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Outline

e Previously:
e Computer is machine that does what we tell it to do

e Next:
 How do we tell computers what to do?
e How do we represent data objects in binary?
e How do we represent data locations in binary?



Representing High Level Things in Binary

e Computers represent everything in binary
e Instructions are specified in binary

e Instructions must be able to describe
e Operation types (add, subtract, shift, etc.)
e Data objects (integers, decimals, characters, etc.)
e Memory locations

e Example:
int x, y; // Where are x and y? How to represent an int?
bool decision; // How do we represent a bool? Where is it?
y=X+7; // How do we specify “"add”? How to represent 7?

decision=(y>18); // Etc.



Representing Operation Types

e How do we tell computer to add? Shift? Read from memory?
Etc.

o Arbitrarily! ©

e Each Instruction Set Architecture (ISA) has its own binary
encodings for each operation type
e E.g., In MIPS:
e Integer add is: 00000 010000
e Read from memory (load) is: 010011
o Etc.



Representing Data Types

e How do we specify an integer? A character? A floating point
number? A bool? Etc.

e Same as before: binary!

e Data and interpretation are separate:

e The same 32 bits might mean one thing if interpreted as an integer,
but another thing if interpreted as a floating point number



Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length

4 bits is a nibble / What is a word? \
22> 8 bits is a byte The standard unit of manipulation
o™ 16 bits is a halfword ~ (for MIPS32) for a particular system. E.g;
long — 32 bltS iS d Word (for MIPSBZ) 2 MLZIS>?§636324b(Irfodern) 64 bit
*9> 64 bits is a double-word  (for MIPS32) . Original Nintendo: 8 bt
128 bits is a quad-word ~ (for MIPS32) s e I

\- Nintendo 64: 64 bit /
Integers (char, short, int, long):
“2's Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
fleat>Sjngle Precision (32-bit representation)
sewble > Double Precision (64-bit representation)
Extended (Quad) Precision (128-bit representation)

Character (char):
chax> ASCII 7-bit code

All pink arrows are true for a MIPS32 and Intel x86 6



Basic Binary

e Advice: memorize the following
¢ 20=1
¢ 21 =2
¢ 22=4
e 23=8
¢ 24=16
e 20 =32
o 26 = 64
e 27 =128
o 28 =256
e 2°=512
e 210 =1024




Bits vs things

e If you have N bits, you can represent 2N things.

: A

e If you have T things, you need log,T bits to pick one.

You will have to answer questions of this form roughly a
thousand times in this course — note it now!

e EXxercises:
e I have 8 bits, how many integers can I represent?
o 28 =256
e I need to represent 32 cache sets. How many bits do I need?
e log,32=>5
e I have 4GB of RAM. How many bits do I need to pick one byte of it?
e log, 4G = ......? ¥



Binary metric system

e The binary metric system:
o 210 = 1024,

e This is basically 1000, so we can have an alternative form of metric
units based on base 2.

e 210 hytes = 1024 bytes = 1kB.

e Sometimes written as 1kiB
(pronounced “kibibyte” where the ‘bi"” means ‘binary’)
(but nobody says “kibibyte” out loud because it sounds stupid)

e 220 bytes = 1MB, 230 bytes = 1GB, 240 bytes = 1TB, etc.
e Fasy rule to convert between exponent and binary metric humber:

2% bytes = 27 - 2X0bytes =27 <X_prefix>B

"ot ater on- 213 bytes = 23 kB =8 kB

\ide:
239 pytes = 29 GB = 512 GB From o8, S92

A 205 hytes = 25B =32 B 9



What does it mean to say base 10 or base 27

e Integers in regular base

e 6253 = 6000 + 200 + 50 + 3
=6>|< 3_|_2>|< 2_|_5>|< 1_|_3>|< 0

én i B

e Integers in base
e 1101 =1000+ 100+ 00+ 1

= 1% 3+1>|< 2+0>|< 1_|_1>l<0
=8 +4 +1 @

13
e1 101
VRN
8’s place Bit 2 Bit 0

Bit 1 1’s place

4's place 2’s place
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Decimal to binary using remainders

