
ECE/CS 250 – Prof. Bletsch 
Recitation #7 

Caches and Memory 

Objective: In this recitation, you will gain a greater understanding of the importance of caches/memory 

and how they work. This will improve your understanding of caching and virtual memory as well as 

better prepare you for Homework 5. 

PART 1 

1. Cache Examples 
You have a 64-bit machine with a cache that is 128 KB and 2-way set-associative.  Blocks are 64 B.   

1) How many frames does it have?  How many sets does it have?  Sketch this cache. 

2) Divide up the 64-bit address into its three fields, for purposes of accessing this cache.  How many 

block offset bits are there?  How many set index bits are there?  How many tag bits are there?   

3) For a given sequence of requests, can you explain which ones hit and which ones miss?  And for the 

misses, can you classify them as cold, capacity, or conflict misses? To do this, compute tag and index 

for each address first. Example trace: 

address 
(decimal) 

address 
(hex) tag index result 

67 43   ☐ hit ☐ miss:cold ☐ miss:conflict ☐ miss:capacity 

125 7D   ☐ hit ☐ miss:cold ☐ miss:conflict ☐ miss:capacity 

18 12   ☐ hit ☐ miss:cold ☐ miss:conflict ☐ miss:capacity 

10 A   ☐ hit ☐ miss:cold ☐ miss:conflict ☐ miss:capacity 

64k + 67 10043   ☐ hit ☐ miss:cold ☐ miss:conflict ☐ miss:capacity 

128k+67 20043   ☐ hit ☐ miss:cold ☐ miss:conflict ☐ miss:capacity 

125 7D   ☐ hit ☐ miss:cold ☐ miss:conflict ☐ miss:capacity 
 

4) What are the first three blocks that map to set 2?  What are the first three blocks that map to set 7?    
HINT: All blocks that map to a set have the same set index bits.  Write out the set index bits and set the block offset bits to 

zero (to get the address of the 0th byte in the block).  If you set the tag bits to zero, you get the 0th block that maps to this 

set.  If you set the tag bits to 0000…..0001, you get the 1st block that maps to this set.  Etc. 

  



Reminder of the cache arithmetic: 

 

2. Virtual Memory Examples 
You have a 64-bit machine with 32KB pages.  You have 1GB of physical memory. 

Key insight: You have as many virtual addresses as 2wordsize, which constrains how many virtual pages 

there are. Further, you have as many physical addresses as you have physical memory, which constrains 

how many physical pages there are. Again: the number of virtual pages ≠ the available physical pages, 

so Virtual Page Number (VPN) bits ≠ Physical Page Number (PPN) bits! 

(a) How many virtual pages does each process have? 

(b) How many bits do you need to identify one of those virtual pages? This is the number of VPN bits. 

(c) How many physical pages do you have? 

(d) How many bits do you need to identify one of those physical pages? This is the number of PPN bits. 

(e) In a flat page table, how many page table entries (PTEs) do you have? 

(f) If each PTE is 2 bytes (to hold a PPN + valid bit), how big would a “flat” page table be (like the simple 

lists we saw in class)? This number is crazy big, right? On Homework 5, you’ll explore alternative 

ways large page tables are actually stored instead of a big flat list.  

(g) Assume that the page replacement algorithm is LRU.  How many distinct virtual pages would you 

have to see between accesses to a given page X for the second access to page X to be a miss? 

  



3. Homework 5: Getting the math right 
The following steps aren’t large; don’t overthink them. 

(a) How can we use bitshift operations to compute powers of 2? Test your approach in C. 

(b) You can get a bit string of N ones with the expression: ((1<<N)-1) 

Let’s name that the ones() function. Implement and test this function. 

(c) Write a C function that will give you the lower N bits of a provided 32-bit unsigned integer. Test 

it. 

(d) Write a C function that will get rid of the lower N bits of a provided 32-bit unsigned integer. Test 

it. 

(e) Write a C function that will preserve the lower N bits of a 32-bit unsigned integer X, but replace 

the upper bits with an input Y. Test it. 

 

END OF PART 1 

If you’re in recitation now, please work on the current 

homework. If it’s 100% done, you can head out. 

 

  



PART 2 

4. Homework 5: The virt2phys program structure 
The virt2phys program isn’t meant to be that long or complex, but it could be if you don’t plan 

appropriately. Below is Prof. Hilton’s recommended procedure for designing any software: 

 
The “Hilton Method” for algorithm design 

Do steps 1-4 for virt2phys program. Don’t produce any code, just algorithm notes. 

5. Homework 5: Generating cachesim tests 
Based on the input and output formats described in the Homework 5 writeup, develop a test trace with 

at least 10 operations. Then, by hand, generate the corresponding expected simulator output for each of 

the following cache configurations: 

• 4kB cache, 2-way, 8-byte blocks 

• 4kB cache, 1-way, 8-byte blocks 

• 4kB cache, 2-way, 32-byte blocks 

Make sure that your trace file will generate hits, compulsory misses, and conflict misses.  

