ECE/CS 250
Computer Architecture

Summer 2023

C Programming

Tyler Bletsch
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),
Benjamin Lee (Duke), and Amir Roth (Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty

Outline

e Previously:
e Computer is a machine that does what we tell it to do

e Next:
e How do we tell computers what to do?
e First a quick intro to C programming
e Goal: to learn C, not teach you to be an expert in C
e How do we represent data?
e What is memory?

What is C?

e The language of UNIX

e Procedural language (no classes)
e Low-level access to memory

e Easy to map to machine language
e Not much run-time stuff needed

e Surprisingly cross-platform

Why teach it now?
To expand from basic programming to
operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

The Origin of C

Hey, do you want to build a system that
will become the gold standard of OS
design for this century?

We can call it UNIX.

Ken Thompson

AT&T Bell Labs, 1969-1972

Okay, but only if we also invent a
language to write it in, and only if that
language becomes the default for all

systems programming basically forever.
We'll call it C!

Dennis Ritchie

it worked!

Cool

" N
P2 eS| Y Pt

What were they thinking?

e Main design considerations:

e Compiler size: needed to run on PDP-11 with 24KB of
memory (Algol60 was too big to fit)

e Code size: needed to implement the whole OS and
applications with little memory

e Performance
e Portability

o Little (if any consideration):
e Security, robustness, maintainability
e Legacy Code

C vs. other languages

Microsoft

C#.net

THE

PROGRAMMING
LANGUAGE

Brian W.Kernighan @ Dennis M. Ritchie

Most modern languages | C

Develop applications Develop system code (and applications)
(the two used to be the same thing)
Computer is an abstract logic engine Near-direct control of the hardware
Prevent unintended behavior, Never doubts the programmer,
reduce impact of simple mistakes subtle bugs can have crazy effects
Runs on magic! (e.g. garbage collection) Nothing happens without developer
intent
May run via VM or interpreter Compiles to native machine code
Smart, integrated toolchain Discrete, UNIX-style toolchain
(press button, receive EXE) make — g++ (compilation) — g++ (linking)
b Debug . (even more discrete steps behind this)

$ make

g++ -0 thing.o thing.c
O -0 thino TNo O

e Why C for humanity?
e It's a “portable assembly language”
e Useful in OS and embedded systems and for highly optimized code

e Why C for this class?

e Need to understand how computers work

e Need a high-level language that can be traced all the way down to
machine code

e Need a language with system-level concepts like pointers and memory
management

e Java hides too much to do this

Example C superpowers

Task: Blink an LED

v N led = 0
2 & while (true):
g Atmel ATTINY4 microcontroller : led = NOT led
o< Entire computer (CPU, RAM, & storage)! set_led(led)
1024 bytes storage, 32 bytes RAM. delay for 1 sec

Language Size of Total size RAM used
executable runtime
(ignoring libraries)
Java
Python
Desktop C
Embedded C
(Arduino)

11

What about C++7?

e Originally called “C with Classes”
(because that’s all it is)

e All C programs are C++ programs,
as C++ is an extension to C

e Adds stuff you might recognize et in 1070 al 8ol Labe
from Java (only uglier):
e Classes (incl. abstract classes & virtual functions)
e Operator overloading
e Inheritance (incl. multiple inheritance)
e Exceptions

C and Java:

A comparison

C

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char* argv[]) {
int i;

printf("Hello, world.\n");
for (i=0; i<3; i++) {

printf("%d\n", 1i);

return EXIT_SUCCESS;

$ g++ -o thing thing.c && ./thing
Hello, world.

Java

class Thing {
static public void main (String[] args) {
int i;

System.out.printf("Hello, world.\n");

for (i=0; i<3; i++) {
System.out.printf("%d\n", 1i);

$ javac Thing.java && java Thing
Hello, world.

13

Common Platform for This Course

e Different platforms have different conventions for end of
line, end of file, tabs, compiler output, ...

e Solution (for this class): compile and run all programs
consistently on one platform

e Our common platform:

PDuke Linux Machines!?

14

How to access Duke Linux machines?

HLL = Assembly Language

High Level Language temp = v[k];

Program v[k] = v[k+l];
v[k+1l] = temp;

Compiler
1w $15, 0($2)
Assembly Language lw $16, 4($2)
Program sw $16, 0(52)
sw $15, 4($2)

e Every computer architecture has its own assembly
language

e Assembly languages tend to be pretty low-level, yet some
actual humans still write code in assembly

e But most code is written in HLLs and compiled
e Compiler is a program that automatically converts HLL to assembly

16

Assembly Language = Machine Language

High Level Language temp = v[k];

Program v[k] = v[k+l];

_ v[k+1l] = temp;
Compiler
lw $15, 0($2)
AssPemny Language 1w $16, 4($2)
rogram

9 sw $16, 0($2)

| Assembler SwW 315, 4(82)
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

e Assembler program automatically converts assembly code
into the binary machine language (zeros and ones) that
the computer actually executes

17

Machine Language =2 Inputs to Digital System

High Level Language temp = v[k];

Program v[k] = v[k+l];
vik+l] = temp;

Compiler
lw $15, 0($2)
Assembly Language 1w $16, 4($2)
Program
9 sw $16, 0($2)
Assembler SwW 315, 4(82)
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Machine Interpretation

Y

Control Signals for
Finite State Machine

Transistors (switches) turning on and off

18

How does a Java program execute?

e Compile Java Source to Java Byte codes
e Java Virtual Machine (JVM) interprets/translates Byte codes
e JVM is a program executing on the hardware

e Java has lots of features that make it easier to program without
making mistakes - training wheels are nice

e JVM handles memory for you

e What do you do when you remove an entry from a hash table,
binary tree, etc.?

19

The C Programming Language

e No virtual machine
e No dynamic type checking, array bounds, garbage collection, etc.
o Compile source file directly to machine code

e Closer to hardware
e Easier to make mistakes
e Can often result in faster code - training wheels slow you down

e Generally used for ‘systems programming’
e Operating systems, embedded systems, database implementation
e C++ is object-oriented version of C (C is a strict subset of C++)

20

Creating a C source file

e We are not using a development environment (IDE)
e You will create programs starting with an empty file!
e Files should use .c file extension (e.q., hello.c)

e On a Linux machine, edit files with your chosen editor,
e.g. Visual Studio Code (executable from command line
as code <file>)

21

The vscode window

e Visual Studio Code is a fancy editor, but we'll use it like a
simple editor

o Feel free to use any text editor (vim, emacs, etc.)

hello.c - Visual Studio Code

File Edit Selection View Go Debug Terminal Help

C hello.c X

nt main() [

printf("Hello world!\n");

Ln6,Col2 Spaces:4 UTF8 LF C ® 0

Compiling and Running the Program

e Use the
e g++
s g++

g++ compiler to turn .c file into executable file
-g -0 <outputfile> <sourcefile>

