
ECE/CS 250
Computer Architecture

Summer 2023

C Programming

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),

Benjamin Lee (Duke), and Amir Roth (Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty

2

Outline

• Previously:

• Computer is a machine that does what we tell it to do

• Next:

• How do we tell computers what to do?

• First a quick intro to C programming

• Goal: to learn C, not teach you to be an expert in C

• How do we represent data?

• What is memory?

3

What is C?

• The language of UNIX

• Procedural language (no classes)

• Low-level access to memory

• Easy to map to machine language

• Not much run-time stuff needed

• Surprisingly cross-platform

Why teach it now?
To expand from basic programming to

operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

4

The Origin of C

Hey, do you want to build a system that

will become the gold standard of OS

design for this century?

We can call it UNIX.

Okay, but only if we also invent a

language to write it in, and only if that

language becomes the default for all

systems programming basically forever.

We’ll call it C!

Ken Thompson Dennis Ritchie

AT&T Bell Labs, 1969-1972

5

Cool, it worked!

Told ya.

6

What were they thinking?

• Main design considerations:

• Compiler size: needed to run on PDP-11 with 24KB of
memory (Algol60 was too big to fit)

• Code size: needed to implement the whole OS and
applications with little memory

• Performance

• Portability

• Little (if any consideration):

• Security, robustness, maintainability

• Legacy Code

7

C vs. other languages

Most modern languages C

Develop applications Develop system code (and applications)
(the two used to be the same thing)

Computer is an abstract logic engine Near-direct control of the hardware

Prevent unintended behavior,
reduce impact of simple mistakes

Never doubts the programmer,
subtle bugs can have crazy effects

Runs on magic! (e.g. garbage collection) Nothing happens without developer
intent

May run via VM or interpreter Compiles to native machine code

Smart, integrated toolchain
(press button, receive EXE)

Discrete, UNIX-style toolchain
make → g++ (compilation) → g++ (linking)
(even more discrete steps behind this)

$ make
g++ -o thing.o thing.c
g++ -o thing thing.o

8

Why C?

• Why C for humanity?

• It’s a “portable assembly language”

• Useful in OS and embedded systems and for highly optimized code

• Why C for this class?

• Need to understand how computers work

• Need a high-level language that can be traced all the way down to
machine code

• Need a language with system-level concepts like pointers and memory
management

• Java hides too much to do this

11

Example C superpowers

Language Size of
executable

Size of
runtime
(ignoring libraries)

Total size RAM used

Java 410 B 13 MB
(java + libjvm)

13 MB 14 MB

Python 60 B
(source code)

2.9 MB 2.9 MB 5.4 MB

Desktop C 8376 B None 8376 B 352 kB

Embedded C
(Arduino)

838 B None 838 B ~16 B

Task: Blink an LED

Atmel ATTINY4 microcontroller :

Entire computer (CPU, RAM, & storage)!

1024 bytes storage, 32 bytes RAM.

led = 0
while (true):

led = NOT led
set_led(led)
delay for 1 sec

Max: 1024 B Max: 32 B

12

What about C++?

• Originally called “C with Classes”
(because that’s all it is)

• All C programs are C++ programs,
as C++ is an extension to C

• Adds stuff you might recognize
from Java (only uglier):

• Classes (incl. abstract classes & virtual functions)

• Operator overloading

• Inheritance (incl. multiple inheritance)

• Exceptions

Bjarne Stroustrup developed

C++ in 1979 at Bell Labs

13

C and Java: A comparison

#include <stdio.h>

#include <stdlib.h>

int main(int argc, const char* argv[]) {

int i;

printf("Hello, world.\n");

for (i=0; i<3; i++) {

printf("%d\n", i);

}

return EXIT_SUCCESS;

}

class Thing {

static public void main (String[] args) {

int i;

System.out.printf("Hello, world.\n");

for (i=0; i<3; i++) {

System.out.printf("%d\n", i);

}

}

}

13

$ javac Thing.java && java Thing
Hello, world.
0
1
2

$ g++ -o thing thing.c && ./thing
Hello, world.
0
1
2

C Java

14

Common Platform for This Course

• Different platforms have different conventions for end of
line, end of file, tabs, compiler output, …

• Solution (for this class): compile and run all programs
consistently on one platform

• Our common platform:

15

How to access Duke Linux machines?

16

High Level Language
Program

Assembly Language
Program

Compiler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

HLL → Assembly Language

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

• Every computer architecture has its own assembly
language

• Assembly languages tend to be pretty low-level, yet some
actual humans still write code in assembly

• But most code is written in HLLs and compiled
• Compiler is a program that automatically converts HLL to assembly

17

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Compiler

Assembler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Assembly Language → Machine Language

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

• Assembler program automatically converts assembly code
into the binary machine language (zeros and ones) that
the computer actually executes

18

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signals for
Finite State Machine

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Machine Language → Inputs to Digital System

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Transistors (switches) turning on and off

19

How does a Java program execute?

