log2(block_size)

• index_bits = log2(sets)

• tag_bits = word_size - index_bits - offset_bits

• Way to get offset/index/tag from address (bitwise & numeric):

• block_offset = addr & ones(offset_bits) = addr % block_size

• index = (addr >> offset_bits) & ones(index_bits)
= (addr / block_size) % sets

• tag = addr >> (offset_bits+index_bits) = addr / (sets*block_size)

ones(n) = a string of n ones = ((1<<n)-1)

Tag Index Block offset

79

What this means to the programmer

• If you’re writing code, you want good performance.

• The cache is crucial to getting good performance.

• The effect of the cache is influenced by the order of
memory accesses.

CONCLUSION:

The programmer can change the order of
memory accesses to improve performance!

80

Cache performance matters!

• A HUGE component of software performance is how it
interacts with cache

• Example:

Assume that x[i][j] is stored next to x[i][j+1] in memory
(“row major order”).

Which will have fewer cache misses?

for (k = 0; k < 100; k++)

for (j = 0; j < 100; j++)

for (i = 0; i < 5000; i++)

x[i][j] = 2 * x[i][j];

for (k = 0; k < 100; k++)

for (i = 0; i < 5000; i++)

for (j = 0; j < 100; j++)

x[i][j] = 2 * x[i][j];

A

B
Adapted from Lebeck and Porter (creative commons)

81

This Unit: Caches and Memory Hierarchies

• Memory hierarchy

• Cache organization

• Cache implementation

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

82

What do we make cache out of?

• We said that main memory had to be DRAM

• But DRAM is slow, so we invented caches

• But what are the caches made of?

• Do we know of a kind of RAM that is small but fast?

• SRAM!!!!

• Caches are made of SRAM. Let’s see how.

83

Basic Cache Structure

• Basic cache: array of block frames

• Example: 4KB cache made up of 1024 4B frames

• To find frame: decode part of address

• Which part?

• 32-bit address

• 4B blocks → 2 block offset bits locate
byte within block

• These are called offset bits

• 1024 frames → next 10 bits find frame

• These are the index bits

• Note: nothing says index must be these bits

• But these work best (think about why)

0

1

1021

1022

1023

2

3

[31:12]

data

[11:2] <<

CPUaddress

1024*32b

SRAM

bitlines

w
o
rd

lin
e
s

84

Basic Cache Structure

• Each frame can hold one of 220 blocks

• All blocks with same index bit pattern

• How to know which if any is currently there?

• To each frame attach tag and valid bit

• Compare frame tag to address tag bits

• No need to match index bits (why?)

• Lookup algorithm

• Read frame indicated by index bits

• If (tag matches && valid bit set)

then Hit → data is good

Else Miss → data is no good, wait

0

1

1021

1022

1023

2

3

1:0[31:12]

data

[11:2] <<

CPU
address

==

hit/miss

85

Set-Associativity

• Set-associativity

• Block can reside in one of few frames

• Frame groups called sets

• Each frame in set called a way

• This is 2-way set-associative (SA)

• 1-way → direct-mapped (DM)

• 1-set → fully-associative (FA)

+ Reduces conflicts

– Increases thit: additional mux

512

513

1022

1023

514

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

510

511

2

==

ways

s
e

ts

86

Set-Associativity

• Lookup algorithm

• Use index bits to find set

• Read data/tags in all frames in parallel

• Any (match && valid bit)?

• Then Hit

• Else Miss

• Notice tag/index/offset bits

512

513

1022

1023

514

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

510

511

2

==

87

NMRU and Miss Handling

• Add MRU field to each set

• MRU data is encoded “way”

• Hit? update MRU

• Fill? write enable ~MRU
512

513

1023

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

511

==

W
E

data from memory

~

W
E

88

Full-Associativity

• How to implement full (or at least high) associativity?

• Doing it this way is terribly inefficient

• 1K matches are unavoidable, but 1K data reads + 1K-to-1 mux?

1 1023

1:0[31:2] <<

CPU

==

0 1022

======

89

Normal RAM vs Content Addressable Memory

RAM

• Cell number 5, what are
you storing?

CAM

• Attention all cells, will the
owner of data “12” please
stand up?

i cant really think of a video game person

who is a CAM, so how about, like, isabelle?

90

Full-Associativity with CAMs

• CAM: content addressable memory

• Array of words with built-in comparators

• Matchlines instead of bitlines

• Output is “one-hot” encoding of match

• FA cache?

• Tags as CAM

• Data as RAM

0

1

1022

1023

1:0[31:2] <<

==

==

==

==

91

CAM Upshot

• CAMs are effective but expensive

– Matchlines are very expensive (for nasty circuit-level reasons)

• CAMs are used but only for 16 or 32 way (max) associativity

• Not for 1024-way associativity

– No good way of doing something like that

+ No real need for it either

92

Stores: Tag/Data Access

• Reads: read tag and data in parallel

• Tag mis-match → data is garbage (OK)

• Writes: read tag, write data in parallel?

• Tag mis-match → clobbered data (oops)

• For SA cache, which way is written?