-g -0 hello hello.c

(you must be in same directory as hello.c)

e If nO

—o option, then default output name is a.out (e.g., g++ hello.c)

e The -g option turns on debug info, so tools can tell you what's up when it breaks

e To run, type the program name on the command line
e ./ before “hello” means look in current directory for hello program

Fle Edit View

ubuntu@cs250-
ubuntu@cs250-
Hello world!

ubuntu@cs250-

Terminal
Terminal Tabs Help

az-03:' - $ g++ -g -0 hello hello.c
az-03:- $./hello

az-03:- %

Key Language Issues (for C)

Variable types: int, float, char, etc. é)
Operators: +, -, *, ==, >, etc. =
Expressions Black: C same as Java

_ _ Blue: C very similar to Java
Control flow: if/else, while, for, etc. Red: C different from Java
Functions
Arrays

Java: Strings - C: character arrays

Java: Objects = C: structures

Java: References - C: pointers

Java: Automatic memory mgmt - C: DIY mem mgmt

24

Variables, operators, expressions — just like Java

s
=
—
SAME
s Java!

25

e Variables types
e Data types: int, float, double, char, void
* signed and unsigned int

« char, short, int, long, long long can all be integer types
e These specify how many bits to represent an integer

e Operators
e Mathematical: + - * / %
e logical: ! g& || == != < > <= >=
e Bitwise: ¢ | ~ &~ << >>
(we'll get to what these do later)

e EXpressions: varl = var2 + var3;

C Allows Type Conversion with Casts

e Use type casting to convert between types <
« variablel = (new type) variableZ;

e Be careful with order of operations — cast often takes precedence

e Example
main ()

{

float x;

int 1i;

X = 3.6;

i = (int) x; // 1 is the integer cast of x
printf (“x=%f, 1=%d”, x, 1)

result: x=3.600000, i=3

26

Control Flow — just like Java

e Conditionals &
if (a < b) { .. } else {..} as gaval

switch (a) {
case 0: s0; break;
case 1: sl; break;
case 2: s2; break;
default: break;

}

e Loops
for (i = 0; 1 < max, i++) { ... }

while (i < max) {..}

27

Variable Scope: Global Variables

e Global variables are accessible from any function =
e Declared outside main ()
#include <stdio.h> #include <stdio.h>
int X = 0; int X = 0;
float Y = 0.0; float Y = 0.0;
vold setX () { X = 78; } volid setX () { X = 78; }
int main () int main () Makes a local X — separate from global X
{ { (this hides the global X within main)

X = 23; int X = 23;

Y =0.31234; Y =0.31234;

setX () ; setX () ;

// value of X here? // value of X here?
} I\ }

Which X?
Global X = 78
Main’s local X = 23

28

Functions — mostly like Java

e C has functions, just like Java
e But these are not methods! (not attached to objects)

e Must be defined or at /east declared before use
int div2 (int x,int y); /* declaration here */

int main () {

IS)
| ({[ﬁé_
sg o

int a;
a = divz2 (10, 2);
}

int div2 (int x, int y) { /* implementation here */

return (x/vy);

}
o Or you can just put functions at top of file (before use)

29

Arrays — same as Java

Same as Java (for now...) <
char buf[256];
int grid[256][512]; /* two dimensional array */
float scores[4096];
double speed[100];

for (int 1 = 0; 1< 25; i++)
buf[i] = "A'+i; /* what does this do? */

30

Memory Layout and Bounds Checking

FFFFFFFFF

Storage for array int days in month[12];

Storage for other stuff J\ Storage for some more stuff
R -

—

(each location shown here is an int)

e There is NO bounds checking in C

e i.e,, it's legal (but not advisable) to refer to
days in month[219] Or
days in month[-35] |

e who knows what is stored there?

31

Strings — not quite like Java

e Strings &
e char strl[256] = “hi”;
e str1[0] = “h’, strl[l] = ‘i’,strl[2] = O;

« 0 is value of NULL character *\ 0, identifies end of string
e What is C code to compute string length?

int len=0;

while (strl[len] !'= 0){
len++;

}

e Length does not include the NULL character

e C has built-in string operations
e #include <string.h> // includes string operations

e strlen(strl);

32

Structures

Structures are sort of like Java objects =

DIFFERENT

e They have member variables
e But they do NOT have methods!

Structure definition with struct keyword
struct student record {
int 1id;
float grade;

} recl, rec2;

Declare a variable of the structure type with struct keyword

struct student record onerec;

Access the structure member fields with dot (*.”), e.9. structvar.member

onerec.id = 12;

onerec.grade = 79.3;

33

Array of Structures

#include <stdio.h> &,

e

struct student record { o
int id;

float grade;
I

struct student record myroster[100]; /* declare array of structs */
int main ()
{

myroster[23].1id = 99;

myroster[23] .grade = 88.5;

34

Console l/OIn C

e I/O is provided by standard library functions
e available on all platforms

e To use, your program must have “Standard 10"
#include <stdio.h> < Not "studio”!
e ...and it doesn’t hurt to also have

#include <stdlib.h> ¢

o These are preprocessor statements; the .h files define
function types, parameters, and constants from the standard
library

“Standard library”

35

Back to our first program

o #include <stdio.h> defines input/output functions in C
standard library (just like you have libraries in Java)

e printf(args) writes to terminal

hello.c - fhome/home5 falvy/courses 250/ Code/

File Edit 3Search Preferences 3Shell Macro Windows Help

#include <stdio. k:

it main()

{

printf ("Hello CompsciZ50lhn®) ;.
}

36

Input/Output (I1/O)

e Read/Write to/from the terminal Ed
e Standard input, standard output (defaults are terminal)

e Character I/O

e putchar (), getchar ()

e Formatted I/O

e printf (), scanf ()

37

Character 1/O

#include <stdio.h> /* include the standard I/O function defs */ L,
int main() {

DIFFERENT
from Javal!

char c;

/* read chars until end of file */

while ((c = getchar()) != EOF) {
if (c == ‘e’)
c = \N_7r .

14

putchar (c) ;
}
return O;

}
e EOF is End Of File (type Ctrl+D)

38

Formatted |/O

#include <stdio.h>] _ oot
int main() { printf() = print formatted
int a = 23; scanf() = scan (read) formatted

float £ =0.31234;
char strl[] = “satisfied?”;

/* some code here.. */

printf (“The variable values are %d, %f , %s\n”, a, f, strl);
scanf (“%d %f”, a,),

scanf (“%s”, strl);

printf (“The variable values are now %d, %f , %s\n”,a,f,strl);

}

e printf (“format string”, vl1,v2,..);
« \n is newline character

e scanf (“format string”,..);
e Returns number of matching items or EOF if at end-of-file

39

About printf and scanf

printf (“Hello %s, you are %d years old.\n”, name, age);

e Format specifiers:

Decimal integer (char/short/int/long/long long) < (3t
Hexadecimal integer (char/short/int/long/long long)< st
Float (float or double) < uses beiore var.