• Compile Java Source to Java Byte codes

• Java Virtual Machine (JVM) interprets/translates Byte codes

• JVM is a program executing on the hardware

• Java has lots of features that make it easier to program without
making mistakes → training wheels are nice

• JVM handles memory for you

• What do you do when you remove an entry from a hash table,
binary tree, etc.?

20

The C Programming Language

• No virtual machine

• No dynamic type checking, array bounds, garbage collection, etc.

• Compile source file directly to machine code

• Closer to hardware

• Easier to make mistakes

• Can often result in faster code → training wheels slow you down

• Generally used for ‘systems programming’

• Operating systems, embedded systems, database implementation

• C++ is object-oriented version of C (C is a strict subset of C++)

21

Creating a C source file

• We are not using a development environment (IDE)

• You will create programs starting with an empty file!

• Files should use .c file extension (e.g., hello.c)

• On a Linux machine, edit files with your chosen editor,
e.g. Visual Studio Code (executable from command line
as code <file>)

22

The vscode window

• Visual Studio Code is a fancy editor, but we’ll use it like a
simple editor

• Feel free to use any text editor (vim, emacs, etc.)

23

Compiling and Running the Program

• Use the g++ compiler to turn .c file into executable file
• g++ -g -o <outputfile> <sourcefile>

• g++ -g -o hello hello.c

(you must be in same directory as hello.c)

• If no -o option, then default output name is a.out (e.g., g++ hello.c)

• The -g option turns on debug info, so tools can tell you what’s up when it breaks

• To run, type the program name on the command line

• ./ before “hello” means look in current directory for hello program

24

Key Language Issues (for C)

• Variable types: int, float, char, etc.

• Operators: +, -, *, ==, >, etc.

• Expressions

• Control flow: if/else, while, for, etc.

• Functions

• Arrays

• Java: Strings → C: character arrays

• Java: Objects → C: structures

• Java: References → C: pointers

• Java: Automatic memory mgmt → C: DIY mem mgmt

Black: C same as Java

Blue: C very similar to Java

Red: C different from Java

25

Variables, operators, expressions – just like Java

• Variables types
• Data types: int, float, double, char, void

• signed and unsigned int

• char, short, int, long, long long can all be integer types

• These specify how many bits to represent an integer

• Operators
• Mathematical: + - * / %

• Logical: ! && || == != < > <= >=

• Bitwise: & | ~ ^ << >>
(we’ll get to what these do later)

• Expressions: var1 = var2 + var3;

SAME

as Java!

26

C Allows Type Conversion with Casts

• Use type casting to convert between types
• variable1 = (new type) variable2;

• Be careful with order of operations – cast often takes precedence

• Example

main() {

float x;

int i;

x = 3.6;

i = (int) x; // i is the integer cast of x

printf(“x=%f, i=%d”, x, i)

}

result: x=3.600000, i=3

SAME

as Java!

27

Control Flow – just like Java

• Conditionals
if (a < b) { … } else {…}

switch (a) {

case 0: s0; break;

case 1: s1; break;

case 2: s2; break;

default: break;

}

• Loops
for (i = 0; i < max; i++) { ... }

while (i < max) {…}

SAME

as Java!

28

Variable Scope: Global Variables

• Global variables are accessible from any function
• Declared outside main()

Similar

to Java!

#include <stdio.h>

int X = 0;

float Y = 0.0;

void setX() { X = 78; }

int main()

{

X = 23;

Y =0.31234;

setX();

// value of X here?

}

#include <stdio.h>

int X = 0;

float Y = 0.0;

void setX() { X = 78; }

int main()

{

int X = 23;

Y =0.31234;

setX();

// value of X here?

}

78 Which X?

Global X = 78
Main’s local X = 23

Makes a local X – separate from global X

(this hides the global X within main)

29

Functions – mostly like Java

• C has functions, just like Java

• But these are not methods! (not attached to objects)

• Must be defined or at least declared before use
int div2(int x,int y); /* declaration here */

int main() {

int a;

a = div2(10,2);

}

int div2(int x, int y) { /* implementation here */

return (x/y);

}

• Or you can just put functions at top of file (before use)

Similar

to Java!

30

Arrays – same as Java

Same as Java (for now…)

char buf[256];

int grid[256][512]; /* two dimensional array */

float scores[4096];

double speed[100];

for (int i = 0; i< 25; i++)

buf[i] = 'A'+i; /* what does this do? */

Similar

to Java!

31

Memory Layout and Bounds Checking

• There is NO bounds checking in C

• i.e., it’s legal (but not advisable) to refer to
days_in_month[219] or
days_in_month[-35] !

