
Homework #3 – Digital Logic Design 
Due date: see course website 

Directions: 

• For short-answer questions, submit your answers in PDF format to GradeScope assignment 

“Homework 3 written”. 

o Please type your solutions. If hand-written material must be included, ensure it is 

photographed or scanned at high quality and oriented properly so it appears right-side-up. 

o Please include your name on submitted work. 

• For Logisim questions, submit .circ files via GitLab or direct upload to GradeScope assignment 

“Homework 3 code”: 

o Circuits will be tested using an automated system, so you must name the input/output 

pins exactly as described, and submit using the specified filename! 

o You may only use the basic gates (NOT, AND, OR, NAND, NOR, XOR), D flip-flops, 

multiplexers, splitters, tunnels, and clocks.  Everything else you must construct from 

these. 

o Circuits that show good faith effort will receive a minimum of 25% credit. 

• Start by cloning the “homework3” git repo, similar to past assignments. 

• A Logisim Evolution circuit self-tester has been provided. It works much the same as previous self-

test tools; you just need to have your .circ files in the directory with the tester. The tester is known 

to work in the Duke Linux environment, but may possibly work elsewhere. Additional info on the 

tester is included in three appendices at the end of this document. There are a few things that need 

to be done for the tester to work correctly: 

o Name the files and label the pins as per the directions given. The self-tester will NOT WORK 

with different names or labels. 

o For the FSM question, use the clock available in Logisim Evolution to run the DFFs. 

o Additionally, to run the self-tester you will have to place the Logisim Evolution files in the 

same folder as the python script, the jar file and the folder labelled tests.  

o You can use the command ./hwtest.py in the following manner: 

./hwtest.py <arguments> 

The following arguments can be used with that command: 

- ALL: Runs all the tests 

- circuit1a: Runs tests for circuit1a.circ 

- circuit1c: Runs tests for circuit1c.circ 

- my_adder: Runs tests for my_adder.circ 

- press: Runs tests for press.circ 

o Lastly, remember that the tests cases provided are not exhaustive so testing more cases 

manually would be recommended. 

• You must do all work individually, and you must submit your work electronically via GradeScope.   

o All submitted circuits will be tested for suspicious similarities to other circuits, and the test 

will uncover cheating, even if it is “hidden.”  



Q1. Boolean Algebra 
(a) [5 points] Write a truth table for the following function: Output=((!A+!B)∙!C) + ((A∙!B) + (!C∙B)) 

 

(b) [10] Use Logisim Evolution to implement and test the circuit from (a). Name this file circuit1a.circ. 

Your circuit must have the following pins: 

Label Type Bit(s) 
A input 1 
B input 1 
C input 1 

result output 1 

 

(c) [5 points] Write a sum-of-products Boolean function for both outputs in the following truth table 

and then minimize them using Boolean logic, de Morgan’s laws, etc.  (You should use only AND, OR, 

and NOT gates.) You do NOT have to have a perfectly optimal circuit, but you must show some 

optimizations.   

A B C out1 out2 

0 0 0 0 1 

0 0 1 0 0 

0 1 0 0 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 0 1 

 

(d) [10] Use Logisim Evolution to implement and test the circuit from (c). Name this file circuit1c.circ. 

Your circuit must have the following pins: 

Label Type Bit(s) 
A input 1 
B input 1 
C input 1 

out1 output 1 
out2 output 1 

 

  



Q2. Adder/Subtractor Design 
[30] Use Logisim Evolution to build and test a 16-bit ripple-carry adder/subtractor.  You must first create a 

1-bit full adder that you then use as a module in the 16-bit adder.  The unit should perform A+B if the sub 

input is zero, or A-B if the sub input is 1. The circuit should also output an overflow signal (ovf) indicating 

if there was a signed overflow.  

Name the file my_adder.circ. Your circuit must have the following pins: 

Label Type Bit(s) 

A input 16 

B input 16 

sub input 1 

result output 16 

ovf output 1 

 

Note: To split the 16-bit inputs and to combine the individual outputs of the one-bit adders together, use 

Splitters. 