Character (char) < (2w

String (char[] or char*)
e Modifying them:

Q.

"

o0 o0 o° oP
Hh

Q

o°
()]

« $3d Minimum 3-characters, space padded right aligned 52

¢ $-3d Same, but left aligned 52

« $03d Same, but pad with zeroes instead of spaces 052

¢« $.2fF Float, two digits after decimal 2.52
- $5.2f Float, two digits after decimal, space padded to 5 chars 2.52

mentation for more exciting !

40

Example: Reading Input in a Loop

#include <stdio.h> &
int main () o Javal

{
int x= 0;
while (scanf ("%d", &x) != EOF) {

printf ("The value is %d\n", x);

This reads integers from the terminal until the user types ~d (ctrl-d)
e Canuse ./prog < file.in to redirect in from a file instead

WARNING THIS IS NOT CLEAN CODE!!!

o If the user makes a typo and enters a non-integer it can loop indefinitely!!!
How to stop a program that is in an infinite loop on Linux?
Type ~c (ctrl-c). It kills the currently executing program.

41

Example: Reading Input in a Loop (better)

#include <stdio.h> <

DIFFERENT

int main () from Javal
{

int x= 0;

while (scanf ("%d", &x) == 1) {

printf ("The value is %d\n", x);

}

e Now it reads integers from the terminal until there’s an EOF or a non-integer
IS given.

e Type "man scanf” on a linux machine and you can read a lot about scanf.
e You can also find these “manual pages” on the web, such as at die.net.

42

sscanf vs. atoi

from Javal!

char mystring|[] w297 ;

int r;

int n = sscanf (mystring, “%d”, &r) ;
// returns number of successful conversions (0 or 1)

e You could use the atoi function to convert a string to an
integer, but then you can't detect errors.
char mystring[] = “29”;
int r = atoi(mystring) ;

e The atoi function just returns 0 for non-integers, so
atoi("0")==atoi("hurfdurf”) ®

43

Header Files, Separate Compilation, Libraries

e C pre-processor provides useful features &,
. #include filename just inserts that file (like #include <stdio.h>) "=
e #define MYFOO 8, replaces MYFOO with 8 in entire program
e Good for constants

* #define MAX STUDENTS 100 (functionally equivalent to const int)

e Separate Compilation

e Many source files (e.g., main.c, students.c, instructors.c, deans.c)
e g++ -0 prog main.c students.c instructors.c deans.c

e Produces one executable program from multiple source files

e Libraries: Collection of common functions (some provided, you can build
your own)
e We've already seen stdio.h for I/O
e libc has I/0, strings, etc.
e libm has math functions (pow, exp, etc.)
* g++ —o prog file.c —1m (says use math library)

44

Command Line Arguments

e Parameters to main (int argc, char *argv(]) &
- argc = number of arguments (0 to argc-1)
« argv IS array of strings
« argv[0] = program name

e Example: ./myprogram dan 250

* argc=3
e argv[0] = “./myProgram”, argv[l]=“dan”, argv[2]=%"250"
int main(int argc, char *argv[]) {
int 1i;

printf ("$d arguments\n", argc);
for (1=0; i< argc; i++) {

printf ("argument %d: %s\n", i, argv[il]);

45

Command-line arguments vs stdin

#include <stdio.h>
int main (int argc, char* argv/||) {
if (arge != 2) {
printf ("Syntax:
return O;
}
printf ("Name: ") ;
char name|[64];
scanf ("%s", name) ;

printf ("%s is %s.\n", name, arxgvill) ;

return O;

O Ubuntu 18.04 LTS
tkbletsc@DONNA:~ % . /i
Syntax: ./is <adjective>»
tkbletsc@DONNA:~ $./1

Name: Tyler
Tyler is cool.
tkbletsc@DONNA

./1is <adjective>\n");

cool

Command-line arguments
« Typed after program name

in shell

« Come in via argv[]

« Strings — can be parsed
with sscanf

Stdin

« Typed into the running
program

« Can be read with scanf

46

Also: DO ERROR CHECKING!

#include <stdio.h>
int main(int argc, char* argv[]) {

What if this
were removed?

printf ("Name: ") ;

char name|[64];

scanf ("%s",name) ;

printf ("%s is %s.\n", name, argv/[l]);
return O;

' Ubuntu 18.04 LTS

et sc@DONMNA

Tyler
entation fault (core dumped)
etsc@DONNA:~ $

im ConfUSed an

oh no NOW

47

The Big Differences Between C and Java

1) Java is object-oriented, while C is not

2) Memory management

e Java: the virtual machine worries about where the variables “live” and
how to allocate memory for them

e (C: the programmer does all of this

48

Memory Is a real thing!

e Most languages — e C — flat memory space
protected variables

user_info
shopping_cart

user_info _
l shopping_cart

Y

|
|

TR
system_id /Q _ /

‘ system_id .
ﬁj@ inventory

inventory

49
Figure from Rudra Dutta, NCSU, 2007

Let’s look at memory addresses!

e You can find the address of ANY variable with: &

FFFFFFFFF

The address-of operator

int v = 5;
printf(“%d\n”,v);
printf(“%p\n”,&v); Zx7fffd232228c

$ g++ x.c & & ./a.out

Testing where variables live

int x=5;
char msg[] = "Hello";

int main(int argc, const char* argv[]) {

int v;
float pi = 3.14159;

printf("&x: %p\n",8&x);
printf("&msg: %p\n",&msg);
printf("&argc: %p\n",&argc);
printf("&argv: %p\n",&argv);
printf("&v: %p\n",&v);
printf("&pi: %p\n",&pi);

Params

Bookkeeping

kernel

Locals

Params

stack

Bookkeeping

libs

Locals

$ g++ x.c & & ./a.out
&x: 0x601020
&msg: ©0x601024
&argc: Ox7fff85b78c2c

&argv: Ox7fff85b78c20
&v: Ox7fff85b78c38
&pi: Ox7fff85b78c3c

1

heap

static

code

51

What’s a pointer?

e It's a memory address you treat as a variable ;é;
e You declare pointers with:

X

The dereference operator
int V<=53/ Append to any data type
int* p = &v;
printf(“%d\n”,v);
printf(“%p\n”,p);

$ g++ x.c & & ./a.out
5

Ox7fffeBeb60b7cC

A ;

What'’s a pointer?

e You can look up what's stored ata pointer! g
e You dereference pointers with:

X

The dereference operator

int v = 5;

int* p = &V3 Prepend to any pointer variable or expression

printf(“%d\n”,v);

printf(“%p\n”’,p);
. $ g++ x.c & & ./a.out
printf(“%d\n”,*p); 5

Ox7fffeBe60Ob7cC

K 5

Different types use different amounts of memory

e If I have an n-bit integer:
e And it's unsigned, then I can represent{0 .. 2" -1}

e Result:

and you'll see thlS slide again,
E%
1 char .. 255
2 short 0 . 65,535
32 2 int 0 .. 4, 294 967,295
64 8 long long 18,446,744,(())7?;;709,600,000

e A float is 32 bits (4 bytes); a double is 64 bits (8 bytes)

e Size of a pointer? Depends on the platform!
e Our x86 platform for C: pointers are 64 bits (8 bytes)

e The MIPS platform we'll learn soon:

54

What Is an array?