• who knows what is stored there?

… …

Storage for array int days_in_month[12];

Storage for other stuff
Storage for some more stuff

(each location shown here is an int)

DIFFERENT

from Java!

32

Strings – not quite like Java

• Strings
• char str1[256] = “hi”;

• str1[0] = ‘h’, str1[1] = ‘i’,str1[2] = 0;

• 0 is value of NULL character ‘\0’, identifies end of string

• What is C code to compute string length?
int len=0;

while (str1[len] != 0){

len++;

}

• Length does not include the NULL character

• C has built-in string operations
• #include <string.h> // includes string operations

• strlen(str1);

DIFFERENT

from Java!

33

Structures

• Structures are sort of like Java objects

• They have member variables

• But they do NOT have methods!

• Structure definition with struct keyword
struct student_record {

int id;

float grade;

} rec1, rec2;

• Declare a variable of the structure type with struct keyword
struct student_record onerec;

• Access the structure member fields with dot (‘.’), e.g. structvar.member
onerec.id = 12;

onerec.grade = 79.3;

DIFFERENT

from Java!

34

Array of Structures

#include <stdio.h>

struct student_record {

int id;

float grade;

};

struct student_record myroster[100]; /* declare array of structs */

int main()

{

myroster[23].id = 99;

myroster[23].grade = 88.5;

}

Similar

to Java!

35

Console I/O in C

• I/O is provided by standard library functions

• available on all platforms

• To use, your program must have

• …and it doesn’t hurt to also have

• These are preprocessor statements; the .h files define
function types, parameters, and constants from the standard
library

#include <stdio.h>

#include <stdlib.h>

“Standard IO”

“Standard library”

Not “studio”!!

DIFFERENT

from Java!

36

Back to our first program

• #include <stdio.h> defines input/output functions in C
standard library (just like you have libraries in Java)

• printf(args) writes to terminal

37

Input/Output (I/O)

• Read/Write to/from the terminal

• Standard input, standard output (defaults are terminal)

• Character I/O
• putchar(), getchar()

• Formatted I/O
• printf(), scanf()

DIFFERENT

from Java!

38

Character I/O

#include <stdio.h> /* include the standard I/O function defs */

int main() {

char c;

/* read chars until end of file */

while ((c = getchar()) != EOF) {

if (c == ‘e’)

c = ‘-’;

putchar(c);

}

return 0;

}

• EOF is End Of File (type Ctrl+D)

DIFFERENT

from Java!

39

Formatted I/O

#include <stdio.h>

int main() {

int a = 23;

float f =0.31234;

char str1[] = “satisfied?”;

/* some code here… */

printf(“The variable values are %d, %f , %s\n”, a, f, str1);

scanf(“%d %f”, &a, &f); /* we’ll come back to the & later */

scanf(“%s”, str1);

printf(“The variable values are now %d, %f , %s\n”,a,f,str1);

}

• printf(“format string”, v1,v2,…);

• \n is newline character

• scanf(“format string”,…);

• Returns number of matching items or EOF if at end-of-file

printf() = print formatted

scanf() = scan (read) formatted

DIFFERENT

from Java!

40

About printf and scanf

printf(“Hello %s, you are %d years old.\n”, name, age);

• Format specifiers:
• %d Decimal integer (char/short/int/long/long long)

• %x Hexadecimal integer (char/short/int/long/long long)

• %f Float (float or double)

• %c Character (char)

• %s String (char[] or char*)

• Modifying them:
• %3d Minimum 3-characters, space padded right aligned

• %-3d Same, but left aligned

• %03d Same, but pad with zeroes instead of spaces

• %.2f Float, two digits after decimal

• %5.2f Float, two digits after decimal, space padded to 5 chars

Doing scanf?
Use & before var.

Doing scanf?
Use & before var.

Doing scanf?
Use & before var.

Doing scanf?
DON’T use & before variable.

Doing scanf?
Use & before var.

_52

52_

052

2.52

_2.52

41

Example: Reading Input in a Loop

#include <stdio.h>

int main()

{

int x= 0;

while(scanf("%d",&x) != EOF) {

printf("The value is %d\n",x);

}

}

• This reads integers from the terminal until the user types ^d (ctrl-d)
• Can use ./prog < file.in to redirect in from a file instead

• WARNING THIS IS NOT CLEAN CODE!!!
• If the user makes a typo and enters a non-integer it can loop indefinitely!!!

• How to stop a program that is in an infinite loop on Linux?

• Type ^c (ctrl-c). It kills the currently executing program.

DIFFERENT

from Java!

42

Example: Reading Input in a Loop (better)

#include <stdio.h>

int main()

{

int x= 0;

while(scanf("%d",&x) == 1) {

printf("The value is %d\n",x);

}

}

• Now it reads integers from the terminal until there’s an EOF or a non-integer
is given.

