
ECE/CS 250
Computer Architecture

Fall 2021

I/O

Tyler Bletsch

Duke University

Includes material adapted from Dan Sorin (Duke) and Amir Roth (Penn).

SSD material from Andrew Bondi (Colorado State).

2

Where We Are in This Course Right Now

• So far:

• We know how to design a processor that can fetch, decode, and
execute the instructions in an ISA

• We understand how to design caches and memory

• Now:

• We learn about the lowest level of storage (disks)

• We learn about input/output in general

• Next:

• Faster processor cores

• Multicore processors

3

This Unit: I/O

• I/O system structure

• Devices, controllers, and buses

• Device characteristics

• Disks: HDD and SSD

• I/O control

• Polling and interrupts

• DMA

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

4

Readings

• Patterson and Hennessy dropped the ball on this topic

• It used to be covered in depth (in previous editions)

• Now it’s sort of in Appendix A.8

5

Computers Interact with Outside World

• Input/output (I/O)

• Otherwise, how will we ever tell a computer what to do…

• …or exploit the results of its work?

• Computers without I/O are not useful

• ICQ: What kinds of I/O do computers have?

6

One Instance of I/O

• Have briefly seen one instance of I/O

• Disk: bottom of memory hierarchy

• Holds whatever can’t fit in memory

• ICQ: What else do disks hold?

CPU

D$

L2

Main

Memory

I$

Disk(swap)

7

A More General/Realistic I/O System

• A computer system

• CPU, including cache(s)

• Memory (DRAM)

• I/O peripherals: disks, input devices, displays, network cards, ...

• With built-in or separate I/O (or DMA) controllers

• All connected by a system bus

CPU ($)

Main

Memory Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (memory-I/O) bus

will define DMA later

8

Bus Design

• Goals

• High Performance: low latency and high bandwidth

• Standardization: flexibility in dealing with many devices

• Low Cost

• Processor-memory bus emphasizes performance, then cost

• I/O & backplane emphasize standardization, then performance

• Design issues

1. Width/multiplexing: are wires shared or separate?

2. Clocking: is bus clocked or not?

3. Switching: how/when is bus control acquired and released?

4. Arbitration: how do we decide who gets the bus next?

data lines

address lines

control lines

9

Standard Bus Examples

• USB (universal serial bus)

• Popular for low/moderate bandwidth external peripherals

+ Packetized interface (like TCP), extremely flexible

+ Also supplies power to the peripheral

PCI SCSI USB

Type Backplane I/O I/O

Width 32–64 bits 8–32 bits 1 bit

Multiplexed? Yes Yes Yes

Clocking 33 (66) MHz 5 (10) MHz Asynchronous

Data rate 133 (266) MB/s 10 (20) MB/s 0.2, 1.5, 60 MB/s

Arbitration Distributed Daisy chain weird

Maximum masters 1024 7–31 127

Maximum length 0.5 m 2.5 m –

10

This Unit: I/O

• I/O system structure

• Devices, controllers, and buses

• Device characteristics

• Disks: HDD and SSD

• I/O control

• Polling and interrupts

• DMA

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

11

Operating System (OS) Plays a Big Role

• I/O interface is typically under OS control

• User applications access I/O devices indirectly (e.g., SYSCALL)

• Why?

• Device drivers are “programs” that OS uses to manage devices

• Virtualization: same argument as for memory

• Physical devices shared among multiple programs

• Direct access could lead to conflicts – example?

• Synchronization

• Most have asynchronous interfaces, require unbounded waiting

• OS handles asynchrony internally, presents synchronous interface

• Standardization

• Devices of a certain type (disks) can/will have different interfaces

• OS handles differences (via drivers), presents uniform interface

12

I/O Device Characteristics

• Primary characteristic

• Data rate (aka bandwidth)

• Contributing factors

• Partner: humans have slower output data rates than machines

• Input or output or both (input/output)

Device Partner I? O? Data Rate (KB/s)

Keyboard Human Input 0.01

Mouse Human Input 0.02

Speaker Human Output 0.60

Printer Human Output 200

Display Human Output 240,000

Modem (old) Machine I/O 7

Ethernet Machine I/O ~1,000,000

Disk Machine I/O ~50,000

13

I/O Device: Disk

• Disk: like stack of record players

• Collection of platters

• Each with read/write head

• Platters divided into concentric tracks

• Head seeks (forward/backward) to track

• All heads move in unison

• Each track divided into sectors

• ZBR (zone bit recording)