  



Q3. Finite State Machine 
You’re an engineer at a company that makes manufacturing 

equipment, and you have been tasked to produce a finite state 

machine to control an industrial press such that it is compliant 

with United States Code of Federal Regulations Title 29, Chapter 

XVII, Part 1910, Subpart O, Section 217, Paragraphs (b) and (c), 

commonly abbreviated 29 CFR 1910.217(b-c). This regulation 

governs the safety features and interface for industrial presses 

in order to minimize the risk of injury. Don’t worry, you don’t 

need to read it, I’ll explain what you need to do. 

An industrial press makes use of a hydraulic, pneumatic, or 

electric motor power to exert tremendous compression force to 

stamp materials into a shape, punch holes, cut material, tightly insert bearings and other fittings, or other 

industrial operations. If a human hand were present in the press during operation, it would be severely 

injured, so safety is critical.   

For our purposes, we’ll simplify the regulations cited above down to: 

1. The press needs to be operated with two hands (so that zero hands are available to be crushed). 

2. The press should do exactly one pressing per activation (i.e., it won’t automatically repeat). 

The press your system is controlling is based around an electric motor, and is illustrated below: 

 

For your system, you don’t need to worry about the fact there’s two buttons – in the physical construction, 

they’re wired in series, so you naturally need to press both to energize the go input to your system. In 

order to avoid repeating, the system has a limit switch, which detects when the press is at the top of its 

A two-handed, non-repeating industrial 

press. See here for animated version. 

https://www.ecfr.gov/current/title-29/subtitle-B/chapter-XVII/part-1910/subpart-O/section-1910.217#p-1910.217(b)
https://people.duke.edu/~tkb13/courses/ece250/resources/press.gif
https://people.duke.edu/~tkb13/courses/ece250/resources/press.gif


movement cycle. This is connected to your system’s limit input. Your system will control a motor 

output, which causes the motor to spin, thereby lowering and then raising the press piston. Further, 

whenever the system is in any situation other than fully raised and stopped, your system’s warning 

output will illuminate a big red light to indicate the danger.  

The formal names you must use in your circuit are shown below: 

Pin name Type Meaning 
go 1-bit input 1 if both buttons are pressed, else 0. 
limit 1-bit input 1 if the press is at the top of its movement cycle, else 0. 
motor 1-bit output Set to 1 to energize the motor and move the press. 
warning 1-bit output Set to 1 to illuminate the warning light. 

 

Note: This document sometimes describes the go input as set of two buttons. This is meant physically in 

real life – you should not model it as any Logisim buttons ( ), but rather as a single regular input pin ( )! 

To achieve the above goals, the finite state machine you make will follow these rules:  

1. When the system starts up, it is ready.  

o The limit signal is ignored here.  

o If the go signal is on, begin starting the press as described in #2 below, and set outputs to 

{motor=1, warning=1}. 

o Otherwise, remain in this state and set outputs to {motor=0, warning=0}. 

2. When the press is starting: 

o If the go signal turns off (i.e., the user releases a button), remain in this state, but set 

outputs to {motor=0, warning=1}. I.e., we stop the press but stay in this condition. 

o If the go signal is on and the limit signal is still on, stay in this condition and set outputs 

to {motor=1, warning=1}. 

o If the go signal is on and the limit signal turns off, the press is moving as described in #3 

below; set outputs to {motor=1, warning=1}.  

3. While the press is moving: 

o If the go signal turns off (i.e., the user releases a button), remain in this state, but set 

outputs to {motor=0, warning=1}. I.e., we stop the press but stay in this condition. 

o If the go signal is on and the limit signal is still off, stay in this condition and set outputs 

to {motor=1, warning=1}. 

o If the go signal is on and the limit signal turns on, then we’ve reached the end of one 

press operation and should pause as described in #4 below; set outputs to {motor=0, 

warning=1}.  