? Quotient | Remainder
457 + 2 = 228 1
228 + 2 = 114 0
114 + 2 = 57 0
57 -2 = 28 1
28 + 2 = 14 0
14 + 2 = 7 0
/2= 3 1
3+2= 1 1 HEERERN
1+2= 0 1 »111001001

11



Decimal to binary using comparison

111001001

Num Compare 2" >? J
457 256 1 \J
201 128 1

73 64 1

9 32 0 |

9 16 0 7

9 8 1~

1 4 0

1 2 0

1 1 1]

12



Hexadecimal

Indicates a hex number

Hex digit | Binary | Decimal _

= | OXDEADBEEF
1 0001 1 x

2 0010 2 1101 1110 1010 1101 1011 1110 1110 1111
3 0011 3

4 0100 4

5 0101 5

- ¢ 0x02468ACE
7 0111 7

. y— . 0000 0010 0100 0110 1000 1010 1100 1110
9 1001 9

A 1010 10

B 1011 11

- w = 0xX13579BDF
> 1101 13 0001 0011 0101 0111 1001 1011 1101 1111
E 1110 14

: E—— One hex digit represents 4 bits.

Two hex digits represent a byte (8 bits).

13




Binary to/from hexadecimal

Hex digit | Binary | Decimal _

» 0101101100100011, -->
e 0101 1011 0010 0011, -->
e 5 B 2 3,

1 F 4 B>
0001 1111 0100 1011, -->

0001111101001011,

M BH O Q W P W 0 9 60 s W N Rr O

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

14



BitOps: Unary

e Bit-wise complement (~)
e Flips every bit.

~0x0d // (binary 00001101)
== 0xf2 // (binary 11110010)

Not the same as Logical NOT (') or sign change (-)

char i, j1, j2, 3j3;

i = 0x0d; // binary 00001101
jl = ~i; // binary 11110010
j2 = -i; // binary 11110011
j3 = 'i; // binary 00000000

15



BitOps: Two Operands

e Operate bit-by-bit on operands to produce a result operand of
the same length

And (&): result 1 if both inputs 1, 0 otherwise
Or (]): result 1 if either input 1, 0 otherwise
Xor (~): result 1 if one input 1, but not both, 0 otherwise

Useful identities (applied per-bit):

1
0

0
1

X
0

ANDing with 1 does nothing
ANDing with 0 gives zero

ORing with 0 does nothing
ORing with 1 gives one

XORing with 0 does nothing
XORing with 1 fljps the bit

16



Two Operands... (cont’d)

e Examples

0011 1000
& 1101 1110

0001 1000

0011 1000
1101 1110

1111 1110

0011 1000
~ 1101 1110

1110 0110

17



Shift Operations

- x << vy is left (logical) shift of x by y positions
- x and y must both be integers
- x should be unsigned or positive
- y leftmost bits of x are discarded
e zero fill y bits on the right

these 3 bhits are discarded

/_A_\

01111001 << 3

these 3 hits are zero filled

18



ShiftOps... (cont’d)

- x >> vy is right (logical) shift of x by y positions
- y rightmost bits of x are discarded
e zero fill y bits on the left

these 3 bits are discarded

/_A_\

01111001 >> 3

AR T

00001111
Y

these 3 bhits are zero filled

19



Bitwise Recipes

e Set a certain bit to 17

e Make a MASK with a one at every position you want to set:
m = 0x02; // 00000010,

¢ OR the mask with the input:
v = 0x41; // 01000001,
v o= m; // 01000011,

e C(Clear a certain bit to 0?

o Make a MASK with a zero at every position you want to clear:
m = OxFD; // 11111101, (could also write ~0x02)

e AND the mask with the input:
v = 0x27; // 00100111,
v &= m; // 00100101,

e Get a substring of bits (such as bits 2 through 5)?
Note: bits are numbered right-to-left starting with zero.
e Shift the bits you want all the way to the right then AND them with an appropriate mask:
v = 0x67; // 01100111,

v >>= 2; // 00011001,
v &= 0x0F; // 1001,

20



Binary Math : Addition

e Suppose we want to add two numbers:

00011101
+ (00101011

e How do we do this?

