ECE/CS 250

Computer Architecture

Course review
Tyler Bletsch
Duke University

Includes work by
Daniel J. Sorin (Duke), Amir Roth (Penn), and Alvin Lebeck (Duke)

Introduction

f computers

ing 0

jective

Course obj

Evolve your understand

P e e

o

'

R T
AT Rl Y

System Organization

memory bus /O bridge

1/0 Bus

main
memory

disk graphics network
controller controller interface

disk W disk | 9raphics

C programming

What is C?

e The language of UNIX

e Procedural language (no classes)
e Low-level access to memory

e Easy to map to machine language
e Not much run-time stuff needed

e Surprisingly cross-platform

Why teach it now?
To expand from basic programming to
operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

Memory Layout and Bounds Checking

FFFFFFFFF

Storage for array int days in month[12];

Storage for other stuff J\ Storage for some more stuff
R -

—

(each location shown here is an int)

e There is NO bounds checking in C

e i.e,, it's legal (but not advisable) to refer to
days in month[216] Or
days in month[-35] |

e who knows what is stored there?

Structures

Structures are sort of like Java objects =

DIFFERENT

e They have member variables
e But they do NOT have methods!

Structure definition with struct keyword
struct student record {
int id;
float grade;

} recl, rec2;

Declare a variable of the structure type with struct keyword

struct student record onerec;

Access the structure member fields with dot (*.”), e.9. structvar.member

onerec.id = 12;

onerec.grade = 79.3;

Let’s look at memory addresses!

e You can find the address of ANY variable with: &

FFFFFFFFF

The address-of operator

int v = 5;
printf(“%d\n”,v);
printf(“%p\n”,&v); ;x7fffd232228c

$ gcc x4.c && ./a.out

What'’s a pointer?

e It's a memory address you treat as a variable
e You declare pointers with:

X

The dereference operator

1nt V<=55/ Append to any data type
int* p = &v;

printf(“%d\n”,v);
printf(“%p\n”,p);

$ gcc x4.c & ./a.out
5

Ox7fffeBeb60b7cC

FFFFFFFFF

10

What'’s a pointer?

e You can look up what's stored ata pointer! g
e You dereference pointers with:

X

The dereference operator

int v = 5;

int* p = &V3 Prepend to any pointer variable or expression

printf(“%d\n”,v);

printf(“%p\n”’,p);
. $ gcc x4.c & ./a.out
printf(“%d\n”,*p); ’

Ox7fffe@e60b7c
)

C Memory Allocation

e void* malloc (nbytes) &
e Obtain storage for your data (like new inJava)
e Often use sizeof (type) built-in returns bytes needed for type
e int* my ptr = malloc (64); // 64 bytes = 16 ints
 int* my ptr = malloc (64*sizeof(int)); // 64 ints

e free (ptr)

e Return the storage when you are finished (no Java equivalent)
- ptr must be a value previously returned from malloc

12

Data representations and memory

Decimal to binary using remainders

? Quotient | Remain-
der

457 = 2 = 228 1
228 ~ 2 = 114 0]
114 - 2 = 57 0
B7 + 2 = 28 1
28 + 2 = 14 0]
14 - 2 = 7 0]
7+2= 3 1
3+2-= 1 1
1+-2-= 0 1

111001001

14

Decimal to binary using comparison

111001001

Num Compare 2" >? J
457 256 1 \J
201 128 1

73 64 1

9 32 0 |

9 16 0 7

9 8 1~

1 4 0

1 2 0

1 1 1]

15

Binary to/from hexadecimal

» 0101101100100011, -->
. 0101 1011 0010 0011, -->

5 B 2 3

1 F 4 B>
0001 1111 0100 1011, -->

0001111101001011,

Binary

HeXx

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

TM(M[(OlO|lW|>DIO|o|N|[laocojlvnn|DhR|lWIN|—=]|O

2’s Complement Integers

e Use large positives to represent negatives
e (-x) =2"-X

e Thisis 1's complement + 1

e (x)=2"-1-x+1

e SO, just invert bits and add 1

6-bit examples:

010110, = 22,,; 101010, = -22,,

1,, = 000001,; -1,, = 111111,

0,, = 000000,; -0,, = 000000, > good!

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PR bAhdLUGENOTRWN RO

17

Floating point

e 32-bit float format:

|IEEE 754 Floating Point Standard

S |e=exponent| m=mantissa

1bit 8bits 23 bits

number = (-1)S * (1.m) * 28127

e 64-bit double format:

(same thing, but with more bits)

5 exp mantissa

|| | |
—-H-: 11 »|e 52
r:

64 bits

Double Precision

18

Standardized ASCII (0-127)