6. Homework 5: Input parsing for cachesim 
In C, develop code that can parse the trace file format and print the following information for each input 

line: 

• A Boolean indicating if the line is a “store” operation 

• The memory address involved 

• The number of bytes in the operation 

• For stores, the actual bytes being stored (don’t just parrot the hex string – parse it into an array 

of bytes). Note that you can use fscanf with the %2hhx specifier to help here. 

  



7. Homework 5: Associativity for cachesim 
Develop a data structure and accessor/mutator functions that can associate numeric tags with numeric 

records. This structure cannot be an array indexed by tag, as the tag could potentially be quite large. 

However, performance isn’t a huge concern, so this could be an array of tag/value pairs which are 

linearly searched.  This code will come in handy when implementing associativity in your cache 

simulator. (Note: if this gets problematic, try using the Hilton Method described earlier.) 

 

ALL DONE? 

Nice! Don’t head out, though. Work on the current 

homework and talk to the TAs for help. If you’re good 

on the homework, dig into the experiments below.  

 

Interesting experiments to do if time allows 

8. Caches and Memory in the Real World 
1) How much cache is in your laptop? There’s two ways to tell – you can find your CPU model and 

google it to find the stats OR install a special program that shows cache stats directly: 

Platform To find CPU model manually CPU info program 

Windows 10/11 Open start menu, type “processor”,  
pick “View processor info”. 

CPU-Z 

Mac* Go to “Apple Logo” > System Report MacCPUID 
(if you have a newer non-Intel Mac,  
just look up to chip stats) 

Ubuntu Linux cat /proc/cpuinfo CPU-X: 
sudo apt install cpu-x 

 

2) How much physical memory do you have?  This can be found in most of the places/apps listed 

above, and on Linux you can also run “top” or look at “proc/meminfo”.  

3) How much disk space do you have?  See Windows Explorer, Mac Finder, or Linux df command.  

4) How much is being used for “swap” (i.e., to hold pages that don’t currently fit in physical 

memory)? See Windows Task Manager, Mac Activity Monitor, or Linux top command. 

9. Benchmarking memory and cache 
1) Download the program “memdance.c” from the course site and compile it with: 

  g++ -O3 -o memdance memdance.c 

This program is a simple benchmark to measure the rate of random memory access to a block of 

memory of a given size for a given duration of a time. Run it without arguments for help.  

https://www.cpuid.com/softwares/cpu-z.html
https://www.intel.com/content/www/us/en/download/674424/maccpuid.html


2) Use this program on the machine of your choice to measure the memory throughput for 

different buffer sizes. Just run it as “./memdance default”, and it will cycle through buffer 

sizes of 1MB, 2MB, 4MB, 8MB, 16MB, 32MB, 64MB, and 128MB for 3 seconds per test.  

3) Compare the results to the cache size found in “Caches and Memory in the Real World” above, 

especially the lowest level cache (L3 on most modern systems). What do you observe? What’s 

the percentage difference between the fastest and slowest rate? What does this tell you about 

the importance of cache to software performance? 

10. Caches and Memory – Putting it All Together 
(a) To the right is a sketch of a complete memory system that includes the 

following: L1 I$ and L1 I-TLB, L1 D$ and L1 D-TLB, unified L2$ and L2 TLB, and 

main memory.  Here are many of the possible outcomes for a given load.  For 

each one, explain how it can occur and what happens in the given situation.  

Why is the shaded situation impossible?   

 

situation L1 D-TLB L1 D$ L2 TLB L2$ memory 

1 hit hit    

2 hit miss  hit  

3 miss hit    

4 miss miss hit hit  

5 miss miss miss hit  

6 miss miss miss miss hit 

7 miss miss hit miss hit 

8 miss miss hit miss miss (pagefault) 

9 miss miss miss miss miss (pagefault) 

 

(b) Let’s say you want to implement a virtual/physical cache (virtually indexed and physically 

tagged, like we saw in class). Assume: 32-bit architecture, 16B cache blocks, 32KB pages.  The 

cache is 128KB.  How set-associative must the cache be to permit the use of virtual indexing 

with physical tagging? 

11. Running out of Virtual Memory 
On a 64-bit machine, it might appear you could never possibly run out of virtual memory.  But what 

happens if you write a recursive program that (due to a bug) never reaches its base case?  Try this.  

What happens? 

12. Running out of Physical Memory 
You can never actually run out of physical memory, but you can try to use more memory than you have, 

in which case the computer spends a lot of its time paging (servicing page faults).  Open up the Task 

Manager to see how much memory you’re currently using.  Now start launching programs that use a lot 

of memory.  What do you see in the Task Manager? 