• Type “man scanf” on a linux machine and you can read a lot about scanf.
• You can also find these “manual pages” on the web, such as at die.net.

DIFFERENT

from Java!

43

sscanf vs. atoi

• You can parse in-memory strings with sscanf (string scanf):
char mystring[] = “29”;

int r;

int n = sscanf(mystring,“%d”,&r);
// returns number of successful conversions (0 or 1)

• You could use the atoi function to convert a string to an
integer, but then you can’t detect errors.
char mystring[] = “29”;

int r = atoi(mystring);

• The atoi function just returns 0 for non-integers, so
atoi(“0”)==atoi(“hurfdurf”)

DIFFERENT

from Java!

44

Header Files, Separate Compilation, Libraries

• C pre-processor provides useful features

• #include filename just inserts that file (like #include <stdio.h>)

• #define MYFOO 8, replaces MYFOO with 8 in entire program

• Good for constants

• #define MAX_STUDENTS 100 (functionally equivalent to const int)

• Separate Compilation

• Many source files (e.g., main.c, students.c, instructors.c, deans.c)

• g++ –o prog main.c students.c instructors.c deans.c

• Produces one executable program from multiple source files

• Libraries: Collection of common functions (some provided, you can build
your own)

• We’ve already seen stdio.h for I/O

• libc has I/O, strings, etc.

• libm has math functions (pow, exp, etc.)

• g++ –o prog file.c –lm (says use math library)

DIFFERENT

from Java!

45

Command Line Arguments

• Parameters to main (int argc, char *argv[])
• argc = number of arguments (0 to argc-1)

• argv is array of strings

• argv[0] = program name

• Example: ./myProgram dan 250

• argc=3

• argv[0] = “./myProgram”, argv[1]=“dan”, argv[2]=“250”

int main(int argc, char *argv[]) {

int i;

printf("%d arguments\n", argc);

for (i=0; i< argc; i++) {

printf("argument %d: %s\n", i, argv[i]);

}

}

Similar

to Java!

46

Command-line arguments
• Typed after program name

in shell
• Come in via argv[]
• Strings – can be parsed

with sscanf

Stdin
• Typed into the running

program
• Can be read with scanf

Command-line arguments vs stdin

#include <stdio.h>

int main(int argc, char* argv[]) {

if (argc != 2) {

printf("Syntax: ./is <adjective>\n");

return 0;

}

printf("Name: ");

char name[64];

scanf("%s",name);

printf("%s is %s.\n", name, argv[1]);

return 0;

}

47

Also: DO ERROR CHECKING!

#include <stdio.h>

int main(int argc, char* argv[]) {

/*if (argc != 2) {

printf("Syntax: ./is <adjective>\n");

return 0;

}*/

printf("Name: ");

char name[64];

scanf("%s",name);

printf("%s is %s.\n", name, argv[1]);

return 0;

}

What if this

were removed?

48

The Big Differences Between C and Java

1) Java is object-oriented, while C is not

2) Memory management

• Java: the virtual machine worries about where the variables “live” and
how to allocate memory for them

• C: the programmer does all of this

49

Memory is a real thing!

• Most languages –
protected variables

• C – flat memory space

Figure from Rudra Dutta, NCSU, 2007

user_info
shopping_cart

system_id

inventory

user_info
shopping_cart

system_id
inventory

50

Let’s look at memory addresses!

• You can find the address of ANY variable with:

&
The address-of operator

int v = 5;

printf(“%d\n”,v);

printf(“%p\n”,&v);
$ g++ x.c && ./a.out
5
0x7fffd232228c

DIFFERENT

from Java!

51

Testing where variables live

int x=5;

char msg[] = "Hello";

int main(int argc, const char* argv[]) {

int v;

float pi = 3.14159;

printf("&x: %p\n",&x);

printf("&msg: %p\n",&msg);

printf("&argc: %p\n",&argc);

printf("&argv: %p\n",&argv);

printf("&v: %p\n",&v);

printf("&pi: %p\n",&pi);

}
code

static

heap

libs

stack

kernel

Params

Bookkeeping

Locals

Params

Bookkeeping

Locals

$ g++ x.c && ./a.out
&x: 0x601020
&msg: 0x601024
&argc: 0x7fff85b78c2c
&argv: 0x7fff85b78c20
&v: 0x7fff85b78c38
&pi: 0x7fff85b78c3c

52

What’s a pointer?

• It’s a memory address you treat as a variable

• You declare pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);
$ g++ x.c && ./a.out
5
0x7fffe0e60b7c

Append to any data type

DIFFERENT

from Java!

53

What’s a pointer?

• You can look up what’s stored at a pointer!