Dec HxOct Char Dec Hx Oct Himl Chr [Dec Hx Oct Himl Chr) Dec Hx Qct Htrml Chr
0O 0000 NUL f{rall) 32 20 040 Space| 64 40 100 «#64; [| 98 60 140 `
1 1 001 50H (start of heading) 33 21 041 ŏ: ! 65 41 101 A & 97 61 141 «#97: a
2 Z 002 5TX [(start of text) 34 22 042 «#34r "7 ge 4z 102 #6656 E 98 62 142 «#95: b
3 3 003 ETX [(end of text) 35 23 043 # # 67 43 103 «#07; C 99 563 143 «#99; ¢
4 4 004 EOT (end of transmission) 36 24 044 $ 7 65 44 104 «#63; D |100 &4 144 d d
L 5 005 ENQ (enquiry) 37 25 045 % % A9 45 105 «#59; E (101 &5 145 e ©
6 & 006 ACE [(acknowledge) 38 26 046 ő & 70 46 106 «#70; F [l102 66 146 &#l02; £
7 7 007 BEL (bell) 39 27 047 ' " 71 47 107 G: G |103 &7 147 g 9
& & 010 B3 (backspace) A0 28 050 (| 72 43 110 «#72; H 104 68 150 «#104; h
9 9 01l TAE (horizontal tab) 41 29 051)) 73 49 111 I I |105 69 151 i 1
10 & 012 LF (NL line feed, new line)| 42 24 052 &#dZ; * 74 4k 112 «#74; J |l06 64 152 &#l06;]
11 B 013 VT (wertical tab) 43 2B 053 +:; + 75 4B 115 «#75; E |107 6B 153 k k
1z C 014 FF (NP form feed, new page)| 44 2C 054 ,: | 76 4C 114 ˺ L |108 6C 154 l 1
13 D 015 CE (carriage return) 45 2D 085 -: - 77 4D 115 M: M (109 6D 155 m I
14 E 0l 30 (shift out) 45 ZE 056 .7 . 78 4E 116 K N |110 6E 156 &#ll0; n
15 F 017 31 (shift in) 47 2F 087 / / 79 4F 117 O 0 |111 &F 157 &«#lll; o
16 10 020 DLE (data link escape) 43 30 060 + 0 g0 50 1z0 &«#30; P (112 70 1a0 lZ2: D
17 11 021 DCLl (device control 1) 49 31 06l 1 1 gl 51 121 l1:; 0 (113 71 1Al q: d
13 12 022 DCE [(dewice control Z) B0 32 0RZ «#50; 2 g2 52 122 B |114 72 1Az &#ll4; ¢
19 13 023 DC3 [(dewice control 3) Bl 33 0/3 3 3 83 53 123 S 5 |115 73 163 &#ll5; =
20 14 024 DC4 [(dewice control 4) B2 34 06d 4 4 gd 54 124 " T |116 74 164 &#lla; ©
21 15 025 NAE [(negatiwve acknowledge) 53 35 065 5:7 5 85 55 125 «#85; T (117 75 lah u U
22 16 026 3YN (synchronous idle) 54 36 066 6 6 g6 56 1Ze #8607 V (118 76 lag q:; ¥
23 17 027 ETE (end of trans. block) E5 37 0R7 7: 7 g7 57 127 %: W |119 77 167 &#ll9:; w
24 18 030 CAN [cancel) B6 38 070 «#56; 8 85 58 130 # ¥ |120 78 170 &#lzZ0; X
25 19 031 EM (end of medium) BT 39 071 =#57; 9 G9 59 131 ' T |121 79 171 =#12l; ¥
26 14 032 5UE [(substitute) B8 34 072 7 a0 54 132 Z £ |122 ThA 17:2 &#lZIE; =
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 153 «#91; [|123 7B 175 { |
28 1C 034 F2 [(file separator) 60 3C 074 < < 92 5C 134 \ % (124 7C 174 =#l24; |
29 1D 035 G2 (group Separator) gl 30 075 l; = Q3 ED 135]] |125 7D 175 &#lZ25:)
30 1E 036 B2 (record separator]) G2 3E 076 >F 94 SE 136 «#94; ~ |126 TE 176 &«#lzZ6; ~
31 1F 037 US [(unit separataor) 63 3F 077 &«#63; 2 95 S5F 157 «#95; |127 7F 177 DEL

Source: www.LookupTables.com

Memory Layout

2"-1;

e Memory is array of bytes, but there Stack
are conventions as to what goes
where in this array lL

e Text: instructions (the program to

Typical
execute) | ﬁ Addracs
e Data: global variables Space
e Stack: local variables and other Heap
per-function state; starts at top &
grows down

e Heap: dynamically allocated
variables; grows up

e What if stack and heap overlap???? o LReserved

20

Learning Assembly language with

MIPS

The MIPS architecture

32-bit word size
32 registers ($0 is zero, $31 is return address)
e Fixed size 32-bit aligned instructions

e Types of instructions:
e Math and logic:

« or $1, $2, $3 — $1 =9%$2|9%3

« add $1, $2, $3 — $1 =$2 + $3
e Loading constants:

« 1i $1, 50 — $1 =50
e Memory:

e 1w $1, 4(S$2) — $1 = *($2 + 4)

« sw $1, 4(52) — *($2 + 4) = $1
e Control flow:

* j label — PC = label

- bne $1, $2, label — if ($11=$2) PC=label

22

Control Idiom: If-Then-Else

e Control idiom: if-then-else
if (A < B) A++; // assume A in register $1
else B++; // assume B in $2

slt $3,%1,%2 /] if $1<$2, then $3=1
beqz $3,else // branch to else if Icondition
addi $1,$1,1
j join // jump to join

else: addi $2,$2,1

. ICQ: assembler converts "else”
join: operand of begz into immediate -
what is the immediate?

