
The Major Keys to Success on the ECE/CS250 CPU
Alex Boldt

Before reading this guide, please read every word of the homework
specification so you will have context for what will be discussed.

Here is a guide to HW4 that can help you build the processor in incremental steps and minimize
bugs and make the entire experience relatively pain-free (but still time-consuming)! Please read
the entire post if you want to follow it.

Intro, Read the Specifications Carefully!

To begin, make sure you actually understand the specifics of this project. To make a lot of the
circuitry, you can reference the CPU lecture slides. But the slides cannot be followed exactly.
You must understand that the lecture slides and the textbook specify a 32-bit, byte-addressed
system, while you will be creating a 16-bit word-addressed system (the project spec is very
specific about this and mentions it several times). Make sure you understand what these
differences mean for your project.

1. The Instructions on how to make the Instructions

Now, the first large phase is to implement all of the instructions. You can start with the register
file and ALU circuit you made for recitation 8, but you will have to make modifications. For this

entire phase, remember to TEST EACH INSTRUCTION INCREMENTALLY! If you

test every instruction as you create them, debugging will be much easier later. If you do not test
incrementally, it will be very difficult to debug later!!!!!!!!!

You will want to have input pins to the read and write ports of the regfile ($rs, $rt, $rd), so you
can input literal values into the pins as you test. Place the ALU functional units in the ALU and
implement the “addi” instruction, referencing slide 22 from the CPU slides. Using “addi” you
can now load immediates into the register file. For example, if you want to load the value “3”
into register 1 (addi $r1, $r0, 3) you would set the $rt pin to be “001”, $rs to be “000” and the
immediate pins to be “000011”.

You would also need two new control signals, “Rdst”, which sets $rd to be $rt, and “ALUinB”,
which chooses to send the sign-extended immediate to the ALU’s B operand, and set both of
those signals to 1. You would also need to set the registerWriteEnable to 1, since we want to
write to a register.

See as an example (this is nearly identical to your slides):

With all of these signals set up, if we set the clock high and then low, “3” should be written to
register 1, and you can read it out if you set either $rs or $rt to “001". Since you can now write
values into the register value, you can test more instructions. Keep going down the chart of
instructions in the spec and keep implementing and testing.

As you add instructions, you will have to add more control signals to the system. Keep these
control signals as input pins. As you implement the instructions, you will want to maintain a
spreadsheet that has instructions as the rows and control signals as the columns (see slide 37
for an example). This table tells you which control signals need to be on to run each instruction.
As per your design, you will know which signals activate which instruction. Every instruction you
add will add a new row to the table, and each instruction may or may not have several signals
to control it. When you are done implementing all of the instructions, your table will have 16
rows and around that many columns.

When you get to the branch and sw/lw instructions, you will have to add ROM (Read-Only-
Memory, Instruction Memory) and RAM (Random-Access-Memory, Data Memory).

At the end of this phase, you should be able to run any single instruction system by turning on
the appropriate control signal and register bits and clocking up and down.

Note: if you are experienced with Git, I recommend using it to version control the project. This
way you can reset to an older commit if you mess up. You can checkout new branches for each
instruction you create, and after testing it fully, you can merge it back into master (totally

unrequired, just helpful). But do not push to Github, as that would be a violation of the Duke
Community Standard :s

Note: I recommend using a custom control signal bus called ALUop (which will be a function of
the instruction opcode) that controls the ALU function.

Note: Read the spec to see how to implement Instruction and Data Memory.

Note: Make sure all of your muxes have “include enable” set to “no” in the object’s attributes.

Final note: The slides are all very helpful to get a basic idea of the circuits and control signals
you will need for every instruction, but make sure you are implementing the instructions
specified in the homework (e.g. bgt, instead of beq).

2. Controlla…

Once you have implemented all of your instructions and EXHAUSTIVELY TESTED ALL
OF THEM, you should now implement the control/decode unit. At this point, you should

have all control signals and register file inputs as simple input pins or buses. We will now
replace all of these pins with outputs from the control unit.

The control unit will take as an input the current instruction, and output all of the control
signals and register labels (e.g. $r2) that we want to read and write (see slide 35). The control
unit will have two parts, one part that takes in the opcode as input and outputs the control
signals, and a second part that takes the rest of the instruction and splits it up (literally using
splitters) into rs, rt, rd, shamt, immediate, and address. For the former, you will want to make a
circuit that implements the control signal table described in Section 1. The slides show how to
implement such a circuit, using a 4-to-16 decoder and OR gates.

Then all of the input pins currently representing the control signals in your main circuit should
be replaced with wires/buses output by the control/decode unit. If done correctly, each
instruction will now activate the control signals for that instruction.

3. Final-e Test

After doing all of the above, you will have a complete system that you can now run assembly
programs on. Write a few simple test programs, keeping in mind the instructions you have
available and that your ALU immediates are only 6 bits. Remember also to put a “halt” at the
end of your program.

You can use the test kit (on the Teer machines, of course ☺) to assemble your programs into an
.imem file and a .dmem file. You can then use the simulator on it to see what your program
does. Specifically, the output of the program on your terminal will be what your CPU should

output on the TTY display. You can then load your .imem into your ROM and .dmem into your
RAM (using right/two-finger/control click on the memory module and choosing Load Image…).

Then you can use control/cmd K to let the clock run automatically. You can choose how fast it
runs in the Logisim top menu: Simulate->Tick Frequency.

The CPU will then output onto the TTY (make sure you write a program that uses the Output
instruction). If the output matches the terminal output from the simulator, then the CPU runs
that program correctly!

The holy grail program is one that tests all 16 instructions and outputs confirmation messages
onto the TTY. Think about how you could use branches to check what is expected to be in a
register based on the result of some test instruction, and then branch to a print function to
print out a message based on whether or not the tested instruction ran correctly.

Like this:

Of course, you can always use the python tester we give you, but remember those tests will not
be exhaustive. Your CPU should be able to run arbitrary programs using all 16 instructions, so
do your best to make sure it does that.

That’s everything (whew). If you follow this guide, you should have few problems, the hardest
part will be implementing the instructions correctly.

Note: To log in to the Teer machines off campus, you may need the Duke VPN for which you
can download the Cisco client at https://oit.duke.edu/what-we-do/services/vpn .

Good luck!

https://oit.duke.edu/what-we-do/services/vpn