21



Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232

e How do we do this?
e | et’s revisit decimal addition
e Think about the process as we do it

22



Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232
’

e First add one’s digit 5+2 = 7

23



Binary Math : Addition

e Suppose we want to add two numbers:

1
00011101 695
+ 00101011 + 232
271

e First add one’s digit 5+2 = 7
e Next add ten’s digit9+3 =12 (2carryal)

24



Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232
9277

e First add one’s digit 5+2 = 7
e Next add ten’s digit9+3 =12 (2carryal)
e Last add hundred’s digit 1+6+2 =9

25



Binary Math : Addition

e Suppose we want to add two numbers:

00011101
+ (00101011

e Back to the binary:
. First add 1's digit 1+1 = ..”?

26



Binary Math : Addition

e Suppose we want to add two numbers:
1

00011101
+ 00101011
0
e Back to the binary:
. First add 1's digit 1+1 =2 (0O carrya 1)

27



Binary Math : Addition

e Suppose we want to add two numbers:
11

00011101
+ 00101011
00
e Back to the binary:
° First add 1's digit 1+1 =2 (0O carrya 1)
e Then 2's digit: 1+0+1 =2 (0 carrya 1)
. You all finish it out....

28



Binary Math : Addition

e Suppose we want to add two numbers:

111111

00011101 = 29
+ 00101011 = 43

01001000 = 72

e Can check our work in decimal

29



Issues for Binary Representation of Numbers

e How to represent negative numbers?

e There are many ways to represent numbers in binary
e Binary representations are encodings - many encodings possible
e What are the issues that we must address?

o Issue #1: Complexity of arithmetic operations
e [ssue #2: Negative numbers
o Issue #3: Maximum representable number

e Choose representation that makes these issues easy for
machine, even if it's not easy for humans (i.e., ECE/CS 250
students)

e Why? Machine has to do all the work!

30



Sign Magnitude

e Use leftmost bit for + (0) or — (1):

e 6-bit example (1 sign bit + 5 magnitude bits):
e +17 =010001

e -17 = 110001

e Pros:
e Conceptually simple
e Easy to convert

e Cons:

o Harder to compute (add, subtract, etc) with
e Positive and negative 0: 000000 and 100000

31



1’s Complement Representation for Integers

e Use largest positive binary numbers 0000 O
to represent negative numbers 88‘1’3 ;
e To negate a number, 0011 3
i |\ ” T 0100 4
invert ("not”) each bit: 0101 &
0->1 0110 6
0111 4
1->0 1000 -7
. 1001 -6
e Cons:
1010 -5
e Still two 0s (yuck) 1011 -4
e Still hard to compute with 1100 -3
1101 -2
1110 -1
1111 -0
SE\T\'\E
oN OES ™\

32



2’s Complement Integers

e Use large positives to represent negatives
e (-X) =2"-X

e Thisis 1's complement + 1

e S0, to negate, just invert bits and add 1

6-bit examples:

010110, = 22,,; 101010, = -22,,

1,, = 000001,; -1,, = 111111,

0,, = 000000,; -0,, = 000000, > good!

£S THIS

0
CyERYBODY

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PR b AOSLUGENOTRWN RO
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Another way to think about 2’s complement

e Reqgular base

e 6253 =6000 + 200 + 50 + 3
=6>|< 3_|_2>|< 2_|_5>|< 1_|_3>|< 0

o oo

e Unsigned base
e 1101 1000 + 100 + 00 + 1

1% 3+1>|< 2+0>|< 1_|_1>|<0
8 +4 +1

13

e Sighed _

e 1101 -1000 + 100+ 00 + 1
1*_3+1* 2_|_O>l< 1_|_1*0
8+4+1

-3

Alternately,

flip the bits and add 1:

1101
Flip: 0010
+1: 0011

That's 3 in binary,

so the number is indeed -3

[ Two’s complement is like making the highest order bit apply a negative value! ]

34




Pros and Cons of 2’s Complement

e Advantages:
e Only one representation for 0 (unlike 1's comp): 0 = 000000
e Addition algorithm is much easier than with sign and magnitude
e Independent of sign bits

e Disadvantage:
e One more negative number than positive
e Example: 6-bit 2's complement number
100000, = -32,,; but 32, could not be represented