23

MIPS Register Usage/Naming Conventions

O zero constant 16 sO callee saves

1 at reserved for assembler

2 vO0 expression evaluation & 23 s7

3 vl function results 24 t8 temporary (cont’d)

4 a0 arguments

5 al

6 a2

7 a3 28 gp pointer to global area
8 tO temporary: caller saves 29 sp stack pointer

30 fp frame pointer

Also 32 floating-point registers: $f0 .. $f31
Important: The only general purpose registers are the $s and $t registers.

Everything else has a specific usage:
$a = arguments, $v = return values, $ra = return address, etc. 24

MIPS Instruction Formats

e 3 variations on theme from previous slide
o All MIPS instructions are either R, I, or J type
e Note: all instructions have opcode as first 6 bits

R-type

I-type

J-type

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)
Op(6) Rs(5) Rt(5) Immed(16)
Op(6) Target(26)

25

Memory Addressing Issue: Endian-ness

Byte Order

e Big Endian: byte 0 is 8 most significant bits 1BM 360/370,
Motorola 68k, MIPS, SPARC, HP PA-RISC

e Little Endian: byte 0 is 8 least significant bits intel 80x86, DEC
Vax, DEC/Compaq Alpha

little endian byte O

msb Isb

big endian byte O

26

Combinational logic

Truth Tables

e Map any number if inputs to any number of outputs

e Example:

(A&B)|!C
Start with Empty TT “0 ?I 0 1
Column Per Input 0 0 1 0
Column Per Output 0 1 0 1
. 0o 1 1 0
Fill in Inputs 1 0 0 1
Counting in Binary 1 0 1 0
1 1 0 1
Compute Output 1 1 1 1

28

Convert truth table to function

e Given a Truth Table, find the formula?

Write down every “true” case
Then OR together:

A B

= = -~ =~ O 0 O O

0

H = O O~ = O

C
0

= O = O - O =

B O O O e

29

Summary of all Boolean axioms

Identity law

Null law
Idempotent law
Inverse law
Commutative law
Associative law
Distributive law
Absorption law

De Morgan'’s law
Double negation law

0&A=0
A&A=A
A&IA=0
A&B=B&A
(A&B) & C = A & (B&C)

0|A=A
1|A=1
A|A=A
A|IA=1
A|B=B|A
(A|B) | C=A[(B|C)

A | (B&C) = (A|B) & (A|C) A & (B|C) = (A&B) | (A&C)

A & (AB) = A
I(ARB) = 'A | B

A | (A&B) = A
I(A|B) = 'A & IB
A = A

Adapted from http://studytronics.weebly.com/boolean-algebra.html 30

http://studytronics.weebly.com/boolean-algebra.html

Guide to Remembering your Gates

a‘—>A_NP(a,b) a::DE(a,b) ajD_X?R(a,b)
be— b b

/

XOR looks like OR (curved line),
but has two lines (like an X does)

/

Straight like an A Curved, like an O

Circle means NOT

a'_DgiND(a’b) a:DoN—qR(a,b) aj) >XN°R(a'b’
be— b b

(XNOR is 1-bit “equals” by the way)

a | N(.)T (a)

31

Designing a 1-bit adder

e So we'll need to add three bits (including carry-in)
e Two-bit output is the carry-out and the sum

.\

P PR RPRRPROOOOHY
+ + + + + + + +

R RrROORKRRKROODUD
+ + + + + + + +

P OPRPR OPRKPOHRrDO

= 00
01
01
10
01
10
10
11

Turn into expression,
simplify,
circuit-ify,

yadda yadda yadda...

32

A 1-bit Full Adder

cin Q&%&}loo
2, *’)Z:E%_&m1 011;$§gi
: _;D::> * +00101100
10011001
a b C, | Sum C_,.
O 0 O 0 0
O 0 1 1 0
| O 1 O 1 0
O 1 1 0 1
1 0 O 1 0
1 0 1 0 1
Cout 1 1 O 0 1
1 1 1 1 1

33

Example: Adder/Subtractor

¥ ¥ ¥ £
C. .= Full Adder (< Full Adder (< Full Adder {«— Full Adder

out

Add/Sub S S N N
D

34

The ALU

C.

n

16 m
/ /
a Q 7 ¢
16
b MI 16-bit
°
® 16-bit
|
16-bit
Add/sub
Cout

Add/sub

ul 4

16

35

Sequential logic

D flip flops

e Stores one bit

e Inputs:
e Thedata D D Q
e The clock *>' > PP
E Q

e An “enable” signal E

e Qutputs:

e The stored bit output Q
(and also its inverse 1Q)

e "Commits” the input bit on clock rise,
and only if E is high

Clock rise (bit gets saved at this time)

37

Register

e Register: N flip flops working in parallel,
where N is the word size

V

38

Register file

o A set of registers with multiple ports so humbered registers

can be read/written.

e How to write:
e Use decoder to convert reg # to one hot
e Send write data to all regs
e Use one hot encoding of reg # to enable right reg

e How to read:
e 32 input mux (the way we've made it) not realistic
e To do this: expand our world from {1,0} to {1, 0, Z}

§Zm SZm
> >
= o

En30

En30_

v

En31

Enat |

v

39

Finite state machines

How FSMs are represented

What input we need to see
to do this state transition

What we change the circuit output
to as a result of this state transition

3/0

State 1

State 2

< D

711

“Self-edges” are possible

41

Mealy vs Moore

outputs on TRANSITIONS in red

{0-9Y/1

Moore machine: outputs on STATES in red
{0-9}

saw 384
1

42

{0-2,5-9}
[0-2,4-9)