• You dereference pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);

printf(“%d\n”,*p);
$ g++ x.c && ./a.out
5
0x7fffe0e60b7c
5

Prepend to any pointer variable or expression

DIFFERENT

from Java!

54

Different types use different amounts of memory

• If I have an n-bit integer:

• And it’s unsigned, then I can represent {0 .. 2𝑛 − 1}

• And it’s signed, then I can represent {−(2𝑛−1) .. 2𝑛−1 − 1}

• Result:

• A float is 32 bits (4 bytes); a double is 64 bits (8 bytes)

• Size of a pointer? Depends on the platform!

• Our x86 platform for C: pointers are 64 bits (8 bytes)

• The MIPS platform we’ll learn soon: pointers will be 32 bits (4 bytes)

Size in
bits

Size in
bytes Datatype Unsigned range Signed range

8 1 char 0 .. 255 -128 .. 127

16 2 short 0 .. 65,535 -32,768 .. 32,767

32 4 int 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647

64 8 long long
0 ..

18,446,744,073,709,600,000
-9,223,372,036,854,780,000 ..

9,223,372,036,854,780,000

56

What is an array?

• The shocking truth:
You’ve been using pointers all along!

• Every array IS a pointer to a block of memory

• Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N things later from pointer P

• “Thing” depends on the datatype of the P

• Can dereference such pointers to get what’s there
• Interpreted according to the datatype of P

• E.g. *(nums-1) is a number related to how we represent the letter ‘o’.

00 00 00 09 ‘h’ ‘e’ ‘l’ ‘l’ ‘o’ 00 00 06 00 07 00 08

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

msg nums&x

nums+1 nums+2

msg+1 msg+2 msg+3 msg+4 msg+5 msg+6 msg-1msg-2msg-3msg-4

nums-1

57

Array lookups ARE pointer references!

int x[] = {15,16,17,18,19,20};

• This is why arrays don’t know their own length:
they’re just blocks of memory with a pointer!

Array
lookup

Pointer
reference

Type

x x int*

x[0] *x int

x[5] *(x+5) int

x[n] *(x+n) int

&x[0] x int*

&x[5] x+5 int*

&x[n] x+n int*

(In case you don’t believe me)
int n=2;
printf("%p %p\n", x , x);
printf("%d %d\n", x[0] , *x);
printf("%d %d\n", x[5] ,*(x+5));
printf("%d %d\n", x[n] ,*(x+n));
printf("%p %p\n",&x[0], x);
printf("%p %p\n",&x[5], x+5);
printf("%p %p\n",&x[n], x+n);

$ g++ x.c && ./a.out
0x7fffa2d0b9d0 0x7fffa2d0b9d0
15 15
20 20
17 17
0x7fffa2d0b9d0 0x7fffa2d0b9d0
0x7fffa2d0b9e4 0x7fffa2d0b9e4
0x7fffa2d0b9d8 0x7fffa2d0b9d8

Creepy-side effect: A[5] ⇒ *(A+5) ⇒ *(5+A) ⇒ 5[A], so 5[A] is legal & equivalent! (Don’t do this, it’s gross.)

Definition of array brackets: A[i] *(A+i)

58

Using pointers

1. Start with an address of something that exists

2. Manipulate according to known rules

3. Don’t go out of bounds (don’t screw up)

void underscorify(char* s) {

char* p = s;

while (*p != 0) {

if (*p == ' ') {

*p = '_';

}

p++;

}

}

int main() {
char msg[] = "Here are words";
puts(msg);
underscorify(msg);
puts(msg);

}

$ g++ x.c && ./a.out
Here are words
Here_are_words

DIFFERENT

from Java!

59

Shortening that function

void underscorify(char* s) {

char* p = s;

while (*p != 0) {

if (*p == ' ') {

*p = '_';

}

p++;

}

}

// how a developer might code it

void underscorify2(char* s) {
char* p;
for (p = s; *p ; p++) {
if (*p == ' ') {

*p = '_';
}

}
}

// how a kernel hacker might code it

void underscorify3(char* s) {
for (; *s ; s++) {
if (*s == ' ') *s = '_';

}
}

60

Pointers: powerful, but deadly

• What happens if we run this?
#include <stdio.h>

int main(int argc, const char* argv[]) {

int* p;

printf(" p: %p\n",p);

printf("*p: %d\n",*p);

}

$ g++ x2.c && ./a.out
p: (nil)

Segmentation fault (core dumped)

61

Pointers: powerful, but deadly

• Okay, I can fix this! I’ll initialize p!
#include <stdio.h>

int main(int argc, const char* argv[]) {

int* p = 100000;

printf(" p: %p\n",p);

printf("*p: %d\n",*p);

}

$ g++ x2.c
x2.c: In function ‘main’:
x2.c:4:9: warning: initialization makes pointer from
integer without a cast [enabled by default]
$./a.out
p: 0x186a0

Segmentation fault (core dumped)

62

A more likely pointer bug…

void underscorify_bad(char* s) {

char* p = s;

while (*p != '0') {

if (*p == 0) {

*p = '_';

}

p++;

}

}

int main() {
char msg[] = "Here are words";
puts(msg);
underscorify_bad(msg);
puts(msg);

}

63

Almost fixed…

void underscorify_bad2(char* s) {

char* p = s;

while (*p != '0') {

if (*p == ' ') {

*p = '_';

}

p++;

}

}

int main() {
char msg[] = "Here are words";
puts(msg);
underscorify_bad2(msg);
puts(msg);

}

Worked but

crashed on exit

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

Worked totally!!