The shocking truth:
You've been using pointers all along!

e Every array LS a pointer to a block of memory

Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N tAings later from pointer P

e "Thing” depends on the datatype of the P
Can dereference such pointers to get what's there

e Interpreted according to the datatype of P
e E.g. *(nums-1) is a number related to how we represent the letter ‘0’

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

&X msg nums

v y Y
00 [00 100 109 [*h* ['e [[['o' [00 [00 |06 00 [07 00 [08
mj;-4 ms/]g\;]-s mjg\;-z mj;]-l ms/L\+1 ms/L\+2 ms/L\+3 ms/L\+4 ms/L\+5 ms/]g;+6 T T

T nums+1 nums+2

nums-1 >6

Array lookups ARE pointer references!

int x[] = {15,16,17,18,19,20}; . t(lnzcase you don’t believe me)
int n=2;

printf("%p %p\n", X X);

Array Pointer Type printf("%d %d\n", x[@] , *x);
look f printf("%d %d\n", x[5] ,*(x+5));
OOKup rererence printf("%d %d\n", x[n] ,*(x+n));

X X int* printf("%p %p\n",&x[0], X);
printf("%p %p\n",&x[5], X+5);
X[O] *x INt printf("%p %p\n",&[n], x+n);
X[5] *(X4—5) int $ g++ x.c & ./a.out
. ox7fffa2dobodo ox7fffa2dob9odo
x[Nn] *(x+n) int 1o 10 X
&x[0] X int* 20 20
&x[5] X+5 int* ox7fffa2dobode Ox7fffa2debode
e Ox7fffa2dob9e4 Ox7fffa2doboes
&x[n] X+n Int ox7fffa2dobods ex7fffa2dobods

e This is why arrays don’t know their own length:
they're just blocks of memory with a pointer!

Definition of array brackets: A[i] & *(A+i)

!

Creepy-side effect: A[5] = *(A+5) = *(5+A) = 5[A], so 5[A] is legal & equivalent! (Don't do this, it's gross.)

57

Using pointers

1. Start with an address of something that exists &

FFFFFFFFF

2. Manipulate according to known rules
3. Don't go out of bounds (don’t screw up)

void underscorify(char* s) {
char* p = s;
while (*p != 0) {
if (*p==""){
po= 0
}

p++;

¥

int main() {

char msg[] = "Here are words";
puts(msg);
underscorify(msg);
puts(msg);
}

$ g++ x.c & & ./a.out

Here are words
Here_are_words

58

Shortening that function

// how a developer might code it

void underscorify(char* s) { void underscorify2(char* s) {
char* p = s; char* p;
while (*p != 0) { for (p = s; *p ; p++) {
. 1 ' i -F * == '
if (*p ==) A . *é E C o) |
*p — 1 _l ; } —
! }
p++; }
}
} // how a kernel hacker might code it

void underscorify3(char* s) {
for (; *s ; s++) {
if (¥*s == " ') *s = "' ';
}
}

59

Pointers: powerful, but deadly

e What happens if we run this?
#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ g++ x2.c && ./a.out

p: (nil)
Segmentation fault (core dumped)

60

Pointers: powerful, but deadly

e Okay, I can fix this! I'll initialize p!

#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p = 100000;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ g++ x2.c
x2.c: In function ‘main’:
X2.C:4:9: warning: initialization makes pointer from

integer without a cast [enabled by default]
$./a.out

p: ©x186a0
Segmentation fault (core dumped)

A more likely pointer bug...

void underscorify bad(char* s) { int main() {
char msg[] = "Here are
puts(msg);
underscorify bad(msg);

puts(msg);

char* p = s;
while (*p I= '0") {

tkbletsc@doc ~ § gcc x3.C && . /a.out
Here are words
Here are words_ ES08

X [ox =R [o
SE e — e

: -

./ a. OUT_TERM=XTerm_5HELL=/bin/bash_XDG_SESSION_COOKIE=le
Obdeealb345b2e73fb1092000026bc-1386809487.335162-1765344744

Bus error (core dumped)

tkbletsc@®doc:~ § []

Almost fixed...

void underscorify bad2(char* s) { int main() {
char* p = s; char msg[] = "Here are words";
, . puts(msg);
wh%le (*p 1= "07) A underscorify bad2(msg);
if (*p ==) { puts(msg);
*p = I_I ; }
}
P+ Worked but
} crashed on exit

— Worked totally!!
Worked totally!!

Worked totally!!

Worked totally!!
Worked totally!!

o .' - Worked totally!!

[T]

Worked totally!!

63

Effects of pointer mistakes

No visible effect

Access an array out of bounds
or some other invalid pointer location?

/

Totally weird behavior

ash [EE] =]

Silent corruption & bad results

T
H
He
tkb
H
H
T
H
He
tkb
H
H
T
H
H
T
H
H
T
H
H
T

Program crash with OS error

The application M_PROGRAM=iTerm.app quit
fmynrogram unexpectedly.

Mac OS X and other applications are not affected.

Click Relaunch to launch the application again. Click
Report to see more details or send a report to Apple.

Ignore (Report... \ (Relaunch)

Error: Access violation at 0x00736002 (tried to read From 0x0000001F), program terminated,

(84

64

Pointer summary

e Memory is linear, all the variables live at an address
e Variable declarations reserve a range of memory space

e You can get the address of any variable with
the address-of operator &

int x; printf(“%p\n”’,&x);

e You can declare a pointer with the dereference operator * appended
to a type:

int* p = &x;

e You can find the data at a memory address with the dereference
operator * prepended to a pointer expression:

printf(“%d\n”, *p);
e Arrays in C are just pointers to a chunk of memory

e Pointer math is done in units of the underlying type
(An array of ints walks 4 bytes at a time)

e Don't screw up

65

Pass by Value vs. Pass by Reference

void swap (int x, int y){ void swap (int *x, int *y) {
int temp = x; int temp = *x;
X = y; *x o= *y;
y = temp; *y = temp;
} }
int main () { int main () {
int a = 3; int a = 3;
int b = 4; int b = 4;
swap (a, b); swap (&a, &b);
printf (Ya = %d, b= %d\n”, a, Db); printf (Ya = %d, b= %d\n”, a, b);

66

About “About printf and scanf”

e Remember this slide?

e In scanf, why do %d, $x, $£, $c use a & before the variable?