State Transition Diagram = Truth Table

{0-2,4-9}/0

Start
Start
Saw 3
Saw 3
Saw 3
Saw 38
Saw 38
Saw 38
Saw 384

Not 4 or 3
Any

{0-2,5-9}/0

Saw 3
Start
Saw 38
Saw 3
Start
Saw 384
Saw 3
Start
Saw 384

{0-9/1

43

State Transition Diagram = Truth Table

00 (start) 3 01 0 (closed)
00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)
10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states - 2 flip-flops to hold the current state of the FSM
inputs to flip-flops are D,D,
outputs of flip-flops are Q,Q,

44

State Transition Diagram -> Truth Table

Input can be 0-9 - requires 4 bits
input bits are in3, in2, in1, in0

State Transition Diagram -> Truth Table

From here, it’s just like combinational logic design!
Write out product-of-sums equations, optimize, and build.

State Transition Diagram -> Truth Table

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & 'In0) | (Q1 & QO)

D1=(Q1 & Q0&In3&!'In2 & !In1 & 'In0) | (Q1 & 'Q0 & !In3 & In2 & !In1 & In0) | (Q1 & QO)

DO = do the same thing

State Transition Diagram -> Truth Table

\—Y—} \—Y—/

Remember, these represent DFF outputs ...and these are the DFF inputs

The DFFs are how we store the state.

Truth Table = Sequential Circuit

. output

/
[/

in3 DC
in2
inl

\Dc F

in0
D1 = (IQ1 & Q0 & In3 & In2 & !In1 & !In0)

\ J
Y

Not pictured

Follow a similar procedure for DO...
49

How to think about the FSM circuit

Combo logic circuit

Outputs

Out
—

X0 \3‘0\6 Steps:
U EHEEEEEE 2
Convert to logic circuit

Slap down DFFs

1 Hook up DFFs

1 Hook up inputs/outputs
0 50
N

| Q1 | Q0 [Ini]In0 | DL | DO | Out |
0 0 0 0 0 1

akhwnE

0 0 0 1 1 0
0 0 1 0 1 1
n n 1 1 N 1

CPU datapath and control

The overall datapath

() :E I—BR > >
?l <2< JP
:ly R
> : :_ »A >
JP | Insn Register > Data
C Mem File JgMem | Rwd
> > > 5152 d T~ [B
R 114 = ALUop
we > DMwe
T
Rds ALUINB

52

Exceptions

e Exceptions and interrupts
e Infrequent (exceptional!) events

e I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer

e Handling requires intervention from operating system
e End program: divide-by-0, protection fault, illegal insn, ~C
e Fix and restart program: I/0O, page fault, ~Z, timer

e Handling should be transparent to application code

e Don’t want to (can't) constantly check for these using insns
o Want “Fix and restart” equivalent to “never happened”

53

Big Concept: Memory Hierarchy

Memory

e Use hierarchy of memory components
o Upper components (closer to CPU)
e Fast <> Small <> Expensive
e Lower components (further from CPU)
e Slow < Big < Cheap

e Bottom component (for now!) = what we have
been calling "memory” until now

e Make average access time close to L1's
e How?
e Most frequently accessed data in L1
e L1 + next most frequently accessed in L2, etc.
o Automatically move data up&down hierarchy

55

Terminology

Hit: Access a level of memory and find what we want

Miss: Access a level of memory and DON'T find what we want

Block: a group of spatially contiguous and aligned bytes

Temporal locality: Recently accessed stuff likely to be
accessed again soon

Spatial locality: Stuff near recently accessed thing likely to
be accessed soon

56

Memory Performance Equation

CPU e For memory component L1
f e Access: read or write to L1
thit e Hit: desired data found in L1
! e Miss: desired data not found in L1

e Must get from another (slower) component
Fill: action of placing data in L1

e %, ... (Miss-rate): #misses / #accesses
e t,,;:: time to read data from (write data to) L1
e t i time to read data into M from lower level

miss

I
|
|
v

e Performance metric
e t,,4: average access time

tavg = thit + (o/omiss * tmiss)

57

Abstract Hierarchy Performance

A —
tmiss-Ml -

y

L2

l I tmiss-MZ =

L3

A

1:miss-MB T

\ 2 /

'tavg = tavg-Ml

tavg-MZ

avg-M3

avg-M4

How do we compute t,, ?
=t
:thit-Ll +(%miss-L1*tmiss-L1)

:thit-Ll +(%miss-L1*tavg-L2)

:thit-Ll +(%miss-Ll*(thit-L2+(%miss-LZ*tmiss-LZ)))
:thit-Ll +(%miss-Ll*(thit-L2+(%miss-LZ*tavg-LS)))

avg-L1

Note: Miss at level X = access at level X+1

58

Where to Put Blocks in Cache

e How to decide which frame holds which block?
e And then how to find block we're looking for?

e Some more cache structure:
e Divide cache into sets

e A block can only go in its set = there is a 1-to-1 mapping from
block address to set

e Each set holds some number of frames = set associativity
e E.g., 4 frames per set = 4-way set-associative
e At extremes
e Whole cache has just one set = fully associative
e Most flexible (longest access latency)
e Each set has 1 frame = 1-way set-associative = “direct mapped”
o Least flexible (shortest access latency)