All modern computers use 2’s complement for integers

35



Integer ranges

Remember: if you have N bits,
you can represent 2N things

e If I have an n-bit integer: K

e And it's unsigned, then I can represent{0 .. 2" -1}
2" — 1}

e And it's signed, then I can represent {—(2™" 1)

e Result:

i T e I
1 char .. 255 -128 .. 127
2 short 0 .. 65,535 -32,768 .. 32,767
32 4 int 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647
0 .. -9,223,372,036,854,780,000 ..
64 8 long long  18,446,744,073,709,600,000 9,223,372,036,854,780,000

How to get unsigned integers in C? Just say unsigned:

// defaults to signed

int x;
// explicitly unsigned

unsigned int y;

36



2’s Complement Precision Extension

e Most computers today support 32-bit (int) or 64-bit integers
e Specify 64-bit using gcc C compiler with long long

e To extend precision, use sign bit extension
e Integer precision is number of bits used to represent a number

Examples
14,,= 001110, in 6-bit representation.
14,,= 000000001110, in 12-bit representation

-14,, = 110010, in 6-bit representation
-14,,= 111111110010, in 12-bit representation.

37



Binary Math : Addition

e |Let's look at another binary addition:

01011101
+ 01101011

38



Binary Math : Addition

e \What about this one:

1111111

01011101 = 93
+ 01101011 = 107

11001000 = =506

e But... that can't be right?

e What do you expect for the answer?
e What is it in 8-bit signed 2's complement?

39



Integer Overflow

e Answer should be 200

e Not representable in 8-bit signed representation
e No right answer

e This is called integer Overflow
e Real problem in programs
e How to solve? It hurts

when

| add two
ints and NN SEpAR
it overflows SESEENTHEE T
P » L N \.

~.‘ » Then don't

\\ do that

e

STARECAT.COI ' H’L\\

40



Adding works for unsigned and signed

o Addition works the same way for unsigned and signed
numbers. WOW!!

e But watch out for overflow...

(And overflow for unsigned is different than overflow for signed)

Meaning if you assume... Meaning if you assume...
Signed Unsigned Signed Unsigned
0101 5 5 1101 -3 13
+ 0001 1 1 + 1111 -1 15
0110 6 6 1100 -4 28 12°??
Meaning if you assume... Meaning if you assume...
Signed Unsigned Signed Unsigned
0101 5 5 0101 5 5
+ 0100 4 4 + 1111 -1 15
1001 9 -77?? 9 0100 4 20 4°%

41




Subtraction

e 2's complement makes subtraction easy:
e Remember: A-B =A + (-B)
e And: -B=~B+1
A that means flip bits (“not”)
e S0 we just flip the bits and start with carry-in (CI) = 1
e Later: No new circuits to subtract (re-use adder hardware!)

1
0110101 -> 0110101
- 1010010 + 0101101

42



What About Non-integer Numbers?

e There are infinitely many real numbers between two integers

e Many important numbers are real
e Speed of light ~= 3x108
e Pi = 3.1415...

e Fixed number of bits limits range of integers
e Can't represent some important numbers

e Humans use Scientific Notation
e 1.3x104

43



Option 1: Fixed point

e Use normal integers, but (X*2K) instead of X
e Example: 32 bit int, but use X*65536
e 3.1415926 * 65536 = 205887
e 0.5 * 65536 = 32768 , etc..

e Pros:
e Addition/subtraction just like integers (“free”)

e Cons:
e Mul/div require renormalizing (divide by 64K)
e Range limited (no good rep for large + small)

e Can be good in specific situations

44



Can we do better?

e Think about scientific notation for a second:
e For example:

6.02 * 1023
e Real number, but comprised of ints:
e 6 generally only 1 digit here
e 02 any number here
e 10 always 10 (base we work in)
e 23 can be positive or negative

e Can we do something like this in binary?