* Need to pass a pointer so scanf can mess with the content of them!
e Why doesn’t $s use a & before the variable?

e Because strings are arrays, and
arrays are just memory addresses!

age) ;
ears old.”, Qémer
printf (“Hello %5, ¥OU are %4 Y =

« Format specifiers:

Daing scanf?
Decimal integer (char/short/i_nylong/long |0ng)‘ Use) bfogwﬁ
e Hexadecimal integer (char/short/i_nfg/long/ long 10NQ) < yse s betore var
) %x Doing scanf?
%f F‘Oat (ﬂOat Or dOUb‘e) Use &%efcrevar_
. oing scanf?
* 3C CharaCter (Char) Us[;)e &%efore var.

Doing s¢ant?
DON'T use & pefore var

jable.

> %S String (char{] or char®)
l T

67

C Memory Allocation: introducing the heap

e So far, we have local variables and global variables =
e Locals are short-lived (die when function returns).
e Globals are long-lived but fixed-size (defined at compile time).

o What if we want memory that is allocated at runtime and
long-lived?
e You had this in Java: objects!

e C doesn’t have objects, but you can allocate memory for stuff!
e This is called heap memory.
e Most memory used by programs is in heap memory!
e Think: Tabs in your web browser.
e Make a tab? Allocate
e Close a tab? Deallocate

68

C Memory Allocation

e How do you allocate an object in Java? =
e The new keyword

e What do you do when you are finished with object?
e Nothing, you just stop using it
e How? JVM provides garbage collection
e Counts references to objects, when refs== 0 can reuse

e How do you allocate heap memory in C?
e Themalloc, calloc, and realloc functions

e What do you do when you're finished with the memory?
e You free it manually with the £ree function

e C doesn't have garbage collection! Must explicitly manage memory.
e The power is yours!

69

C Memory Allocation

e void* malloc (nbytes) <,

DIFFERENT

e Obtain storage for your data (like new in Java)

e Often use sizeof (type) built-in returns bytes needed for type
 int* my ptr = (int*) malloc(64); // 64 bytes = 16 ints
 int* my ptr = (int*) malloc(64*sizeof (int)); // 64 ints

« free (ptr)

e Return the storage when you are finished (no Java equivalent)
« ptr must be a value previously returned from malloc

70

C Memory Allocation

 void* calloc(num, sz) &
o Like malloc, but reserves num*sz bytes, and initializes the memory to
zeroes

e void* realloc(ptr, sz)
e Grows or shrinks allocated memory
- ptr must be an existing heap allocation

e Growing memory doesn't initialize new bytes
e Memory shrinks in place

e Memory may NOT grow in place

e If not enough space, will move to new location and copy
contents

e Old memory is freed
e Update all pointers!!!
e Usage: ptr = realloc (ptr, new size);

71

Memory management examples

#include <stdio.h>

#include <stdlib.h>

int main () {
// kind of silly, but let's malloc a single int
int* one_integer = (int*) malloc(sizeof (int));

*one integer = 5;

// allocating 10 integers worth of space.
int* many integers = (int*) malloc (10 * sizeof(int));

many integers([2] = 99;

// using calloc over malloc will pre-initialize all values to 0
float* many floats = (float*) calloc (10, sizeof(float));
many floats[4] = 1.21;

// double the allocation of this array
many floats = (float*) realloc(many floats, 20*sizeof(float));
many floats[15] = 6.626070040e-34;

free (one_integer) ;

free (many integers) ;
free (many floats);

72

Pointers to Structs

struct student rec {
int 1d;
float grade;
bi

struct student rec* my ptr = malloc(sizeof (struct student rec));

// my ptr to a student rec struct

To access members of this struct via the pointer:
(*my ptr).id = 3; // not my ptr.id
my ptr->id = 3; // not my ptr.id
my ptr->grade = 2.3; // not my ptr.grade

73

Linked lists: C vs Java

public class LinkedList {

struct Node { public static class Node {
int id; public int id;
struct Node* next; protected Node next;

};

struct Node* new_node (int id) { Node (int id) {

struct Node* newguy =

(struct Node*) malloc (sizeof (struct Node)) ;
it T— this.next = null;

newguy->next = NULL;
return newguy;

}

struct Node* prepend to_ list (struct Node* head, int id) { public static Node prepend to_list (Node head, int id) {
struct Node* newguy = new node (id); Node newguy = new Node (id) ;
newguy->next = head; newguy.next = head;
return newguy; return newguy;
} }
void insert after (struct Node* target, int id) { public static void insert_after (Node target, int id) {
struct Node* newguy = new node (id); Node newguy = new Node (id) ;
newguy->next = target->next; newguy.next = target.next;
target->next = newguy; target.next = newguy;
} }
void print list (struct Node* head) { public static void print list(Node head) ({
for (struct Node* p = head; p != NULL; p = p->next) { for (Node p = head; p != null; p = p.next) {
printf ("%d ", p->id); System.out.printf ("sd ", p.id);
} }
printf ("\n"); System.out.printf ("\n") ;

. . . 74
Note: full runnable versions of these programs are available from the course site: LinkedList.c and LinkedList.java

Linked lists: Freeing the list in C

e When done, need to walk the list and free each node
e May be tempted to write the following:

void free_list naive (struct Node* head) {

while (head) M Free the block, okay }
free (head);
head = head->next; AR\ This arrow means dereference:
\ } we’re using the memory we just freed!

e This is a use-after-free bug! It may crash!
e You cannot rely on a freed piece of memory!
e Solution: rescue out the next pointer into a local first:

void free list (struct Node* head) {
while (head) {
struct Node* nextguy = head->next;
free (head);
head = nextguy;
}

} 75

Source Level Debugging

e Symbolic debugging lets you single step through program,
and modify/examine variables while program executes

e On the Linux platform: gdb

e Source-level debuggers built into most IDEs

76

Gdb

e [O start:
$ gdb ./myprog

e To run:
(gdb) run arguments

E -bash

tkbl3@reliant:~ % gdb . /myprog

GNU gdb (Ubuntu 7.11.1-Oubuntul~16.5) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLV3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, To the extent permitted by law. Type "show copying”
and "show warranty"” for details.

This GDE was configured as "xB6_64-Tinux-gnu”.

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

<http://wew. gnu. org/software,/gdb,/bugs/=.

Find the GDB manual and other documentation resources online at:
{httF:ffwww.gnu.Dr /software,/qdb,/documentation,/>.

For help, type "help"”.

Type "apropos word” to search for commands related to "word”...

Reading symbols from . /myprog...done.