59

Cache structure math

e Given capacity, block_size, ways (associativity), and
word_size.

e Cache parameters:
e hum_frames = capacity / block_size
e sets = num_frames / ways = capacity / block_size / ways

e Address bit fields: Tag Index Block offset
e offset_bits = log,(block_size)
e index_bits = log,(sets)
e tag_bits = word_size - index_bits - offset_bits

e Way to get offset/index/tag from address (bitwise & numeric):
o block_offset = addr & ones(offset_bits) = addr % block_size

e index = (addr >> offset_bits) & ones(index_bits)
= (addr / block_size) % sets

e tag = addr >> (offset_bits+index_bits) = addr / (sets*block_size)

ones(n) = a string of 77 ones = ((1<<n)-1) »

Cache Replacement Policies

e Set-associative caches present a new design choice
e On cache miss, which block in set to replace (kick out)?

e Some options
e Random IS et
e LRU (least recently used) " This is what You SR
e Fits with temporal locality, LRU = least likely to be used in future
e NMRU (not most recently used)
e An easier-to-implement approximation of LRU
e NMRU=LRU for 2-way set-associative caches
e FIFO (first-in first-out)
e When is this a good idea?

61

ABCs of Cache Design

o Architects control three primary aspects of cache design
e And can choose for each cache independently

e A = Associativity
e B = Block size
o C = Capacity of cache

e Secondary aspects of cache design
e Replacement algorithm
e Some other more subtle issues we'll discuss later

62

Analyzing Cache Misses: 3C Model

e Divide cache misses into three categories
e Compulsory (cold): never seen this address before
e Easy to identify

e Capacity: miss caused because cache is too small — would’ve been
miss even if cache had been fully associative

e Consecutive accesses to block separated by accesses to at least N
other distinct blocks where N is number of frames in cache

e Conflict: miss caused because cache associativity is too low — would've
been hit if cache had been fully associative

e All other misses

63

Stores: Write-Through vs. Write-Back

e When to propagate new value to (lower level) memory?
e Write-through: immediately (as soon as store writes to this level)
+ Conceptually simpler
+ Uniform latency on misses
— Requires additional bandwidth to next level
o Write-back: later, when block is replaced from this level
e Requires additional “dirty” bit per block > why?
+ Minimal bandwidth to next level
e Only write back dirty blocks
— Non-uniform miss latency
e Miss that evicts clean block: just a fill from lower level

e Miss that evicts dirty block: writeback dirty block and then fill
from lower level

64

Stores: Write-allocate vs. Write-non-allocate

e What to do on a write miss?

o Write-allocate: read block from lower level, write value into it
+ Decreases read misses
— Requires additional bandwidth
e Use with write-back

 Write-non-allocate: just write to next level
— Potentially more read misses
+ Uses less bandwidth
e Use with write-through

65

38

30
62
5

2049
2085

60
4130
2085

Example cache trace

|_Term _|Value| Equation |
(Y Rre N 4096 given
32 given
2 given
cache size / block size

sets | frames / ways
bits:index |

its:index log,(sets)

b
log,(block size)

‘ 64 minus the above

addr-hex| tag lindex offset| ___result
0026

001E
003E
0005
0801
0825
003C
1022
0825

66

Example cache trace

|_Term |Value| Equation |
(Y Rre N 4096 given

block size [EECYRRNCIVEY

NO 2 given

ML 128 cache size / block size
T 64 frames / ways

6 log,(sets)

5 log,(block size)
MITRErE 53 64 minus the above

mmm-@_

0026 1 6 miss compulsory
30 001E O 0 30 miss compulsory
62 003E 0 1 30 hit
5 0005 0 0 5 hit
2049 0801 1 0 1 miss compulsory
2085 0825 1 1 5 miss compulsory
60 003C 0 1 28 hit
4130 1022 2 1 2 miss compulsory
2085 0825 1 1 5 miss conflict

67

Virtual memory

caching vs. virtual memory

S

~

» Faster
Cache « More expensive
* Lower capacity

CACHING

Copy if popular

p

Load if needed

: FENTERCE ™=
'.'ﬁ g i .m

AN § @

T —

Q <\

=

o

o

n

=

» Slower
* Cheaper
* Higher capacity

VIRTUAL MEMORY

SEGFAULT

OK (fast)

OK (fast)

OK (but slow)

Virtual memory

“‘Page table”

Physical memory

HDD/SSD storage

70

Demand Paging

Memory
reference

Is in physical
memory?

Success

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

/1S page stored on

pd

disk?

