MIPS Assembly Instructions

Arithmetic & Logical Instructions

abs Rdest, Rsrc Absolute Value y

add Rdest, Rsrcl, Src2 Addition (with overflow)

addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrcl, Src2 Addition (without overflow)

addiu Rdest, Rsrcl, Imm Addition Immediate (without overflow)
and Rdest, Rsrcl, Src2 AND

andi Rdest, Rsrcl, Imm AND Immediate

div Rsrcl, Rsrc2 Divide (signed)

divu Rsrcl, Rsrc2 Divide (unsigned)

div Rdest, Rsrcl, Src2 Divide (signed, with overflow)

divu Rdest, Rsrcl1, Src2 Divide (unsigned, without overflow)
mul Rdest, Rsrc1, Src2 Multiply (without overflow)

mulo Rdest, Rsrcl, Src2 Multiply (with overflow)

mulou Rdest, Rsrcl, Src2 Unsigned Multiply (with overflow)
mult Rsrcl, Rsrc2 Multiply

multu Rsrcl, Rsrc2 Unsigned Multiply

Multiply the contents of the two registers. Leave the low-order word
of the product in register

lo and the high-word in register hi.

neg Rdest, Rsrc Negate Value (with overflow)

negu Rdest, Rsrc Negate Value (without overflow)

nor Rdest, Rsrcl, Src2 NOR

not Rdest, Rsrc NOT y

or Rdest, Rsrcl, Src2 OR

ori Rdest, Rsrcl, Imm OR Immediate

rem Rdest, Rsrcl, Src2 Remainder y

remu Rdest, Rsrcl, Src2 Unsigned Remainder

Put the remainder from dividing the integer in register Rsrcl by the
integer in Src2 into register Rdest.

rol Rdest, Rsrcl, Src2 Rotate Left

ror Rdest, Rsrcl, Src2 Rotate Right

sll Rdest, Rsrcl, Src2 Shift Left Logical

sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable

sra Rdest, Rsrc1, Src2 Shift Right Arithmetic

srav Rdest, Rsrcl, Rsrc2 Shift Right Arithmetic Variable

srl Rdest, Rsrcl, Src2 Shift Right Logical

srlv Rdest, Rsrcl, Rsrc2 Shift Right Logical Variable

sub Rdest, Rsrcl, Src2 Subtract (with overflow)

subu Rdest, Rsrc1, Src2 Subtract (without overflow)

xor Rdest, Rsrcl, Src2 XOR

xori Rdest, Rsrc1l, Imm XOR Immediate

Constant-Manipulating Instructions
li Rdest, imm Load Immediate y
lui Rdest, imm Load Upper Immediate

Comparison Instructions

seq Rdest, Rsrcl, Src2 Set Equal

Set register Rdest to 1 if register Rsrcl equals Src2 and to be 0
otherwise.

sge Rdest, Rsrcl1, Src2 Set Greater Than Equal

sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned y

Set register Rdest to 1 if register Rsrcl is greater than or equal to
Src2 and to 0 otherwise.

sgt Rdest, Rsrcl, Src2 Set Greater Than

sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsigned

Set register Rdest to 1 if register Rsrcl is greater than Src2 and to 0
otherwise.

sle Rdest, Rsrcl, Src2 Set Less Than Equal y

sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned y

Page 1 of 3

Set register Rdest to 1 if register Rsrcl is less than or equal to Src2
and to 0 otherwise.

slt Rdest, Rsrcl, Src2 Set Less Than

slti Rdest, Rsrcl, Imm Set Less Than Immediate

sltu Rdest, Rsrcl, Src2 Set Less Than Unsigned

sltiu Rdest, Rsrcl, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrcl is less than Src2 (or Imm)
and to 0 otherwise.

sne Rdest, Rsrcl, Src2 Set Not Equal

Set register Rdest to 1 if register Rsrcl is not equal to Src2 and to 0
otherwise.

Branch and Jump Instructions

b label Branch instruction y

Unconditionally branch to the instruction at the label.

bezt label Branch Coprocessor z True

bezf label Branch Coprocessor z False

Conditionally branch to the instruction at the label if coprocessor z's
condition flag is true

(false).

beq Rsrcl, Src2, label Branch on Equal

Conditionally branch to the instruction at the label if the contents of
register Rsrcl equals Src2.

beqz Rsre, label Branch on Equal Zero y

Conditionally branch to the instruction at the label if the contents of
Rsrc equals 0.

bge Rsrcl, Src2, label Branch on Greater Than Equal

bgeu Rsrcl, Src2, label Branch on GTE Unsigned y

Conditionally branch to the instruction at the label if the contents of
register Rsrcl are greater

than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero

Conditionally branch to the instruction at the label if the contents of
Rsrc are greater than or

equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to the instruction at the label if the contents of
Rsre are greater than or

equal to 0. Save the address of the next instruction in register 31.
bgt Rsrcl, Src2, label Branch on Greater Than

bgtu Rsrcl, Src2, label Branch on Greater Than Unsigned
Conditionally branch to the instruction at the label if the contents of
register Rsrcl are greater

than Src2.

bgtz Rsrc, label Branch on Greater Than Zero

Conditionally branch to the instruction at the label if the contents of
Rsrc are greater than 0.

ble Rsrcl, Src2, label Branch on Less Than Equal

bleu Rsrcl, Src2, label Branch on LTE Unsigned

Conditionally branch to the instruction at the label if the contents of
register Rsrcl are less than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero

Conditionally branch to the instruction at the label if the contents of
Rsre are less than or equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link

Conditionally branch to the instruction at the label if the contents of
Rsrc are greater or equal to 0 or less than 0, respectively. Save the
address of the next instruction in register 31.