45



Option 2: Floating Point

e How about:
+/- X.YYYYYY * 2+/-N

e Big numbers: large positive N
e Small numbers (<1): negative N

e Numbers near 0: small N

e This is “floating point” : most common way

46



IEEE single precision floating point

e Specific format called IEEE single precision:
+/- 1.YYYYY * 2(N-127)

e “float” in Java, C, C++,...

e Assume first bit is always 1 (saves us a bit)
e 1signbit(+=0,1=-)

e 8 bit biased exponent (do N-127/)

o Implicit 1 before binary point

o 23-bit mantissa (YYYYY)

47



Binary fractions

e 1.YYYY has a binary point
e Like a decimal point but in binary
o After a decimal point, you have
e tenths
e hundredths
e thousandths

e So after a binary point you have...

e Halves
* Quarters T
e Eighths Vi | Fis| Pl e | Fia| e| Piaf e
® nan .Ll; f{ 4 ;‘i
h
0 1

48



Floating point example

e Binary fraction example:
101.101 = 4+ 1+ V2 + 1/3=5.625

e For floating point, needs normalization:
1.01101 * 22

e Signis +, which =0
e Exponent = + 2 =129 = 1000 0001
e Mantissa = 1.011 0100 0000 0000 0000 0000

3130 23 22 0
k)lOOO 0001011 0100 0000 0000 0000 0000

Can use hex to represent those bits in a less annoying way:

0100 0000 1011 0100 0000 0000 0000 0000
O0x 4 0 b 4 0 0 0 0

49



Floating Point Representation

Example:
What floating-point number is:
0xC15800007?



Answer

What floating-point number is
0xC15800007?
1100 0001 0101 1000 0000 0000 0000 0000

3130 23 22 0
X = 1{1000 0010 101 1000 O0OOO 00OOO o0O0OO 0000|
S E F

Sign =1 which Is negative

Exponent = (128+2)- =3
Mantissa = 1.1011

-1.1011x23 =-1101.1 =-13.5



Trick question

e How do you represent 0.0?

e Why is this a trick question?
e 0.0 = 0.00000
e But need 1.XXXXX representation?

e Exponent of 0 is denormalized

e Implicit 0. instead of 1. in mantissa
e Allows 0000....0000 to be 0
e Helps with very small humbers near 0

e Results in +/- 0 in FP (but they are “equal”)

52



Other Weird FP numbers

e Exponent = 1111 1111 also not standard
e All 0 mantissa: +/- o

1/0 = +o0
-1/0 = -0
e Non zero mantissa: Not a Number (NaN)

sgrt(-42) = NaN

53



Floating Point Representation

e Double Precision Floating point:

64-bit representation:
e 1-bit sign
o 11-bit (biased) exponent
e 52-bit fraction (with implicit 1).

e "double” in Java, C, C++, ...

S EXp Mantissa
1 11-bit 52 - bit

54



What About Strings?

e Many important things stored as strings...
e E.g., your name

e How should we store strings?

55



Standardized ASCII (0-127)