)

Load it, success

Invalid reference,

abort! { }

y

,_:——/

71

Address translation

I [
I [
I [
} [, |
Virtual address [Physical address vy [
I [
virtPage# | Offset [PhysPage# | (Jffset T
I [
| 1 |
T I
i |)
I . [
[Register I
I 1
n bits : Page table ptr :
I [
I [
- Page table '
| c m bits I
I A I off I
I [sel .
. | , Page
I I frame
I [
| I
[[
I [
I PhysPage# I
I [
I 1
I [
I I
[[
[I \/\
I |
I [
I |
I : : [:
Program [Paging mechanism 1 Main memory
[[
I l

72
Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

Address translation

Page offset

Virtual address: 0O0OOO00000000000111000006000101

Page table:
463
116
460
407
727
719
203

l 192

7

Index |Data__|Valid? |

== O, OKF == O

Physical address: 00000000000000001100000000000101

Page offset

73

Steps in Handling a Page Fault

@ page is on
backing store

\\J/

operating
system @
reference
@ trap
load M |« X |
restart page table
instruction
free frame
reset page
table
physical
memory

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

r

\\-//
bring in
missing page

74

Translation Buffer

cPU e Functionality problem? Add indirection!
— e Performance problem? Add cache!
VA VA
\ 4 LA 4
— 7 e Address translation too slow:
v e Cache translations in translation buffer (TB)
L2 « Small cache: 16-64 entries, often fully assoc
VA + Exploits temporal locality in PT accesses
=0 [e . + OS handler only on TB miss
PA v ‘data’
Main PPN
Memory PPN
PPN

© Daniel J. Sorin from Roth 75 -

Virtual Physical Caches

Main
Memory

© Daniel J. Sorin from Roth

Compromise: virtual-physical caches
e Indexed by VAs
e Tagged by PAs
e Cache access and address translation in parallel
+ No context-switching/aliasing problems
+ Fast: no additional t,;, cycles

o A TB that acts in parallel with a cache is a TLB
e Translation Lookaside Buffer

e Common organization in processors today

/6

76

What Happens if There is no Free Frame?

e Page replacement — find some page in memory, but not
really in use, page it out

e Algorithm?
e Want an algorithm which will result in minimum number of page faults
o This decision is just like choosing the caching replacement algorithm!

77
Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

Thrashing

o If a process does not have “enough” pages, the page-fault
rate is very high
e Page fault to get page
e Replace existing frame
e But quickly need replaced frame back

e This leads to:

e Low CPU utilization

e Operating system thinking that it needs to increase the degree of
multiprogramming

e Another process added to the system

e Thrashing = a process is busy swapping pages in and out

78

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

Working-set model

e A = working-set window = a fixed number of page references
Example: 10,000 instructions

e WSS; (working set of Process P) =
total number of pages referenced in the most recent A (varies in time)

o if A too small will not encompass entire locality
e if A too large will encompass several localities
e if A = o0 = will encompass entire program

e D=73% WSS,;= total demand frames
e Approximation of locality

e if D> m= Thrashing

e Policy if D> m, then suspend or swap out one of the processes

page reference table
...2615777751623412344434344413234443444...

s 14 |

< :I
t1 2
WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}

&

79
Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

Virtual memory summary

Address translation via page table

e Page table turns VPN to PPN (noting the valid bit)
Page is marked 'i"? Page faulit.

e If OS has stored page on disk, load and resume | | :

e If not, this is invalid access, kill app (seg fault) A
Governing policies:

e Keep a certain number of frames loaded per app

e Kick out frames based on a replacement algorithm (like LRU, etc.)
Looking up page table in memory too slow, so cache it:

e The Translation Buffer (TB) is a hardware cache for the page table

e When applied at the same time as caching (as is common),
it's called a Translation Lookaside Buffer (TLB).

Working set size tells you how many pages you need over a time
window.

DRAM is slower than SRAM, but denser. Needs constant refreshing of data.

80

Protection and access

e I/O should be protected, with device access limited to OS

e User processes request I/O through the OS (not directly)

e User processes do so by triggering an interrupt,
this causes the OS to take over and service the request

e The interrupt/exception facility is implemented in hardware,
but triggers OS software

82

Connectivity

e Bus: A communication linkage with two or more devices on it
e Various topologies are possible

cpu] [Vem cPUj [Mem
Backplane Proc-Mem
/O 1/O /O
CPU ($) |€ 4 4
1/O 1/O
“System” (memory-1/O) bus
DMA DMA /O ctrl
. A AN (V\ ,_" \ 4 \ 4
Main kod "ok | | dispiay NIC
Memory) 'm

83

Communication models

e Polling: Ask continuously
e Often a waste of processor time

e Interrupts: Have disk alert the CPU when data is ready
e But if data packets are small, this interrupt overhead can add up

e Direct Memory Access (DMA): The device itself can put the
requested data directly into RAM without the CPU being
involved

e The CPU is alerted via interrupt when the whole transaction is done
e Complication!
e Now memory can change without notice; interferes with cache
e Solution: cache listens on bus for DMA traffic, drops changed data

84

5 Stage Pipelined Datapath

e Temporary values (PC,IR,A,B,O,D) re-latched every stage
e Why? 5 insns may be in pipeline at once, they share a single PC?
* Notice, PC not re-latched after ALU stage (why not?)

86

Pipeline Diagram

e Pipeline diagram: shorthand for what we just saw
e Across: cycles
e Down: insns

e Convention: X means 1w $4,0($5) finishes execute stage and
writes into X/M latch at end of cycle 4

11234 |5]6|7]8]09
add $3,%$2,51 FI DI X|M|W
1w $4,0($5) FID/ X M| W
sw $6,4(87) FI DI XMW

87

Pipeline Hazards

Hazard: condition leads to incorrect execution if not fixed
e “Fixing” typically increases CPI
e Three kinds of hazards

Structural hazards
e Two insns trying to use same circuit at same time

e Fix by proper ISA/pipeline design:
Each insn uses every structure exactly once for at most one cycle, always at same stage relative to
Fetch

Data hazards
e Result of dependencies: Need data before it's ready

e Solve by (a) stalling pipeline (inject NOPs) and (b) having bypasses provide data before it formally
hits destination memory/register.