• More sectors on outer tracks

• Sectors rotate under head

• Controller

• Seeks heads, waits for sectors

• Turns heads on/off

• May have its own cache (made w/DRAM)

platter
head

sector

track

14

Disk Parameters

Seagate 6TB
Enterprise HDD
(2016)

Seagate Savvio
(~2005)

Toshiba MK1003
(early 2000s)

Diameter 3.5” 2.5” 1.8”

Capacity 6 TB 73 GB 10 GB

RPM 7200 RPM 10000 RPM 4200 RPM

Cache 128 MB 8 MB 512 KB

Platters ~6 2 1

Average Seek 4.16 ms 4.5 ms 7 ms

Sustained Data Rate 216 MB/s 94 MB/s 16 MB/s

Interface SAS/SATA SCSI ATA

Use Desktop Laptop Ancient iPod

Density

improving

Caches

improving

Seek time

not really

improving!

15

Disk Read/Write Latency

• Disk read/write latency has four components

• Seek delay (tseek): head seeks to right track

• Fixed delay plus proportional to distance

• Rotational delay (trotation): right sector rotates under head

• Fixed delay on average (average = half rotation)

• Controller delay (tcontroller): controller overhead (on either side)

• Fixed cost

• Transfer time (ttransfer): data actually being transferred

• Proportional to amount of data

16

Understanding disk performance

• One 🕐 equals 1 microsecond

• Time to read the “next” 512-byte sector (no seek needed):
🕐 🕐 ~2μs

• Time to read a random 512-byte sector (with seek):
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐
🕐🕐

🕐🕐 ~1840μs

17

Disk Bandwidth

• Disk is bandwidth-inefficient for page-sized transfers

• Actual data transfer (ttransfer) a small part of disk access (and cycle)

• Increase bandwidth: stripe data across multiple disks

• Striping strategy depends on disk usage model

• “File System” or “web server”: many small files

• Map entire files to disks

• “Supercomputer” or “database”: several large files

• Stripe single file across multiple disks

• Both bandwidth and individual transaction latency important

18

Error Correction: RAID

• Error correction: more important for disk than for memory

• Mechanical disk failures (entire disk lost) is common failure mode

• Entire file system can be lost if files striped across multiple disks

• RAID (redundant array of inexpensive disks)

• Similar to DRAM error correction, but…

• Major difference: which disk failed is known

• Even parity can be used to recover from single failures

• Parity disk can be used to reconstruct data faulty disk

• RAID design balances bandwidth and fault-tolerance

• Many flavors of RAID exist

• Tradeoff: extra disks (cost) vs. performance vs. reliability

• Deeper discussion of RAID in ECE 552 and ECE 554;
super-duper deep coverage in ECE 566
(“Enterprise Storage Architecture”)

• RAID doesn’t solve all problems can you think of any examples?

19

What about Solid State Drives (SSDs)?

Adapted from “Solid State Drives” by Andrew Bondi

SSD HDD

http://www.cs.colostate.edu/~cs451/Slides/SSD-Bondi.pptx

20

SSDs

• Multiple NAND flash chips operated in parallel

• Pros:

• Extremely good “seek” times (since “seek” is no longer a thing)

• Almost instantaneous read and write times

• The ability to read or write in multiple locations at once

• The speed of the drive scales extremely well with the number of NAND ICs on
board

• Way cheaper than disk per IOP (performance)

• Cons:

• Way more expensive than disk per GB (capacity)

• Limited number of write cycles possible before it degrades
(getting less and less of a problem these days)

• Fundamental problem: Write amplification

• You can set bits in “pages” (~4kB) fast (microseconds), but
you can only clear bits in “blocks” (~512kB) slooow (milliseconds)

• Solution: controller that is managing NAND cells tries to hide this

Adapted from “Solid State Drives” by Andrew Bondi

http://www.cs.colostate.edu/~cs451/Slides/SSD-Bondi.pptx

21

Typical read and write rates: SSD vs HDD

• Benchmark data from HD Tune (Windows benchmark)

HDD SSD

22

This Unit: I/O

• I/O system structure

• Devices, controllers, and buses

• Device characteristics

• Disks: HDD and SSD

• I/O control

• Polling and interrupts

• DMA

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

23

I/O Control and Interfaces

• Now that we know how I/O devices and buses work…

• How does I/O actually happen?