Dec HxOct Char Dec Hx Oct Himl Chr  [Dec Hx Oct Himl Chr) Dec Hx Qct Htrml Chr
0O 0000 NUL f{rall) 32 20 040 &#32; Space| 64 40 100 «#64; [ | 98 60 140 &#96;
1 1 001 50H (start of heading) 33 21 041 &#335: ! 65 41 101 &#65; & 97 61 141 «#97: a
2 Z 002 5TX [(start of text) 34 22 042 «#34r "7 ge 4z 102 #6656 E 98 62 142 «#95: b
3 3 003 ETX [(end of text) 35 23 043 &#35; # 67 43 103 «#07; C 99 563 143 «#99; ¢
4 4 004 EOT (end of transmission) 36 24 044 &#36; 7 65 44 104 «#63; D |100 &4 144 &#100; d
L 5 005 ENQ (enquiry) 37 25 045 &#37; % A9 45 105 «#59; E (101 &5 145 &#101; ©
6 & 006 ACE [(acknowledge) 38 26 046 &#337 & 70 46 106 «#70; F [l102 66 146 &#l02; £
7 7 007 BEL (bell) 39 27 047 &#39; " 71 47 107 &#71: G |103 &7 147 &#103; 9
& & 010 B3 (backspace) A0 28 050 &#40; | 72 43 110 «#72; H 104 68 150 «#104; h
9 9 01l TAE (horizontal tab) 41 29 051 &#41; ) 73 49 111 &#73; I |105 69 151 &#105; 1
10 & 012 LF (NL line feed, new line)| 42 24 052 &#dZ; * 74 4k 112 «#74; J |l06 64 152 &#l06; ]
11 B 013 VT (wertical tab) 43 2B 053 &#43:; + 75 4B 115 «#75; E |107 6B 153 &#107; k
1z C 014 FF (NP form feed, new page)| 44 2C 054 &#44: | 76 4C 114 &#762 L |108 6C 154 &#108; 1
13 D 015 CE (carriage return) 45 2D 085 &#45: - 77 4D 115 &#77: M (109 6D 155 &#109; I
14 E 0l 30 (shift out) 45 ZE 056 &#46;7 . 78 4E 116 &#75; N |110 6E 156 &#ll0; n
15 F 017 31  (shift in) 47 2F 087 &#47; / 79 4F 117 &#79; 0 |111 &F 157 &«#lll; o
16 10 020 DLE (data link escape) 43 30 060 &#43; 0 g0 50 1z0 &«#30; P (112 70 1a0 &#1lZ2: D
17 11 021 DCLl (device control 1) 49 31 06l &#49; 1 gl 51 121 &#3l1:; 0 (113 71 1Al &#113: d
13 12 022 DCE [(dewice control Z) B0 32 0RZ «#50; 2 g2 52 122 &#32; B |114 72 1Az &#ll4; ¢
19 13 023 DC3 [(dewice control 3) Bl 33 0/3 &#51; 3 83 53 123 &#83; 5 |115 73 163 &#ll5; =
20 14 024 DC4 [(dewice control 4) B2 34 06d &#52; 4 gd 54 124 &#34; T |116 74 164 &#lla; ©
21 15 025 NAE [(negatiwve acknowledge) 53 35 065 &#53:7 5 85 55 125 «#85; T (117 75 lah &#117; U
22 16 026 3YN (synchronous idle) 54 36 066 &#54; 6 g6 56 1Ze #8607 V (118 76 lag &#113:; ¥
23 17 027 ETE (end of trans. block) E5 37 0R7 &#55: 7 g7 57 127 &#37: W |119 77 167 &#ll9:; w
24 18 030 CAN [cancel) B6 38 070 «#56; 8 85 58 130 &#35; ¥ |120 78 170 &#lzZ0; X
25 19 031 EM  (end of medium) BT 39 071 =#57; 9 G9 59 131 &#39; T |121 79 171 =#12l; ¥
26 14 032 5UE [(substitute) B8 34 072 &#55; a0 54 132 &#90; £ |122 ThA 17:2 &#lZIE; =
27 1B 033 ESC (escape) 59 3B 073 &#59; ; 91 5B 153 «#91; [ |123 7B 175 &#123; |
28 1C 034 F2  [(file separator) 60 3C 074 &#60; < 92 5C 134 &#92; % (124 7C 174 =#l24; |
29 1D 035 G2 (group Separator) gl 30 075 &#6l; = Q3 ED 135 &#93; ] |125 7D 175 &#lZ25: )
30 1E 036 B2  (record separator]) G2 3E 076 &#62F 94 SE 136 «#94; ~ |126 TE 176 &«#lzZ6; ~
31 1F 037 US [(unit separataor) 63 3F 077 &«#63; 2 95 S5F 157 «#95;  |127 7F 177 &#127; DEL

Source: www.LookupTables.com



One Interpretation of 128-255

122 ¢ 144 E 161 i 177 3 193 L 2090 = 235 B 14 =+
120 o 145 = 162 & 17TR B 194 0 1é T 42 =
130 @ 46 £ 163 u 179 | 195 p 21 L 237 o400 243 <
131 & 147 164 £ 180 96 — 22 b 22 0m 244 [
132 4 142 6 165 M 181 A 197 4+ 213 g 229 g 245
133 & 149 & 166 ° 122 192 F 214 230 0 46 -
134 i 150 o 167 ° 183 4 9o 215§ [ g 247 =
135 ¢ 151 o 168 184 1 00 L 26+ 23T 02 248 ¢
136 & 152 _ 1§ 185 0 g 217 A 33 @ 249