Control hazards
e Result of jump/branch not being resolved until late in pipeline
e Solve by flushing instructions that shouldn't have been happening after branch is resolved
e This incurs overhead: wasted time! Reduce with:
e Fast branches: Add hardware to resolve branch sooner
e Delayed branch: Always execute instruction after a branch (complicates compiler)
e Branch prediction: Add hardware to speculate on if/where the branch goes

88

Stalling and Bypassing together

&
«Vadd $4'$2'$34/ 1w $3,0($2)

add $4,$2,$3 1w $3,0($2)
Stall = (D/X.IR.OP == LOAD) &&
((F/D.IR.RS1 == D/X.IR.RD) ||
((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))

89

Pipeline Diagram: Data Hazard

e Even with bypasses, stalls are sometimes necessary

e Examples:
e Memory load -> ALU operation
e Memory load -> Address component of memory load/store

e Example pipeline diagram for a stall due to a data hazard:

11234 |5|6|7]8|°9
add $3,8$2,$1 F XMW
1w $4,0($3) FIDI X M| W
addi $6,%4,1 F|d* D| X | M|W

90

Pipeline Diagram: Control Hazard

e Control hazards indicated with c* (or not at all)
o "Default” penalty for taken branch is 2 cycles:

1123|456]7[8]|9
addi $3,%0,1 FID| X M| W
bnez $3,targ FIDI X M| W
sw $6,4(87) ck¥|c* FI DI X | MW

e Fast branches reduce the penalty to 1 cycle:

1,234 5|6 |7|8]|°9

addi $3,$0,1 FI DI X1 M| W
bnez $3,targ FI DI X1 M| W
sw $6,4(87) c* F|DIX|M|W

91

Types of parallelism

e Pipelining tries to exploit instruction-level parallelism
(ILP)

e "How can we simultaneously do steps in this otherwise sequential
process?”

e Multicore tries to exploit thread-level parallelism
e "How can we simultaneously do multiple processes?”

e Thread: A program has one (or more) threads of control
e A thread has its own PC
e Threads in a program share resources, especially memory
(e.g. sharing a page table)

93

Two cases of multiple threads

e Multiprogramming: run multiple programs at once

o Multithreaded programming: write software to explicitly
take advantage of multiple threads (divide problem into
parallel tasks)

94

Multiprocessors

e Multiprocessors: have more than one CPU core
e Historically: multiple discrete physical chips
e Now: a single chip with multiple cores

Multiprocessor:
Two drive-throughs, each
with its own kitchen

95

Challenges of multicore

e Two main challenges:
e Topologies of connection (rings, cubes, meshes, buses, etc.)

004 o v, 7 5 5l
N ool
C*_?_* v v Ord ol O
RSRORS vl T Tl Tl T

o Cache coherence: If each core has a cache, then each CPU can have
a diverging view of memory !! (BAD)

e Solution: Intelligent caches that use snooping on the memory bus
to spot sharing and react accordingly

e Different coherence algorithms (performance/complexity tradeoffs)

Store / OWNGETX

OtherGETS/ --

N
OtherGETX/ -- \\\
Store / OwrfGET] {OtherGETS

/r

| -/OtherGETX
Writeback / OwnPUTX
dherBustX /-
Jriteback/ --

Store / OWNGET
Load / OWNnGETS

Store / OWNGETX

]
Load / OwnGE :'/
OtherGETS/ -
OtherGETX/ --

96

Intel x86

Basic differences

_ ms |Intelx36

Originally: 32-bit (MIPS I in 1985)
Now: 64-bit (MIPS64 in 1999)

RISC

Register = Register K Register
(3 operand)

Registers 32

32-bit fixed

Condition in register (e.g. “slt”)
Either (typically big)

Just 32- vs. 64-bit, plus some
graphics extensions in the 90s

Branching

Variants and
extensions

Market share Small but persistent (embedded)

Originally: 16-bit (8086 in 1978)
Later: 32-bit (80386 in 1985)
Now: 64-bit (Pentium 4’s in 2005)

CISC

Register Xi= <Reg|Memory>
(2 operand)

8 (32-bit) or 16 (64-bit)
Variable: up to 15 *bytes*!
Condition codes set implicitly
Little

A bajillion (x87, IA-32, MMX, 3DNow!,
SSE, SSE2, PAE, x86-64, SSE3, SSE4,
SSE5, AVX, AES, FMA)

80% server, similar for consumer
(defection to ARM for mobile is recent)

98

64-bit x86 primer

e Registers:
e General: rax rbx rcx rdx rdi rsi r8 r9 .. rlb
e Stack: rsp rbp
e Instruction pointer: rip Intel syntax ATET syntax
. . mov rax, 5 mov 5, %rax
e Complex instruction set mov [rbx], 6 mov 6, [$rbx]
e Instructions are variable-sized & unaligned 29 rax, rdi add %rdi, %rax
push rax push %rax
e Hardware-supported call stack pop rsi pop %rsi
. ll/ call 0x12345678 call 0x12345678
ca ret ret ret
e Parameters in registers {rdi, rsi, rdx, | 3™ 0x87654321 | jmp gx37654321
. jmp rax Jmp rax
rcx, r8, r9}, return value in rax ~all rax ~all Srax

e Little-endian

e These slides use Intel-style assembly language (destination first)
e GNU tools like gcc and objdump use AT&T syntax (destination last)