4. When the press operation is done: 

o The limit signal is ignored here.  

o While the go signal remains on, remain in this state, and set outputs to {motor=0, 

warning=1}. I.e., we stay paused until the user releases go. 

o When the go signal turns off, we return to being ready as described in #1 above; set 

outputs to {motor=0, warning=0}. 



For full credit, you must use the systematic design methodology we covered in class: 

(a) [8] Draw a state transition diagram, where each state has a unique identifier that is a string of bits 

(e.g., states 00, 01, etc.) as well as the associated value for outputs motor and warning. Label all of 

the arcs between transitions with the inputs go and/or limit that cause those transitions.  You may 

abbreviate the inputs and outputs (go=“G”, limit=“L”, etc.) on your diagram if you wish. 

(b) [8] Draw a truth table for the state transition diagram.  From a truth table perspective, the inputs are 

go, limit and the current state bits (Q0, Q1, etc.); the outputs are motor, limit, and the next state 

bits (D0, D1, etc.).   

(c) [4] Write out the logic expressions for your next-state bits (D0, D1, etc.) as well as the outputs motor 

and warning. NOTE: Optimization here is optional. You may even use automated Boolean 

optimization tools if you wish, provided you cite and screenshot them in your write-up.  

(d) [30] Use Logisim Evolution to implement and test this circuit. Name this file press.circ. Your circuit 

must have the pins described in the earlier table, named precisely as shown.  

Tips: 

• Implement your FSM as a “Mealy” machine, meaning that the output should depend both on the 

current state and the current inputs. In other words, your output should be written on the edges in 

the state transition diagram rather than on the nodes.  

• Run a “Clock” component to all the clock inputs in the DFFs. 

• A compliant circuit will look something like this: 

 

 

Note: I oversimplified and omitted a lot of details about presses. Do not actually control an industrial press with this circuit.  

  



Appendix: Getting the tester to work locally 
The tester will work out-of-box on the Docker environment.  

However, if you want to test locally, you need the right version of Java set up and in your PATH. Note: 

support for this is best-effort; if you have trouble we can’t resolve, you have the docker environment. 

For Windows (with Ubuntu in Windows Subsystem for Linux) or Ubuntu Linux 

We just need to install Java Runtime Environment 1.8, then update our config to use that Java by default. 

This will only effect your Linux-on-Windows environment. 

sudo apt-get install -y openjdk-8-jre 

sudo update-alternatives --config java 

 

After the second command, you’ll be asked to pick a Java. By number, choose  

“/usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java”. 

You may get one spurious fail from the tester after initial setup, as the first time run it will print a little 

message. Subsequent tests runs should function normally. 

For Mac 

Mac machines tend to have a few different Javas lying around, and the tester does its best to find a suitable 

one. In the assignment directory, try: 

java -jar logisim_ev_cli.jar 

 

If you see “error: specify logisim file to open”, you’re good to go. If you see some big ugly 

crash, you probably need to switch Java versions. You likely have the required version on your system by 

virtue of having installed Logisim Evolution. Java 1.8.0 is known to work. Try following these directions to 

switch Java versions.  

If you don’t have an appropriate version of Java installed, you can install OpenJDK 8 from here.   

https://medium.com/@bryantjiminson/changing-default-java-version-in-mac-os-x-yosemite-470f11a6084b
https://adoptium.net/releases.html?variant=openjdk8&jvmVariant=hotspot


Appendix: Tester info 
The test system for Logisim Evolution assignments uses the same front-end tool as earlier assignments, but 

to have it control Logisim Evolution, a special command-line variant of Logisim Evolution is packaged with 

it. (Thanks for reading the assignment in full; put a picture of a possum in your Q1a solution for extra 

credit.) When you use the tester, it runs this with your circuit and a number of command-line options that 

tell it how to set the inputs to your circuit and how to print the outputs.  