(gdb) run

starting program: /home/tkbl3/myprog

5

G

[Inferior 1 (process 74213) exited normally]
GLIDN |

gdb commands

list <line>
list <function>

list <line>,<line>

list (show) 10 lines of code at specified
location in program

List from first line to last line

run start running the program
continue continue execution

step single step execution, including into
next functions that are called

single step over function calls

print <var>
printf “fmt”, <var>

display <var>
undisplay <var>

show variable value

show variable each time execution
stops

gdb commands

break <line>
break <function>
break <line> if <cond>

set breakpoints (including
conditional breakpoints)

info breakpoints
delete breakpoint <n>

list, and delete, breakpoints

set <var> <expr>

set variable to a value

backtrace full
bt

show the call stack & args
arguments and local variables

79

gdb quick reference card

e GDB Quick Reference.pdf — print it!

o Also available annotated by me with most important commands for a
beginner:
GDB Quick Reference - annotated.pdf

GDB QUICK REFERENCE co vaion + ' Breakpoints and Watchpoints Execution Control

broak [flefine set breakpoint a Jine mumbes [i cont s [count] contiue running if count specified ignore.
Essential Commands b [t ime o break matn.c:37 el [e
] G e braak [flet]fune et breakpoint at fanc [in f2] step [cound] xceute umtil another line reached; repeat
b [l unction set breakpoiat at function [1n fe] break toffsct act brcak at offct lines from curreat stop & [couns] count imes if pecificd

break -offet
run [argie stact your program [with argis] . e itrctions rathe than e .

- o ", :‘ . F[— l break +addr set breakpoint at address addr M[w [ewund] siep by mackine o ber th Source Files
' Yeckicare: dlaplay poogre stecd bre st breakpoint at next instruction o1 souree lines
lisplas e expression - DB's internal parameters dir names acld directory mames to front of source
sy display th cIcT break ... if capr break conditionally on nouacra expr i o
- continue. runsing yous pro next [comn] excouts oot line, inchuing aay function ting of parmimeter s
: it condn ferpr] mew comditional expremion on breakpoint el = - . cloa source math
- et line, sepping into funceion calls make unconditional if ne expr wsanges on unusual symbols onow dix st vt e path
torenk . rmparacy break; disable when cenchecd nexts [coun] next machine instruction rather than renj———
. rhresk mper hreak on sl functions raaiching reger 24 [couni] source line e camtionasy 2o Ry
Starting GDB wateh cxpr =t weatehpoint. for expression cepr fion o it - shonw previous ten lines
B, with no debugging fles caten ; Bresk 3t C++ handler for exception = et [location] sl et instrction or location) 2ot lines oty et g e epesiiod
&db program \nlm debugging program finish run until selected stack frame returns SDB expressions (anto, € or
b program core debug coredump core produced by tato break s defne breakpints retum [com] pop sclcted stack frame m,m,i o b Lt Rl o e [mames
e into wats e efined watchioiate e shown by L
P excruting [setting retum value prompt le: | function. ing of function [in named file]

clear delete breakpointe at next instruction Jump line e exmcation . spocihe lve musber b i i P
Stopping GDB Clear [fle:]fum delete breakpoints st entey to fanl) Jump address pri B when loadleg syombels
quic exit GDE; also q or EOF (cg C-d) Clear [fle:]line delete breakpoints on source line set varserpr “‘“‘“‘.” crpr without displaving it; we ety b i
INTERRUFT (e C=c) terminate eurrent command, or detete [o] delete breakpoints [or breakpoint] for sltering program vasiables il paiching binaey, <ore fles

send to running pros i . v;lvux exec ::r ce“)
assanie [1] disable breakpoints [or breakpaiat o] Display " o
Gemne Help. enable [n] cnable breakpoints [or breakpoint] prant [/f] [exer] Coc e [or last valuc] ¢ reatiing sy xpansion
it clames of commands eetic e [o B — U] [exor} accordiag 1o format f i rov reges caech preceding source lines for riges
o s B nable breakpoits o brea : ot
T enable el [] inte [et] N e GDB under GNU Emacs
. . ‘"'L" "j“‘ .. g e he following options: o gl O e Fouacs
Bt e e goore n count ignore beeakpeint n, count times : e o dmcrine GO e
TR angllet Staxt your poogram with anpliet ommands execute GDB command-list every time < character casess i akanke, vales Men et line (next)
B stact your program with cursent cgment Vreakpotut n s reached. [slent : foating poiat st format o srors i “iep one insruction (8tept)
v t agled) or internal form for ¢ C-1 mish current stack frame (finia)
un ... Cinf >outf start your program with input, output commandlist supprcses dsfast diiay] caxt [/y] cxpr ke print but docs nok display vsd ngied) ceor i ot = tsnsan)
redirected ed o of command-lit T [/huf] expr examine memory at address expr; optionsl |\ symmbals in machise- i e
ki1l kil running program foemat opas folloms clesk output M-d down ary frames (down)

Program Stack N count of how many units to display ray clements to display e oy aaber frorm o, insert ab end
vty dew e ae st i sl st for next xun vecktrace 1] pin troce o ol e i s o of u i crivel ypes for cects cxsre (im scare) et break 3t point
oo e v [a1 50, il reniat S b individual bytes compact or indented

x arge ety sy st B o b halfords (b bytes) s meambece
shm! ary display argument list % words (four bytes) GDB License
] ay ars trane [o] clect frame uber or frame at addrems £ ¥ virtuad Fanction tables :) .
e st o (b, ke show copying Display GNU Genersl Public License
show eav show all cavironment variables Lo i e G show varrant: There is NO WARRANTY for GDB.
e alect R frmes up o2 — y
show env "" e vadue of envisenment variable var doun n sclect. frame n frames down ermmated mands around zumber Dirplay full nocwnrrasty statement
EeT €av var siring sl cvicenment vasable var 1nfo frame [adds] describe selected frame, or frame at addr machine inpiryctione ks
unset eav rubipoar-vera €0 £rane [aaa] 4 e . disasaen [adds] display smemory as sachine fnstructions

into args wcmvments o sclecied frame
s infolocals local variabics of lected frume
Shell C"m"‘”"“{s i i . Lnto reg [- regieter valuen [or rogs rn] in selected Automatic Display L i et et
o Pt varting vty info all-reg e S1177eg nclaes st pnt display [/f] coor e discard both Copyrigh. (n901, 1992, 1993 Fres Softmase Foundation, Inc.
. plryrhaces 1nto caten exception bandlers active in selected frame s [acoorting o focmst i, oe discacd e
shell cmd cxccute arbitrary shell command string diepler :3:.‘::‘ '.‘1:';:;‘»:\;)‘\ﬁx:n‘-l‘::u‘:n [eentable onlys ar dincard e suthor samumes o reponsbily for any srroes o thi casd

pLay omtically Siplaged sepeemices \ble from file; or discard This v bs frecly distributod under the terms of the GNU
forget o do 'gec -g” to include debug symbois! ~ Ty dioable A1sp 0 dsble dinpiy for expremion() murber 5 | e e an kd st sl Geners Publc L
[] curoun opsions srgumens ... dhow ne o mare sgumente » pression(=) e U et eant by samstatog
enable disp n cnable display for ransmnm number n ial symbols from file foase contribute to development of this cad by anotating
(1991, 1092, 1998 Fres Software Fousdation, Inc. Permissions on back | . info display numbered lisk of dicplay expressions loaded at add DB iesel 1s free softwase; you are welcome o distsibute coples of
s e e e b tems of he 3 U Gl P i e s
ront of path serched for .
detach reease target from GDB control cxccusable and syabel Sl
shos path Aieplay exceutabie and syrbl i path
into share Lih s of shared Nbraries currenly
loated