64

Effects of pointer mistakes

No visible effect
Totally weird behavior

Silent corruption & bad results

Program crash with OS error

Access an array out of bounds
or some other invalid pointer location?

65

Pointer summary

• Memory is linear, all the variables live at an address

• Variable declarations reserve a range of memory space

• You can get the address of any variable with
the address-of operator &

int x; printf(“%p\n”,&x);

• You can declare a pointer with the dereference operator * appended
to a type:

int* p = &x;

• You can find the data at a memory address with the dereference
operator * prepended to a pointer expression:

printf(“%d\n”,*p);

• Arrays in C are just pointers to a chunk of memory

• Pointer math is done in units of the underlying type
(An array of ints walks 4 bytes at a time)

• Don’t screw up

66

Pass by Value vs. Pass by Reference

void swap (int x, int y){

int temp = x;

x = y;

y = temp;

}

int main() {

int a = 3;

int b = 4;

swap(a, b);

printf(“a = %d, b= %d\n”, a, b);

}

void swap (int *x, int *y){

int temp = *x;

*x = *y;

*y = temp;

}

int main() {

int a = 3;

int b = 4;

swap(&a, &b);

printf(“a = %d, b= %d\n”, a, b);

}

67

About “About printf and scanf”

• Remember this slide?

• In scanf, why do %d, %x, %f, %c use a & before the variable?

• Need to pass a pointer so scanf can mess with the content of them!

• Why doesn’t %s use a & before the variable?

• Because strings are arrays, and
arrays are just memory addresses!

68

C Memory Allocation: introducing the heap

• So far, we have local variables and global variables

• Locals are short-lived (die when function returns).

• Globals are long-lived but fixed-size (defined at compile time).

• What if we want memory that is allocated at runtime and
long-lived?

• You had this in Java: objects!

• C doesn’t have objects, but you can allocate memory for stuff!

• This is called heap memory.

• Most memory used by programs is in heap memory!

• Think: Tabs in your web browser.

• Make a tab? Allocate

• Close a tab? Deallocate

DIFFERENT

from Java!

69

C Memory Allocation

• How do you allocate an object in Java?
• The new keyword

• What do you do when you are finished with object?

• Nothing, you just stop using it

• How? JVM provides garbage collection

• Counts references to objects, when refs== 0 can reuse

• How do you allocate heap memory in C?
• The malloc, calloc, and realloc functions

• What do you do when you’re finished with the memory?
• You free it manually with the free function

• C doesn’t have garbage collection! Must explicitly manage memory.

• The power is yours!

DIFFERENT

from Java!

70

C Memory Allocation

• void* malloc(nbytes)

• Obtain storage for your data (like new in Java)

• Often use sizeof(type) built-in returns bytes needed for type

• int* my_ptr = (int*) malloc(64); // 64 bytes = 16 ints

• int* my_ptr = (int*) malloc(64*sizeof(int)); // 64 ints

• free(ptr)

• Return the storage when you are finished (no Java equivalent)

• ptr must be a value previously returned from malloc

DIFFERENT

from Java!

71

C Memory Allocation

• void* calloc(num, sz)

• Like malloc, but reserves num*sz bytes, and initializes the memory to
zeroes

• void* realloc(ptr, sz)

• Grows or shrinks allocated memory

•ptr must be an existing heap allocation

• Growing memory doesn’t initialize new bytes

• Memory shrinks in place

• Memory may NOT grow in place

• If not enough space, will move to new location and copy
contents

• Old memory is freed

• Update all pointers!!!

• Usage: ptr = realloc(ptr, new_size);

DIFFERENT

from Java!