• Writes are a pipelined 2 cycle process

• Cycle 1: match tag

• Cycle 2: write to matching way

1022

1023

1:0[31:11]

data

[10:2]

<<

address

==

hit/miss

0

1

2

1:0[10:2] data

data

93

Stores: Tag/Data Access

• Cycle 1: check tag

• Hit? Write data next cycle

• Miss? Depends (write-alloc or
write-no-alloc)

1022

1023

1:0[31:11]

data

[10:2]

<<

address

==

hit/miss

0

1

2

1:0[10:2] data

data

94

Stores: Tag/Data Access

• Cycle 2 (if hit): write data

1022

1023

1:0[31:11]

data

[10:2]

<<

address

==

hit/miss

0

1

2

1:0[10:2] data

data

95

This Unit: Caches and Memory Hierarchies

• Memory hierarchy

• Cache organization

• Cache implementation

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

96

Extra material

97

Cache structure and
some optimizations

98

Physical Cache Layout

• Logical layout

• Data and tags mixed together

• Physical layout

• Data and tags in separate RAMs

• Often multiple sets per line

• As square as possible

• Not shown here

512

513

1022

1023

514

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

510

511

2

==

99

Two (of many possible) Optimizations

• Victim buffer: for conflict misses

• Prefetching: for capacity/compulsory misses

100

Victim Buffer

• Conflict misses: not enough associativity

• High-associativity is expensive, but also rarely needed

• 3 blocks mapping to same 2-way set and accessed (ABC)*

• Victim buffer (VB): small FA cache (e.g., 4 entries)

• Sits on I$/D$ fill path

• VB is small → very fast

• Blocks kicked out of I$/D$ placed in VB

• On miss, check VB: hit ? Place block back in I$/D$

• 4 extra ways, shared among all sets

+ Only a few sets will need it at any given time

+ Very effective in practice

I$/D$

L2

VB

101

Prefetching

• Prefetching: put blocks in cache proactively/speculatively

• Key: anticipate upcoming miss addresses accurately

• Can do in software or hardware

• Simple example: next block prefetching

• Miss on address X → anticipate miss on X+block-size

• Works for insns: sequential execution

• Works for data: arrays

• Timeliness: initiate prefetches sufficiently in advance

• Accuracy: don’t evict useful data

I$/D$

L2

prefetch logic

102

Other techniques in
cache-efficient coding

103

Blocking (Tiling) Example

/* Before */

for(i = 0; i < SIZE; i++)

for (j = 0; j < SIZE; j++)

for (k = 0; k < SIZE; k++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

• Two Inner Loops:
• Read all NxN elements of z[] (N = SIZE)

• Read N elements of 1 row of y[] repeatedly

• Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
• 3 NxN => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits

Adapted from Lebeck and Porter (creative commons)

104

Blocking (Tiling) Example

/* After */

for(ii = 0; ii < SIZE; ii += B)

for (jj = 0; jj < SIZE; jj += B)

for (kk = 0; kk < SIZE; kk +=B)

for(i = ii; i < MIN(ii+B-1,SIZE); i++)

for (j = jj; j < MIN(jj+B-1,SIZE); j++)

for (k = kk; k < MIN(kk+B-1,SIZE); k++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

• Capacity Misses decrease

2N3 + N2 to 2N3/B +N2

• B called Blocking Factor (Also called Tile Size)

Adapted from Lebeck and Porter (creative commons)

105

Hilbert curves: A fancy trick for matrix locality

• Turn a 1D value into an n-dimensional “walk” of a cube space
(like a 2D or 3D matrix) in a manner that maximizes locality

• Extra overhead to compute curve path, but computation takes
no memory, and cache misses are very expensive, so it may
be worth it

• (Actual algorithm for these curves is simple and easy to find)

106

SRAM internals

107

• To write (a 1):

1. Drive bit lines (bit=1, bit=0)

2. Select row

• To read:

1. Pre-charge bit and bit to Vdd (set to 1)

2. Select row

3. Cell pulls one line lower (pulls towards 0)

4. Sense amp on column detects difference between bit and bit

bit bit

word6-Transistor SRAM Cell

bit bit

word
(row select)

10

0 1

One Static RAM Cell

108

Typical SRAM Organization: 16-word x 4-bit

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

- +Sense Amp - +Sense Amp - +Sense Amp - +Sense Amp

: : : :

Word 0

Word 1

Word 15

Dout 0Dout 1Dout 2Dout 3

- +
Wr Driver &

Precharger - +
Wr Driver &

Precharger - +
Wr Driver &

Precharger - +
Wr Driver &

Precharger

A
d

d
ress D

eco
d

er
WrEn

Precharge

Din 0Din 1Din 2Din 3

A0

A1

A2

A3

109

• Write Enable is usually active low (WE_L)

• Din and Dout are combined (D) to save pins:

• A new control signal, output enable (OE_L) is needed

• WE_L is asserted (Low), OE_L is de-asserted (High)

• D serves as the data input pin

• WE_L is de-asserted (High), OE_L is asserted (Low)

• D is now the data output pin

• Both WE_L and OE_L are asserted:

• Result is unknown. Don’t do that!!!

A

DOE_L

2 Nwords

x M bit

SRAM

N

M

WE_L

Logic Diagram of a Typical SRAM

110

CAM internals

111

CAM Circuit

• Matchlines (correspond to bitlines in SRAM): inputs

• Wordlines: outputs

• Two phase match

• Phase I: clk=1, pre-charge wordlines to 1

• Phase II: clk=0, enable matchlines, non-matched bits dis-charge wordlines

~match1 ~match0match1
~clk

match0

112

CAM Circuit In Action

• Phase I: clk=1

• Pre-charge wordlines to 1

~match1 ~match0match1
~clk

match0

1

1

1

10

1

0 1 1 0

113

CAM Circuit In Action

• Phase I: clk=0

• Enable matchlines (notice, match bits are flipped)

• Any non-matching bit discharges entire wordline

• Implicitly ANDs all bit matches (NORs all bit non-matches)

• Similar technique for doing a fast OR for hit detection

~match1 ~match0match1
~clk

match0

1

0

1

10

1

0 1 1 0

Looking for match

with 01