blt Rsrcl, Src2, label Branch on Less Than

bltu Rsrcl, Src2, label Branch on Less Than Unsigned

MIPS Assembly Instructions

Conditionally branch to the instruction at the label if the contents of
register Rsrcl are less

than Src2.

bltz Rsrc, label Branch on Less Than Zero

Conditionally branch to the instruction at the label if the contents of
Rsre are less than 0.

bne Rsrcl, Src2, label Branch on Not Equal

Conditionally branch to the instruction at the label if the contents of
register Rsrc1 are not

equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero

Conditionally branch to the instruction at the label if the contents of
Rsrc are not equal to 0.

j label Jump

Unconditionally jump to the instruction at the label.

jal label Jump and Link

jalr Rsrc Jump and Link Register

Unconditionally jump to the instruction at the label or whose
address is in register Rsrc. Save

the address of the next instruction in register 31.

jr Rsrc Jump Register

Unconditionally jump to the instruction whose address is in register
Rsre.

Load Instructions

la Rdest, address Load Address y

Load computed address, not the contents of the location, into
register Rdest.

Ib Rdest, address Load Byte

Ibu Rdest, address Load Unsigned Byte

Load the byte at address into register Rdest. The byte is
sign-extended by the lb, but not the

Ibu, instruction.

1d Rdest, address Load Double-Word

Load the 64-bit quantity at address into registers Rdest and Rdest +
1.

Ih Rdest, address Load Halfword

lhu Rdest, address Load Unsigned Halfword

Load the 16-bit quantity (halfword) at address into register Rdest.
The halfword is sign-extended

by the lh, but not the lhu, instruction

Iw Rdest, address Load Word

Load the 32-bit quantity (word) at address into register Rdest.

Iwcz Rdest, address Load Word Coprocessor

Load the word at address into register Rdest of coprocessor z (0--3).
Iwl Rdest, address Load Word Left

Iwr Rdest, address Load Word Right

Load the left (right) bytes from the word at the possibly-unaligned
address into register Rdest.

ulh Rdest, address Unaligned Load Halfword

ulhu Rdest, address Unaligned Load Halfword Unsigned

Load the 16-bit quantity (halfword) at the possibly-unaligned
address into register Rdest. The halfword is sign-extended by the
ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word

Load the 32-bit quantity (word) at the possibly-unaligned address
into register Rdest.

Store Instructions

sb Rsrc, address Store Byte

Store the low byte from register Rsrc at address.

sd Rsrc, address Store Double-Word y

Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.

Page 2 of 3

sh Rsrc, address Store Halfword

Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word

Store the word from register Rsrc at address.

swez Rsrc, address Store Word Coprocessor

Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left

swr Rsre, address Store Word Right

Store the left (right) bytes from register Rsrc at the
possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword

Store the low halfword from register Rsrc at the possibly-unaligned
address.

usw Rsrc, address Unaligned Store Word

Store the word from register Rsrc at the possibly-unaligned address.

Data Movement Instructions

move Rdest, Rsrc Move y

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional
registers, hi and lo. These instructions move values to and from
these registers. The multiply, divide, and remainder instructions
described above are pseudoinstructions that make it appear as if this
unit operates

on the general registers and detect error conditions such as divide by
zero or overflow.

mfhi Rdest Move From hi

mflo Rdest Move From lo

Move the contents of the hi (lo) register to register Rdest.

mthi Rdest Move To hi

mtlo Rdest Move To lo

Move the contents register Rdest to the hi (lo) register.
Coprocessors have their own register sets. These instructions move
values between these registers and the CPU's registers.

mfcz Rdest, CPsrc Move From Coprocessor z

Move the contents of coprocessor z's register CPsrc to CPU register
Rdest.

mfcl.d Rdest, FRsrcl Move Double From Coprocessor 1

Move the contents of floating point registers FRsrcl and FRsrcl + 1
to CPU registers Rdest

and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z

Move the contents of CPU register Rsrc to coprocessor z's register
CPdest.

System Call Interface

printint 1 $a0 = integer

print float 2 $£12 = float

print double 3 $f12 = double

print string 4 $a0 = string

read int 5 integer (in $v0)

read float 6 float (in $10)

read double 7 double (in $0)

read string 8 $a0 = buffer, $al = length
sbrk 9 $a0 = amount address (in $v0)
exit 10

.align n

Align the next datum on a 2 n byte boundary. For example, .align 2
aligns the next value on a word boundary. .align 0 turns off

MIPS Assembly Instructions

automatic alignment of .half, .word, .float, and .double directives
until the next .data or .kdata directive.

.ascii str

Store the string in memory, but do not null-terminate it.

.asciiz str

Store the string in memory and null-terminate it.

.byte b1, ..., bn

Store the n values in successive bytes of memory.

.data <addr>

The following data items should be stored in the data segment. If the
optional argument addr is present, the items are stored beginning at
address addr .

.double dl, ..., dn

Store the n floating point double precision numbers in successive
memory locations.

.extern sym size

Declare that the datum stored at sym is size bytes large and is a
global symbol. This directive enables the assembler to store the
datum in a portion of the data segment that is efficiently accessed
via register $gp.

float f1, ..., fn

Store the n floating point single precision numbers in successive
memory locations.

.globl sym

Declare that symbol sym is global and can be referenced from other
files.

.half hi, ..., hn

Store the n 16-bit quantities in successive memory halfwords.
.space n

Allocate n bytes of space in the current segment (which must be the
data segment in SPIM).

text <addr>

The next items are put in the user text segment. In SPIM, these
items may only be instructions or words (see the .word directive
below). If the optional argument addr is present, the items are stored
beginning at address addr .

.word wl, ..., wn

Store the n 32-bit quantities in successive memory words.

Page 3 of 3

