
ECE/CS 250
Computer Architecture

Fall 2022

Basics of Logic Design:
Finite State Machines

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Drew Hilton (Duke), Alvy Lebeck (Duke), Amir Roth

(Penn)

2

Finite State Machine (FSM)

• FSM = States + Transitions

• Next state = function (current state, inputs)

• Outputs = function (current state, inputs)

• What you do depends on what state you’re in

• Think of a calculator … if you type “+3=“, the result depends on
what you did before, i.e., the state of the calculator

• Canonical Example: Combination Lock

• Must enter 3 8 4 to unlock

INPUTS OUTPUTS

STATE
DFF

DFF

LOGIC

Preview: the major ingredients to a finite state machine circuit

3

How FSMs are represented

State 1 State 2

3 / 0

What input we need to see
to do this state transition

What we change the circuit output
to as a result of this state transition

7 / 1

“Self-edges” are possible

4

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• Initial State called “start”: no valid piece of combo seen

• All FSMs get reset to their start state

Start

5

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• Input of 3: transition to new state, output=0

• Any other input: stay in same state, output=0

start saw 3

3/0

{0-2,4-9}/0

if input = 3, go to state

“saw 3” and set output=0

if input != 3, go to state

“start” and set output=0

6

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• If in state “saw 3”:

• Input = 8? Goto state “saw 38” and output=0

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

3/0

{0-2,4-7,9}/0

7

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• If in state “saw 38”:

• Input = 4? Goto state “saw 384” and set output=1 → Unlock!

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

8

Finite State Machines: Example

• Combination Lock Example:

• Need to enter 3 8 4 to unlock

• If in state “saw 384”:

• Stay in this state forever and output=1

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

9

Finite State Machines: Example

In this picture, the circles are states.

The arcs between the states are transitions.

The figure is a state transition diagram, and it’s the first thing you

make when designing a finite state machine (FSM).

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

10

Finite State Machines: Caveats

Do NOT assume all FSMs are like this one!

•A finite state machine (FSM) has at least two states, but can have many, many

more. There’s nothing sacred about 4 states (as in this example). Design your

FSMs to have the appropriate number of states for the problem they’re solving.

• Question: how many states would we need to detect sequence 384384?

•Most FSMs don’t have state from which they can’t escape.

11

FSM Types: Moore and Mealy

• Recall: FSM = States + Transitions

• Next state = function (current state, inputs)

• Outputs = function (current state, inputs)

• Write the output on the edges

• This is the most general case

• Called a “Mealy Machine”

• We will assume Mealy Machines in this lecture

• A more restrictive FSM type is a “Moore Machine”

• Next state = function (current state, inputs)

• Outputs = function (current state)

• Write the output in the states

• More often seen in software implementations

“Mealy Machine”

developed in 1955

by George H. Mealy

“Moore Machine”

developed in 1956

by Edward F. Moore

12

Mealy vs Moore

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

start

0

saw 3

0

3

{0-2,4-9}

saw 38

0

8

{0-2,5-9}

3

3

{0-2,4-7,9}
saw 384

1

4

{0-9}

Moore machine: outputs on STATES in red

Mealy machine: outputs on TRANSITIONS in red

13

FSM Design Process

• Systematic approach that always works:

1. Start with state transition diagram

2. Make truth table

3. Write out sum-of-products logic equations

4. Optimize logic equations (optional)

5. Implement logic in circuit

14

State Transition Diagram → Truth Table

Current State Input Next state Output

Start 3 Saw 3 0 (closed)

Start Not 3 Start 0

Saw 3 8 Saw 38 0

Saw 3 3 Saw 3 0

Saw 3 Not 8 or 3 Start 0

Saw 38 4 Saw 384 1 (open)

Saw 38 3 Saw 3 0

Saw 38 Not 4 or 3 Start 0

Saw 384 Any Saw 384 1

start saw 3

3/0

{0-2,4-9}/0

saw

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

15

State Transition Diagram → Truth Table

start saw 3

3/0

{0-2,4-9}/0

saw

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

Digital logic → must represent everything in binary, including state names.