80

Valgrind: detect memory errors

e Can run apps with a process monitor to fry to detect illegal
memory activity and memory leaks

| C %b13@login-teer-15:~

tkbl3@login-teer-15:~ § cat memleak. c
#include <stdlib. h>
void £ () {

char* p = (char*®*) malloc(20);

int main() {
char* c (char®*) malloc(10);
0N

[

13@Togin-teer-15:~ % valgrind --leak-check=yes . /memleak

7572== Memcheck, a memory error detector

Copyr1ght (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using valgrind-3.8.1 and LibvEX; rerun with -h for copyright info
command: . /memleak

HEAP SUMMARY :
in use at exit: 30 b¥tes in 2 blocks
total heap usage: 2 allocs, 0 frees, 30 bytes allocated

10 bytes in 1 blocks are definitely lost in loss record 1 of 2
at Ox4AD06A2E: malloc (vg_replace_malloc.c:270)
by O0x4005CD: main (memleak.c:7)

bytes in 1 blocks are definitely lost in loss record 2 of 2
at Ox4A06A2E: malloc (vg_replace_malloc.c:270)

by 0x400585: T() (memleak.c:3)

by O0x4005D6: main (memleak.c:8)

LEAK SUMMARY :
definitely lost: 30 bytes in 2 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)
in-teer-15:~ $ []

D 2 1 o o o e e e e B e e

i B Bt Bt Bt e et Bt e Bt Bt e et Bt B e Bt Bt e et Bt e Bt Bt Bt e Bt B

&~

Cm | (O (O Y (Y |
| O [| (| (Y | | | (| Y (Y | | Y (=

757
757
737
757
757
757
757
757
757
757
757
737
757
757
757
737
757
757
757
737
757
757
757
757
757
757
757
3

_II‘\JI‘\JI‘\JNNNNNNNNNNNNNNMNNNNNNNN
SOl wnwn

(| (| | | | (| | | O (Y | O

Debugging our bad free code

e Remember this broken code?

void free list naive(struct Node* head) {
while (head) {
free (head) ;
head = head->next;
}

o |et's test it! First, we compile and run:

® Ubuntu 20.04 on Windows = O _ _
g++ -0 ./LinkedList LinkedList.c Program e Il.nkEd ISLic Show the
S first ten Fibonacci numbers backwards.
Correct output...

But then it crashed ®
Why?22222222??22??

e Dang, time to debug...

82

Debugging our bad free code

@ Ubuntu 20.04 on Windows
$ gdb ./LinkedlList G

«

Launch gdb with the
Copyright (C) 2828 Free Software Foundationm, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>» program as the argument
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying” and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu”.
Type "show configuration” for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help”. -
Type "apropos word” to search for commands related to "word"... Use run to actually execute It
Reading symbols from .

(No debugging symbols found in =

(gdb) run <=

Starting program: /mnt/c/Users/tkbletsc/Dropbox/Duke/ECE250/51lides/resources/linkedlist/LinkedList

34 211385321168 oo o

free(): double free detected in tcache 2 Hmm; where did it crash

. . exactly? bt will show us the
Program received signal SIGABRT, Aborted.
|_GI_raise (sig-sig@entry=6) at — stack backtrace

..lsysdepsfunifoysuflinuxIrai=ﬂ W=t T1le or directory.

sigl@entry=6) at 158

in _ GI_abort () at

in _ libc_message (action=action@entry=do_abort, fmt=fmt@entry=8x7fffff76a285 "%s\n")

1155

in malloc_printerr (, .

r@entry=ex7fffff76c5de@ "free(): double free detected in tcache 2") at Well that’s the funCtlon, but
o1 in _int free (av=0x7fffff79bb8@ <main_arena>», p=-0x*88850080, have lock where’s the dang line
in free list naive(Node*) () <=
in main ()

No0000000000000

e We forgot to compile with —-g so there’s no debug symbols!

Debugging our bad free code

'!' U 2004 on Windows

g++(-g)-0 ./LinkedlList LinkedlList.C e
gdb ./LinkedlList

Recompile with —g!

Copyright (C) 2820 Free Software Foundation, Inc. .
License GPLw3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>» Then gdb again.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying” and "show warranty” for details.
This GDB was configured as "x86_64-linux-gnu”.
Type "show configuration”™ for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help”. -
Type "apropos word” to search for commands related to "word”... Use run agaln
Reading symbols from .

(gdb) run e

Starting program: /mnt/c/Users/tkbletsc/Dropbox/Duke/ECE258/51lides/resources/linkedlist/LinkedList
34 21 13 853 21168

free(): double free detected in tcache 2

Use bt for stack backtrace

Program rec91ued 51gnal SIGABRT, Aborted.
L ry=6) at =
58 Isysdepsiunlxiuv:w?1 ST, 0 such file or directory.
(gdb) bt <=
__GI raise (sip=sip@entry=6) at
in __GZ_aﬂ“ﬂ {} at
in _ libc_ actio @entry=do_abort, fmt=fmt@entry=8x7ff{{ff76a285 "¥s\n™)
155
in ra'ic:_ﬂﬂ nterr (

r@entry=ex7fffff76c5d@ "free(): double free detected in tcache 2") at HE)
in _int_free (av=8x7f{ff{ff79bb86 <main_arena>, p-0x8805008, have_lock=8)

14201 | i I
T 2 Wow! Such line numbers!

5 x7Ffffffedbds) at : Much arguments!

Debugging our bad free code

!‘ Ubuntu 20.04 on Windows

=6) at 158
in _ GI_abort () at
in _ libc_message (=do_abort,
1155
in malloc_printerr
=@x7fffff7ec5de "free(): double free detected in tcache 2") at
in _int_free (av=0x7fffff79bb88 <main_arena>», p=0x8085860,
at 14281

in free list_naive (=Bx88685018) at 142
ida] in main (=1, =@x7ffffffedbds) at 167
(gdb) print head
No symbol "head" in current context.
(gdb) frame 5 -

=Bx7fff{f76a285 "%s\n")

#5 in free_list_naive (=Bx8005018) at
42 free(head);

(gdb) print head

$1 = (Node =)

printf("\n");

void free_list_naiwve(struct MNode* head) {
while (head) {
free(head);
head = head-»next;

Use frame to set what
stack frame we’re “in” for
printing purposes.