You can review the tests details by looking inside settings.json. If you see a line like this for my_adder: 

{ "desc": "A=0x9BDF, B=0x8ACE, sub=0",  

"args": ["-c", "0", "-ip", "A=0x9BDF,B=0x8ACE,sub=0", "-of", "h"] }, 

 

Then it will run this: 

java -jar logisim_ev_cli.jar -f adder.circ -c 0 -ip A=0x9BDF,B=0x8ACE,sub=0 -of h 

 

The options run the circuit for 0 cycles (as it has no clock so there’s no need to run it over time), set pins A 

and B to the given hex values and sub to zero, and set the output format to hex. The output will look like: 

  0       out         ovf                   0x01 

  0       out         result                0x26ad 

 

The fields are: cycle number, the type of output (“out”, “probe”, or a few others), the name of the pin 

(“ovf” and “result” here), then the value at that time. For sequential circuits, output is shown per clock 

cycle, such as this example for the finite state machine: 

  0       out         motor                 0 

  0       out         warning               0 

 

  1re     out         motor                 0 

  1re     out         warning               0 

 

  2re     out         motor                 1 

  2re     out         warning               1 

 

  3re     out         motor                 1 

  3re     out         warning               1 

 

  4re     out         motor                 0 

  4re     out         warning               1 

 

  5re     out         motor                 0 

  5re     out         warning               0 

 

Using this information, you can interpret the actual and expected files (and the resulting diff). 

  



Appendix: press test case details 
Because the test cases for press are a bit long and the command line option format is somewhat cryptic, 

here’s a nicer presentation of them.  

Test cases 0-3 simply apply constant values to the inputs – these are shown in the test description. 

Test cases 4-7 apply changing values to the inputs to try to put the finite state machine through its paces. 

Test case 8 is long and randomly generated. 

The tables below show these cases. Here, “#” is the cycle in which the input is changed.  

Test 4 

# go limit 

2 0 1 

4 1 1 

6 1 0 

8 1 1 

10 0 1 

12 0 0 
 
Test 5 

# go limit 

2 1 1 

3 1 0 

4 1 1 

5 0 1 

6 0 0 
 

Test 6 

# go limit 

0 0 1 

3 1 1 

6 0 1 

9 1 1 

12 0 1 
 
Test 7 

# go limit 

0 0 0 

3 1 0 

6 0 0 

9 1 0 

12 0 0 
 

 

 

  



Test 8 
# go limit 
2 1 1 
3 1 1 
4 1 1 
5 0 1 
6 1 0 
7 1 1 
8 0 0 
9 0 1 

10 1 0 
11 0 0 
12 0 0 
13 1 0 
14 1 0 
15 1 1 
16 1 0 
17 1 0 
18 1 0 
19 1 1 
20 0 0 
21 0 0 
22 1 0 
23 1 1 
24 1 0 
25 1 1 
26 0 0 
27 1 1 
28 0 0 
29 1 0 
30 0 1 
31 0 0 
32 1 0 
33 0 0 
34 1 1 
35 0 1 
36 1 0 
37 0 0 
38 1 1 
39 0 0 
40 1 1 
41 1 0 
42 0 1 
43 1 0 
44 0 0 
45 1 1 
46 1 1 
47 0 1 
48 1 1 
49 0 0 
50 0 1 
51 0 1 
52 1 1 
53 0 1 
54 1 0 



55 1 0 
56 0 1 
57 0 0 
58 0 1 
59 0 0 
60 1 1 
61 1 0 
62 0 0 
63 0 1 
64 0 1 
65 0 0 
66 1 1 
67 0 0 
68 0 1 
69 1 1 
70 1 1 
71 1 0 
72 0 1 
73 1 1 
74 0 1 
75 0 0 
76 1 1 
77 1 0 
78 1 1 
79 0 0 
80 0 0 
81 1 1 
82 0 1 
83 0 1 
84 0 0 
85 0 1 
86 1 0 
87 0 1 
88 0 1 
89 0 0 
90 0 1 
91 0 1 
92 0 0 
93 0 1 
94 1 0 
95 0 0 
96 0 0 
97 0 1 
98 0 0 
99 1 1 

100 1 1 
101 1 1 

 