But mapping is arbitrary!

We’ll use this mapping:

start = 00

saw 3 = 01

saw 38 = 10

saw 384 = 11

16

State Transition Diagram → Truth Table

Current State Input Next state Output

00 (start) 3 01 0 (closed)

00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)

10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states → 2 flip-flops to hold the current state of the FSM

inputs to flip-flops are D1D0

outputs of flip-flops are Q1Q0

17

State Transition Diagram → Truth Table

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Input can be 0-9 → requires 4 bits

input bits are in3, in2, in1, in0

Current State = Q’s Next State = D’s

18

State Transition Diagram → Truth Table

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Now let’s transform the inputs.

19

State Transition Diagram → Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Output

0 0 0 0 1 1 0 1 0

0 0 Not 3
(all binary combos other than 0011)

0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3
(all binary combos other than 1000 & 0011)

0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3
(all binary combos other than 0100 & 0011)

0 0 0

1 1 Any 1 1 1

From here, it’s just like combinational logic design!

Write out product-of-sums equations, optimize, and build.

Same inputs as before, now just in binary

20

FSM Design Process

• Systematic approach that always works:

1. Start with state transition diagram

2. Make truth table

3. Write out sum-of-products logic equations

4. Optimize logic equations (optional)
(we’ll skip for this example)

5. Implement logic in circuit

21

State Transition Diagram → Truth Table

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D0 = do the same thing

Q1 Q0 In3 In2 In1 In0 D1 D0 Output

0 0 0 0 1 1 0 1 0

0 0 Not 3
(all binary combos other than 0011)

0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3
(all binary combos other than 1000 & 0011)

0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3
(all binary combos other than 0100 & 0011)

0 0 0

1 1 Any 1 1 1

22

FSM Design Process

• Systematic approach that always works:

1. Start with state transition diagram

2. Make truth table

3. Write out sum-of-products logic equations

4. Optimize logic equations (optional)
(we’ll skip for this example)

5. Implement logic in circuit

23

State Transition Diagram → Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Output

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Remember, these represent DFF outputs …and these are the DFF inputs

The DFFs are how we store the state.

24

Truth Table → Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

Start with 2 FFs and 4 input bits. FFs hold current state of FSM.

(not showing clock/enable inputs on flip flops)

in3

in2

in1

in0

25

Truth Table → Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

26

Truth Table → Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

27

Truth Table → Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

Not pictured
Follow a similar procedure for D0…

28

FSM Design Process

• Systematic approach that always works:

1. Start with state transition diagram

2. Make truth table

3. Write out sum-of-products logic equations

4. Optimize logic equations (optional)
(we’ll skip for this example)

5. Implement logic in circuit

29

FSM tips

• Sometimes can do something non-systematic

• Requires cleverness, but tough to do in general

• Do not do any of the following!

• Use clock as an input (D input of FF)

• Have multiple clocks

• Perform logic on clock signal

(except maybe a NOT gate to go from rising to falling edge triggered)

• Let’s review the FSM Design Process one more time,
this time with animation…

30

FSM Design Process, animated

Current
state

Input Next state Output

Q1 Q0 In1 In0 D1 D0 Out

0 0 0 0 0 1 1

0 0 0 1 1 0 1

0 0 1 0 1 1 0

0 0 1 1 0 1 0

Yields

DFF

D Q

DFF

D Q

Outputs

Inputs

In1

In0

Out

Combo logic circuit

Steps:

1. State Transition Diagram

2. Do truth table

3. Sum-of-products

4. Optimize?

5a. Make combo logic

5b. Slap down DFFs

5c. Hook up DFFs

5d. Hook up inputs/outputs

00

01

10
11

Yields

31

QUESTIONS?