137 & 153 O 17 o 18 | 02 L 28 - 4 oo 2500 .
138 & 13 0 171 % 187 g 03 0+ 29 235 & 251 o
130§ 156 £ 172 % lgg 4 W04 220 g 0 23w 252
140 % 157 ¥ 173 g U M5 = 2| 137 253 2
141 i 152 _ 174 &« 190 A4 06 & oz | o= 254 W
142 A 159 g 175 » 191 4 07 L 233 W gm0 255

143 A 160 4 176 i 19z L 208 L 224 p 240 =

Source: www.LookupTables.com

57



(This allowed totally sweet ASCII art in the 1990s)

—#~— THE-TRAIiNER-MACHIiNE --\-

LnLbaanily ————  _§ § N J§

TRAINED GAME
COMPANY
PiRACY GROUP

CODER

TRAINED iTEMS
STAMP
PACKAGER

mm m GAME RATINGS:

HARDWARE SUPPORT

GFX: sUga [ 1 3S0DUND: GRAVIS [1
Uga [ 1 5B 16b [1

Ega [ 1 SE PRO [1

Cga [ 1 3B mono [1
ROLAND [1

PRO AUDIO [ 1

ADLiB [1

HONKER [1

ADDiTiONAL NOTES:

Sources:

. http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
e http://roy-sac.deviantart.com/art/Siege-1SO-nfo-ASCII-Logo-35940815 PERSONAL GREETINGS:
. ://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

GROUF GREETiNGS:



http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

About those control codes...

Dec HzOct Shar
0 0 000 NUL (rmll)

J‘ \O0 Null terminator ©

) \a Make a beep or flash |
7 007 EEL (bell)

; g8 010 BEZ (backspace) /J Backspace key |
9 9 0Ll TAE {horizontal tab) ——== \t Tabkey
10 & 012 LF (NL line feed, new line
i ) | We need to talk

about CR and LF...

13 D 015 CE  (carriage return)

\e Used for “extended” control codes, like terminal color

to indicate a reset.

mple:
Cyan on blue. \e i- \e Jold, \e underline.\e Reset.

erline, 7=[{IMAE, 9=Strikeout

44

3393 ;1 33 93 ;1

27 1B 033 E3C [escape)

3 96 ;1 26 96 ;1 96 ;1 [EH
;1037 97 ;137 97 ;1 37 97 ;1 37 97 ;1 (22,9754

;136 96 ;1 26 ;1

(Greyed out ones almost never used) 59



About CR and LF

e History: first computer “displays” were modified typewriters

e CR = "Carriage return” = \r = 0x0D

e Move typey part to the left — move cursor to left of screen
e LF ="Line feed” = \n = 0x0A

e Move paper one line down — Move cursor one down

e Windows: "“Pretend to be a typewriter”
e Every time you press enter you get CR+LF (bytes 0D,0A)
e Linux/Mac: “You are not a typewriter”
e Every time you press enter you get LF (byte 0A)
o This effects ALL TEXT DOCUMENTS!!!
* Not all apps cope automatically! It will bite you one day for sure!



Outline

e Previously:
e Computer is machine that does what we tell it to do

e Next:
 How do we tell computers what to do?
e How do we represent data objects in binary?
e How do we represent data locations in binary?
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Computer Memory

e Where do we put these numbers?
e Registers [more on these later]
e In the processor core
o Compute directly on them
e Few of them (~16 or 32 registers, each 32-bit or 64-bit)

e Memory [Our focus now]
e External to processor core
e Load/store values to/from registers
e Very large (multiple GB)
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Memory Organization

e Memory: billions of locations...how to get the right one?
e Each memory location has an address
e Processor asks to read or write specific address
e Memory, please load address 0x123400
o Memory, please write OXFE into address 0x8765000
e Kind of like a giant array

e Array of what?
e Bytes?
e 32-bit ints?
e 64-bit ints?
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Memory Organization

e Most systems: byte (8-bit) addressed
e Memory is “array of bytes”
e Each address specifies 1 byte
e Support to load/store 8, 16, 32, 64 bit quantities
e Byte ordering varies from system to system

e Some systems “word addressed”
e Memory is “array of words”
e Smaller operations “faked” in processor
e Not very common
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Word of the Day: Endianess