99

Binary modification

(applies to *all* ISAS)

e Can disassemble binaries (turn into human-readable assembly)

e Do a bunch of cross-referencing to understand functionality
(that’s what IDA Pro does) &

e Basic blocks of code ending in branches form a flow chart
e Identify behavior and make inferences on author intent

e Can modify by overwriting binary with new instructions
(can also /nsertinstructions, but this changes layout of binary
program, so various pointers have to be updated)

e Cheap and easy technique on x86: overwrite stuff you don‘t
want with NOP (0x90)

100

THE END

	Slide 1: ECE/CS 250 Computer Architecture
	Slide 2: Introduction
	Slide 3: Course objective: Evolve your understanding of computers
	Slide 4: System Organization
	Slide 5: C programming
	Slide 6: What is C?
	Slide 7: Memory Layout and Bounds Checking
	Slide 8: Structures
	Slide 9: Let’s look at memory addresses!
	Slide 10: What’s a pointer?
	Slide 11: What’s a pointer?
	Slide 12: C Memory Allocation
	Slide 13: Data representations and memory
	Slide 14: Decimal to binary using remainders
	Slide 15: Decimal to binary using comparison
	Slide 16: Binary to/from hexadecimal
	Slide 17: 2’s Complement Integers
	Slide 18: Floating point
	Slide 19: Standardized ASCII (0-127)
	Slide 20: Memory Layout
	Slide 21: Learning Assembly language with MIPS
	Slide 22: The MIPS architecture
	Slide 23: Control Idiom: If-Then-Else
	Slide 24: MIPS Register Usage/Naming Conventions
	Slide 25: MIPS Instruction Formats
	Slide 26: Memory Addressing Issue: Endian-ness
	Slide 27: Combinational logic
	Slide 28: Truth Tables
	Slide 29: Convert truth table to function
	Slide 30: Summary of all Boolean axioms
	Slide 31: Guide to Remembering your Gates
	Slide 32: Designing a 1-bit adder
	Slide 33: A 1-bit Full Adder
	Slide 34: Example: Adder/Subtractor
	Slide 35: The ALU
	Slide 36: Sequential logic
	Slide 37: D flip flops
	Slide 38: Register
	Slide 39: Register file
	Slide 40: Finite state machines
	Slide 41: How FSMs are represented
	Slide 42: Mealy vs Moore
	Slide 43: State Transition Diagram  Truth Table
	Slide 44: State Transition Diagram  Truth Table
	Slide 45: State Transition Diagram  Truth Table
	Slide 46: State Transition Diagram  Truth Table
	Slide 47: State Transition Diagram  Truth Table
	Slide 48: State Transition Diagram  Truth Table
	Slide 49: Truth Table  Sequential Circuit
	Slide 50: How to think about the FSM circuit
	Slide 51: CPU datapath and control
	Slide 52: The overall datapath
	Slide 53: Exceptions
	Slide 54: Caching
	Slide 55: Big Concept: Memory Hierarchy
	Slide 56: Terminology
	Slide 57: Memory Performance Equation
	Slide 58: Abstract Hierarchy Performance
	Slide 59: Where to Put Blocks in Cache
	Slide 60: Cache structure math
	Slide 61: Cache Replacement Policies
	Slide 62: ABCs of Cache Design
	Slide 63: Analyzing Cache Misses: 3C Model
	Slide 64: Stores: Write-Through vs. Write-Back
	Slide 65: Stores: Write-allocate vs. Write-non-allocate
	Slide 66: Example cache trace
	Slide 67: Example cache trace
	Slide 68: Virtual memory
	Slide 69: Figure: caching vs. virtual memory
	Slide 70: High level operation
	Slide 71: Demand Paging
	Slide 72: Address translation
	Slide 73: Address translation
	Slide 74: Steps in Handling a Page Fault
	Slide 75: Translation Buffer
	Slide 76: Virtual Physical Caches
	Slide 77: What Happens if There is no Free Frame?
	Slide 78: Thrashing
	Slide 79: Working-set model
	Slide 80: Virtual memory summary
	Slide 81: I/O
	Slide 82: Protection and access
	Slide 83: Connectivity
	Slide 84: Communication models
	Slide 85: Pipelining
	Slide 86: 5 Stage Pipelined Datapath
	Slide 87: Pipeline Diagram
	Slide 88: Pipeline Hazards
	Slide 89: Stalling and Bypassing together
	Slide 90: Pipeline Diagram: Data Hazard
	Slide 91: Pipeline Diagram: Control Hazard
	Slide 92: Multicore
	Slide 93: Types of parallelism
	Slide 94: Two cases of multiple threads
	Slide 95: Multiprocessors
	Slide 96: Challenges of multicore
	Slide 97: Intel x86
	Slide 98: Basic differences
	Slide 99: 64-bit x86 primer
	Slide 100: Binary modification (applies to *all* ISAs)
	Slide 101: THE END