We can print variables and
list code, and much more!

e But suppose this isn't clear enough? It doesn't actually say we
used after free...

Debugging our bad free code

e Valgrind is a great tool for memory issues and crashes

m Ubuntu 20.04 on Windows Run valgrind fO||OW€d
valgrind ./LinkedList < by the full command to

1936== Memcheck, a memory error detector
1938-= Copyright (C) 2082-2017, and GNU GPL'd, by Julian Seward et al. debug
1938== Using Valgrind-3.15.@ and LibVEX; rerun with -h for copyright info

1938== Command: ./LinkedlList
-=1930-= Normal program output
==1938== error calling PR_SET_PTRACER, vedb mishi bhlock

34 21 13 853 21168 <= . .
==193B8== Invalid read of size 8 On line 43, we tried to read a

P

==1938== at @x1892CE: free_ list naive(MNode*) (LinkedlList.c:43) ~ i i H
==1938== by @x189396: main (LinkedList.c:67) piece of data 8 bytes In Size

=1930== Address ©x4a4b318 is 8 bytes inside a block of size 16 free'd lllegally

1938== at Ox483CA3F: free (in fusr/lib/x86_64-linux-gnu/valgrind/vgpreload memcheck-amdé4-linux.so)

1938== by @x1892C9: free list naive(Node*) (LinkedlList.c:42)

193@== by @x189396: main (LinkedList.c:67) The address in question is
1938== Block was alloc'd at e 0 0

1938== at @x483B7F3: malloc (in fusr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64- L1 analyzed; it's inside a block
1938== by @x1891C1: new node(int) (LinkedList.c:15)

1938== by @x1891FD: prepend to_list(Node®, int) (LinkedlList.c:22) that V’V&S recently freefi
1938== by 6x10935D: main (LinkedList.c:6@) Here’s exactly where it was

1930-- ,
1936-- freed (line 42).
1930-= HEAP SUMMARY:

1938== in use at exit: @ bytes in & blocks By the Way, here’s Where thls
1938== total h : 11 allocs, 11 f , 4,256 byt 1llocated s
s ota eap usage allocs rees ytes allocate b|OCk was orlglnally

All heap blocks were freed -- no leaks are possible a_||ocated’ too’ in case that

For lists of detected and suppressed errors, rerun with: -s helps.
1936== ERROR SUMMARY: 18 errors from 1 contexts (suppressed: @ from @)

)

=
Y=}
)
&
]
(]

1938==

=
o
L
=
]
]

e Wow, that tells the whole story! Thanks, valgrind!
e Read the whole story that valgrind tells you, it’s helping you!

C Resources

e MIT Open Course

e Courseware from Dr. Bletsch’s NCSU course on C
(linked from course page)

e Video snippets by Prof. Drew Hilton (Duke ECE/CS)
e Doesn’t work with Firefox (use Safari or Chrome)

87

Outline

e Previously:
e Computer is machine that does what we tell it to do

e Next:
 How do we tell computers what to do?
e First a quick intro to C programming
e How do we represent data?
e What is memory, and what are these so-called addresses?

88

	Slide 1: ECE/CS 250 Computer Architecture Summer 2023
	Slide 2: Outline
	Slide 3: What is C?
	Slide 4: The Origin of C
	Slide 5
	Slide 6: What were they thinking?
	Slide 7: C vs. other languages
	Slide 8: Why C?
	Slide 11: Example C superpowers
	Slide 12: What about C++?
	Slide 13: C and Java: A comparison
	Slide 14: Common Platform for This Course
	Slide 15: How to access Duke Linux machines?
	Slide 16: HLL  Assembly Language
	Slide 17: Assembly Language  Machine Language
	Slide 18: Machine Language  Inputs to Digital System
	Slide 19: How does a Java program execute?
	Slide 20: The C Programming Language
	Slide 21: Creating a C source file
	Slide 22: The vscode window
	Slide 23: Compiling and Running the Program
	Slide 24: Key Language Issues (for C)
	Slide 25: Variables, operators, expressions – just like Java
	Slide 26: C Allows Type Conversion with Casts
	Slide 27: Control Flow – just like Java
	Slide 28: Variable Scope: Global Variables
	Slide 29: Functions – mostly like Java
	Slide 30: Arrays – same as Java
	Slide 31: Memory Layout and Bounds Checking
	Slide 32: Strings – not quite like Java
	Slide 33: Structures
	Slide 34: Array of Structures
	Slide 35: Console I/O in C
	Slide 36: Back to our first program
	Slide 37: Input/Output (I/O)
	Slide 38: Character I/O
	Slide 39: Formatted I/O
	Slide 40: About printf and scanf
	Slide 41: Example: Reading Input in a Loop
	Slide 42: Example: Reading Input in a Loop (better)
	Slide 43: sscanf vs. atoi
	Slide 44: Header Files, Separate Compilation, Libraries
	Slide 45: Command Line Arguments
	Slide 46: Command-line arguments vs stdin
	Slide 47: Also: DO ERROR CHECKING!
	Slide 48: The Big Differences Between C and Java
	Slide 49: Memory is a real thing!
	Slide 50: Let’s look at memory addresses!
	Slide 51: Testing where variables live
	Slide 52: What’s a pointer?
	Slide 53: What’s a pointer?
	Slide 54: Different types use different amounts of memory
	Slide 56: What is an array?
	Slide 57: Array lookups ARE pointer references!
	Slide 58: Using pointers
	Slide 59: Shortening that function
	Slide 60: Pointers: powerful, but deadly
	Slide 61: Pointers: powerful, but deadly
	Slide 62: A more likely pointer bug…
	Slide 63: Almost fixed…
	Slide 64: Effects of pointer mistakes
	Slide 65: Pointer summary
	Slide 66: Pass by Value vs. Pass by Reference
	Slide 67: About “About printf and scanf”
	Slide 68: C Memory Allocation: introducing the heap
	Slide 69: C Memory Allocation
	Slide 70: C Memory Allocation
	Slide 71: C Memory Allocation
	Slide 72: Memory management examples
	Slide 73: Pointers to Structs
	Slide 74: Linked lists: C vs Java
	Slide 75: Linked lists: Freeing the list in C
	Slide 76: Source Level Debugging
	Slide 77: Gdb
	Slide 78: gdb commands
	Slide 79: gdb commands
	Slide 80: gdb quick reference card
	Slide 81: Valgrind: detect memory errors
	Slide 82: Debugging our bad free code
	Slide 83: Debugging our bad free code
	Slide 84: Debugging our bad free code
	Slide 85: Debugging our bad free code
	Slide 86: Debugging our bad free code
	Slide 87: C Resources
	Slide 88: Outline