72

Memory management examples

#include <stdio.h>

#include <stdlib.h>

int main() {

// kind of silly, but let's malloc a single int

int* one_integer = (int*) malloc(sizeof(int));

*one_integer = 5;

// allocating 10 integers worth of space.

int* many_integers = (int*) malloc(10 * sizeof(int));

many_integers[2] = 99;

// using calloc over malloc will pre-initialize all values to 0

float* many_floats = (float*) calloc(10, sizeof(float));

many_floats[4] = 1.21;

// double the allocation of this array

many_floats = (float*) realloc(many_floats, 20*sizeof(float));

many_floats[15] = 6.626070040e-34;

free(one_integer);

free(many_integers);

free(many_floats);

}

73

Pointers to Structs

struct student_rec {

int id;

float grade;

};

struct student_rec* my_ptr = malloc(sizeof(struct student_rec));

// my_ptr to a student_rec struct

To access members of this struct via the pointer:
(*my_ptr).id = 3; // not my_ptr.id

my_ptr->id = 3; // not my_ptr.id

my_ptr->grade = 2.3; // not my_ptr.grade

74

Linked lists: C vs Java

struct Node {

int id;

struct Node* next;

};

struct Node* new_node(int id) {

struct Node* newguy =

(struct Node*) malloc(sizeof(struct Node));

newguy->id = id;

newguy->next = NULL;

return newguy;

}

struct Node* prepend_to_list(struct Node* head, int id) {

struct Node* newguy = new_node(id);

newguy->next = head;

return newguy;

}

void insert_after(struct Node* target, int id) {

struct Node* newguy = new_node(id);

newguy->next = target->next;

target->next = newguy;

}

void print_list(struct Node* head) {

for (struct Node* p = head; p != NULL; p = p->next) {

printf("%d ", p->id);

}

printf("\n");

}

public class LinkedList {

public static class Node {

public int id;

protected Node next;

Node(int id) {

this.id = id;

this.next = null;

}

}

public static Node prepend_to_list(Node head, int id) {

Node newguy = new Node(id);

newguy.next = head;

return newguy;

}

public static void insert_after(Node target, int id) {

Node newguy = new Node(id);

newguy.next = target.next;

target.next = newguy;

}

public static void print_list(Node head) {

for (Node p = head; p != null; p = p.next) {

System.out.printf("%d ", p.id);

}

System.out.printf("\n");

}

}

Java does these steps implicitly!

Note: full runnable versions of these programs are available from the course site: LinkedList.c and LinkedList.java

75

Linked lists: Freeing the list in C

• When done, need to walk the list and free each node

• May be tempted to write the following:

• This is a use-after-free bug! It may crash!

• You cannot rely on a freed piece of memory!

• Solution: rescue out the next pointer into a local first:
void free_list(struct Node* head) {

while (head) {

struct Node* nextguy = head->next;

free(head);

head = nextguy;

}

}

void free_list_naive(struct Node* head) {

while (head) {

free(head);

head = head->next;

}

}

Free the block, okay

This arrow means dereference:

we’re using the memory we just freed!

76

Source Level Debugging

• Symbolic debugging lets you single step through program,
and modify/examine variables while program executes

• On the Linux platform: gdb

• Source-level debuggers built into most IDEs

77

Gdb

• To start:
$ gdb ./myprog

• To run:
(gdb) run arguments

78

gdb commands

list <line>

list <function>

list <line>,<line>

list (show) 10 lines of code at specified
location in program

List from first line to last line

run start running the program

continue

step

next

continue execution
single step execution, including into
functions that are called
single step over function calls

print <var>

printf “fmt”, <var>

display <var>

undisplay <var>

show variable value

show variable each time execution
stops

79

gdb commands

break <line>

break <function>

break <line> if <cond>

set breakpoints (including
conditional breakpoints)

info breakpoints

delete breakpoint <n>

list, and delete, breakpoints

set <var> <expr> set variable to a value

backtrace full

bt

show the call stack & args
arguments and local variables

80

gdb quick reference card

• GDB Quick Reference.pdf – print it!

• Also available annotated by me with most important commands for a
beginner:
GDB Quick Reference - annotated.pdf

81

Valgrind: detect memory errors

• Can run apps with a process monitor to try to detect illegal
memory activity and memory leaks

82

Debugging our bad free code

• Remember this broken code?

• Let’s test it! First, we compile and run:

• Dang, time to debug…

void free_list_naive(struct Node* head) {

while (head) {

free(head);

head = head->next;

}

}

Program uses a linked list to show the

first ten Fibonacci numbers backwards.

Correct output…

But then it crashed

Why??????????????

83

Debugging our bad free code

• We forgot to compile with -g so there’s no debug symbols!

Launch gdb with the

program as the argument

Use run to actually execute it

Hmm, where did it crash
exactly? bt will show us the

stack backtrace

Well that’s the function, but

where’s the dang line

number?????? Oh

nooooooooooooo

84

Debugging our bad free code

Recompile with –g!

Then gdb again.

Use run again

Use bt for stack backtrace

again

Wow! Such line numbers!

Much arguments!

85

Debugging our bad free code

• But suppose this isn’t clear enough? It doesn’t actually say we
used after free…

Use frame to set what

stack frame we’re “in” for

printing purposes.