• How does CPU give commands to I/O devices?

• How do I/O devices execute data transfers?

• How does CPU know when I/O devices are done?

24

Sending Commands to I/O Devices

• Remember: only OS can do this! Two options …

• I/O instructions

• OS only? Instructions must be privileged (only OS can execute)

• E.g., IA-32

• Memory-mapped I/O

• Portion of physical address space reserved for I/O

• OS maps physical addresses to I/O device control registers

• Stores/loads to these addresses are commands to I/O devices

• Main memory ignores them, I/O devices recognize and respond

• Address specifies both I/O device and command

• These address are not cached – why?

• OS only? I/O physical addresses only mapped in OS address space

• E.g., almost every architecture other than IA-32 (see pattern??)

25

Memory mapped IO example (1)

• Non-special read – comes from memory

26

Memory mapped IO example (2)

• Write to address 1000 – routed to TTY!

• Mem write disabled, TTY write enabled; signal goes to both

27

Memory mapped IO example (3)

• Read from address 1001 – data comes from keyboard

• Mux switches to keyboard for that address

28

Querying I/O Device Status

• Now that we’ve sent command to I/O device …

• How do we query I/O device status?

• So that we know if data we asked for is ready?

• So that we know if device is ready to receive next command?

• Polling: Ready now? How about now? How about now???

• Processor queries I/O device status register (e.g., with MM load)

• Loops until it gets status it wants (ready for next command)

• Or tries again a little later

+ Simple

– Waste of processor’s time

• Processor much faster than I/O device

29

Polling Overhead: Example #1

• Parameters

• 500 MHz CPU

• Polling event takes 400 cycles

• Overhead for polling a mouse 30 times per second?

• Cycles per second for polling = (30 poll/s)*(400 cycles/poll)

• 12000 cycles/second for polling

• (12000 cycles/second)/(500 M cycles/second) = 0.002% overhead

+ Not bad

30

Polling Overhead: Example #2

• Same parameters

• 500 MHz CPU, polling event takes 400 cycles

• Overhead for polling a 4 MB/s disk with 16 B interface?

• Must poll often enough not to miss data from disk

• Polling rate = (4MB/s)/(16 B/poll) >> mouse polling rate

• Cycles per second for polling=[(4MB/s)/(16 B/poll)]*(400 cyc/poll)

• 100 M cycles/second for polling

• (100 M cycles/second)/(500 M cycles/second) = 20% overhead

– Bad

• This is the overhead of polling, not actual data transfer

• Really bad if disk is not being used (pure overhead!)

31

Interrupt-Driven I/O

• Interrupts: alternative to polling

• I/O device generates interrupt when status changes, data ready

• OS handles interrupts just like exceptions (e.g., page faults)

• Identity of interrupting I/O device recorded in ECR

• ECR: exception cause register

• I/O interrupts are asynchronous

• Not associated with any one instruction

• Don’t need to be handled immediately

• I/O interrupts are prioritized

• Synchronous interrupts (e.g., page faults) have highest priority

• High-bandwidth I/O devices have higher priority than low-
bandwidth ones

32

Interrupt Overhead

• Parameters

• 500 MHz CPU

• Polling event takes 400 cycles

• Interrupt handler takes 400 cycles

• Data transfer takes 100 cycles

• 4 MB/s, 16 B interface disk, transfers data only 5% of time

• Percent of time processor spends transferring data

• 0.05 * (4 MB/s)/(16 B/xfer)*[(100 c/xfer)/(500M c/s)] = 0.25%

• Overhead for polling?

• (4 MB/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)] = 20%

• Overhead for interrupts?

+ 0.05 * (4 MB/s)/(16 B/int) * [(400 c/int)/(500M c/s)] = 1%

Note: when disk is

transferring data, the interrupt

rate is same as polling rate

33

Direct Memory Access (DMA)

• Interrupts remove overhead of polling…

• But still requires OS to transfer data one word at a time

• OK for low bandwidth I/O devices: mice, microphones, etc.

• Bad for high bandwidth I/O devices: disks, monitors, etc.

• Direct Memory Access (DMA)

• Transfer data between I/O and memory without processor control

• Transfers entire blocks (e.g., pages, video frames) at a time

• Can use bus “burst” transfer mode if available

• Only interrupts processor when done (or if error occurs)

34

DMA Controllers

• To do DMA, I/O device attached to DMA controller

• Multiple devices can be connected to one DMA controller

• Controller itself seen as a memory mapped I/O device

• Processor initializes start memory address, transfer size, etc.

• DMA controller takes care of bus arbitration and transfer details

• So that’s why buses support arbitration and multiple masters!

CPU ($)

Main

Memory Disk

DMA DMA

display NIC

I/O ctrl

Bus

35

DMA Overhead

• Parameters

• 500 MHz CPU

• Interrupt handler takes 400 cycles

• Data transfer takes 100 cycles

• 4 MB/s, 16 B interface, disk transfers data 50% of time

• DMA setup takes 1600 cycles, transfer 1 16KB page at a time

• Processor overhead for interrupt-driven I/O?

• 0.5 * (4M B/s)/(16 B/xfer)*[(500 c/xfer)/(500M c/s)] = 12.5%

• Processor overhead with DMA?

• Processor only gets involved once per page, not once per 16 B

+ 0.5 * (4M B/s)/(16K B/page) * [(2000 c/page)/(500M c/s)] = 0.05%

36

DMA and Memory Hierarchy

• DMA is good, but is not without challenges

• Without DMA: processor initiates all data transfers

• All transfers go through address translation

+ Transfers can be of any size and cross virtual page boundaries

• All values seen by cache hierarchy

+ Caches never contain stale data

• With DMA: DMA controllers initiate data transfers

• Do they use virtual or physical addresses?

• What if they write data to a cached memory location?

37

DMA and Caching

• Caches are good

• Reduce CPU’s observed instruction and data access latency

+ But also, reduce CPU’s use of memory…

+ …leaving majority of memory/bus bandwidth for DMA I/O

• But they also introduce a coherence problem for DMA

• Input problem

• DMA write into memory version of cached location

• Cached version now stale

• Output problem: write-back caches only

• DMA read from memory version of “dirty” cached location

• Output stale value

38

Solutions to Coherence Problem

• Route all DMA I/O accesses to cache?

+ Solves problem

– Expensive: CPU must contend for access to caches with DMA

• Disallow caching of I/O data?

+ Also works

– Expensive in a different way: CPU access to those regions slow

• Selective flushing/invalidations of cached data

• Flush all dirty blocks in “I/O region”

• Invalidate blocks in “I/O region” as DMA writes those addresses

+ The high performance solution

• Hardware cache coherence mechanisms for doing this

– Expensive in yet a third way: must implement this mechanism

39

H/W Cache Coherence (more later on this)

• D$ and L2 “snoop” bus traffic

• Observe transactions

• Check if written addresses are resident

• Self-invalidate those blocks

+ Doesn’t require access to data part

– Does require access to tag part

• May need 2nd copy of tags for this

• That’s OK, tags smaller than data

• Bus addresses are physical

• L2 is easy (physical index/tag)

• D$ is harder (virtual index/physical tag)

CPU

D$

L2

I$TLB

PA

PA

VA VA

TLB

Main

Memory Disk

DMA

Bus

40

Summary

• Storage devices

• HDD: Mechanical disk. Seeks are bad. Cheaper per GB.

• SSD: Flash storage. Cheaper per performance.

• Can combine drives with RAID to get aggregate performance/capacity
plus fault tolerance (can survive individual drive failures).

• Connectivity

• A bus is shared between CPU, memory, and/or and multiple IO devices

• How does CPU talk to IO devices?

• Special instructions or memory-mapped IO
(certain addresses don’t lead to RAM, they lead to IO devices)

• Either requires OS privilege to use

• Methods of interaction:

• Polling (simple but wastes CPU)

• Interrupts (saves CPU but transfers tiny bit at a time)

• DMA+interrupts (saves CPU+fast, but requires caches to snoop
traffic to not become wrong)