We can print variables and

list code, and much more!

86

Debugging our bad free code

• Valgrind is a great tool for memory issues and crashes

• Wow, that tells the whole story! Thanks, valgrind!

• Read the whole story that valgrind tells you, it’s helping you!

Run valgrind followed

by the full command to

debug

On line 43, we tried to read a

piece of data 8 bytes in size

illegally.

Normal program output

All output lines that start like this are from valgrind; the number is the Process ID (pid) of the running program

The address in question is

analyzed; it’s inside a block

that was recently freed.

Here’s exactly where it was

freed (line 42).

By the way, here’s where this

block was originally

allocated, too, in case that

helps.

87

C Resources

• MIT Open Course

• Courseware from Dr. Bletsch’s NCSU course on C
(linked from course page)

• Video snippets by Prof. Drew Hilton (Duke ECE/CS)

• Doesn’t work with Firefox (use Safari or Chrome)

88

Outline

• Previously:

• Computer is machine that does what we tell it to do

• Next:

• How do we tell computers what to do?

• First a quick intro to C programming

• How do we represent data?

• What is memory, and what are these so-called addresses?

	Slide 1: ECE/CS 250 Computer Architecture Summer 2023
	Slide 2: Outline
	Slide 3: What is C?
	Slide 4: The Origin of C
	Slide 5
	Slide 6: What were they thinking?
	Slide 7: C vs. other languages
	Slide 8: Why C?
	Slide 11: Example C superpowers
	Slide 12: What about C++?
	Slide 13: C and Java: A comparison
	Slide 14: Common Platform for This Course
	Slide 15: How to access Duke Linux machines?
	Slide 16: HLL Assembly Language
	Slide 17: Assembly Language Machine Language
	Slide 18: Machine Language Inputs to Digital System
	Slide 19: How does a Java program execute?
	Slide 20: The C Programming Language
	Slide 21: Creating a C source file
	Slide 22: The vscode window
	Slide 23: Compiling and Running the Program
	Slide 24: Key Language Issues (for C)
	Slide 25: Variables, operators, expressions – just like Java
	Slide 26: C Allows Type Conversion with Casts
	Slide 27: Control Flow – just like Java
	Slide 28: Variable Scope: Global Variables
	Slide 29: Functions – mostly like Java
	Slide 30: Arrays – same as Java
	Slide 31: Memory Layout and Bounds Checking
	Slide 32: Strings – not quite like Java
	Slide 33: Structures
	Slide 34: Array of Structures
	Slide 35: Console I/O in C
	Slide 36: Back to our first program
	Slide 37: Input/Output (I/O)
	Slide 38: Character I/O
	Slide 39: Formatted I/O
	Slide 40: About printf and scanf
	Slide 41: Example: Reading Input in a Loop
	Slide 42: Example: Reading Input in a Loop (better)
	Slide 43: sscanf vs. atoi
	Slide 44: Header Files, Separate Compilation, Libraries
	Slide 45: Command Line Arguments
	Slide 46: Command-line arguments vs stdin
	Slide 47: Also: DO ERROR CHECKING!
	Slide 48: The Big Differences Between C and Java
	Slide 49: Memory is a real thing!
	Slide 50: Let’s look at memory addresses!
	Slide 51: Testing where variables live
	Slide 52: What’s a pointer?
	Slide 53: What’s a pointer?
	Slide 54: Different types use different amounts of memory
	Slide 56: What is an array?
	Slide 57: Array lookups ARE pointer references!
	Slide 58: Using pointers
	Slide 59: Shortening that function
	Slide 60: Pointers: powerful, but deadly
	Slide 61: Pointers: powerful, but deadly
	Slide 62: A more likely pointer bug…
	Slide 63: Almost fixed…
	Slide 64: Effects of pointer mistakes
	Slide 65: Pointer summary
	Slide 66: Pass by Value vs. Pass by Reference
	Slide 67: About “About printf and scanf”
	Slide 68: C Memory Allocation: introducing the heap
	Slide 69: C Memory Allocation
	Slide 70: C Memory Allocation
	Slide 71: C Memory Allocation
	Slide 72: Memory management examples
	Slide 73: Pointers to Structs
	Slide 74: Linked lists: C vs Java
	Slide 75: Linked lists: Freeing the list in C
	Slide 76: Source Level Debugging
	Slide 77: Gdb
	Slide 78: gdb commands
	Slide 79: gdb commands
	Slide 80: gdb quick reference card
	Slide 81: Valgrind: detect memory errors
	Slide 82: Debugging our bad free code
	Slide 83: Debugging our bad free code
	Slide 84: Debugging our bad free code
	Slide 85: Debugging our bad free code
	Slide 86: Debugging our bad free code
	Slide 87: C Resources
	Slide 88: Outline