Byte Order

e Big Endian: byte 0 is eight most significant bits
MIPS, IBM 360/370, Motorola 68k, Sparc, HP PA

o Little Endian: byte 0 is eight least significant bits
Intel 80x86, DEC Vax, DEC Alpha

little endian byte O

3 2 1 o/

msb Isb
(most significant byte) (least significant byte)
/ 0 1 2 3
big endian byte O
Program
lx = 0x12345678; // X lives at address 0x1000‘
0x1000: 12 0x1000: 78
0x1001: 34 Memory layout on a Memory layout on a 0x1001: 56
0x1002: 56 big endian system little endian system 0x1002: 34

0x1003: 78 0x1003: 12
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What is an array?

. _ lan
e The shocking truth:
You've been using pointers all along!

e Every array LS a pointer to a block of memory

e Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N tAings later from pointer P

e "Thing” depends on the datatype of the P
e Can dereference such pointers to get what's there

e Interpreted according to the datatype of P
e E.g. *(nums-1) is a number related to how we represent the letter ‘0’

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

&X msg nums
Y Y v
00 [00 [00 09 [h ['e’ [ [ '’ |00 [00 [06 00 [07 00 |08
rr (N A I A | T T
- msg-4 msg-3 msg-2 msg-1 msg+l msg+2 msg+3 msg+4 msg+5 msg+6 o
T nums+1 nums+2

nums-1 66



What is an array?

e The shocking truth:
You've been using pointers all along!

e Every array LS a pointer to a block of memory

e Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N tAings later from pointer P

e "Thing” depends on the datatype of the P
e Can dereference such pointers to get what's there

e Interpreted according to the datatype of P
e E.g. *(nums-1) is a number related to how we represent the letter ‘0’

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

&X msg nums
Y Y v
09 100 [00 00 [h ['e’ [ [ '’ |00 [06 [00 07 [00 08 |00
rr (N A I A | T T
- msg-4 msg-3 msg-2 msg-1 msg+l msg+2 msg+3 msg+4 msg+5 msg+6 o
T nums+1 nums+2

nums-1 67



Memory Layout

2"-1;

e Memory is array of bytes, but there Stack
are conventions as to what goes
where in this array lL

e Text: instructions (the program to

Typical
execute) | ﬁ Addracs
e Data: global variables Space
e Stack: local variables and other Heap
per-function state; starts at top &
grows down

e Heap: dynamically allocated
variables; grows up

e What if stack and heap overlap???? o LReserved
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Memory Layout: Example

int anumber 3;
int factorial (int =) {
if (x == 0) {
return 1;
}
else {

return x * factorial (x - 1);

int main (void) {
int = factorial (anumber);
int* = malloc (sizeof (int) *64) ;
printf (“%d\n”, z);

return 0;

Heap

0 Reserved

} // v is alocal on stack, *p is in heap

Typical

TT‘ Address

Space
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Summary: From C to Binary

e Everything must be represented in binary!

e Pointer is memory location that contains address of another
memory location

e Computer memory is linear array of bytes
e Integers:
e unsigned {0..2"-1} vs signed {-2"1.. 2"1-1} (“2's complement”)
e char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)
e Floats: IEEE representation,
e float (32-bit: 1 sign, 8 exponent, 23 mantissa)
e double (64-bit: 1 sign, 11 exponent, 52 mantissa)
e Strings: char array, ASCII representation

e Memory layout
e Stack for local, static for globals, heap for malloc’d stuff (must free!)
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POINTERS, ARRAYS, AND MEMORY

~AGAIN~

The following slides re-state a lot of what we've covered but in a
different way. We'll likely skip it for time, but you can use the
slides as an additional reference.
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Let’s do a little Java...

public class Example ({
public static void swap (int x, int y) {
int temp = x;
X =y;
y = temp;
}

public static void main (String[] args) {

int a = 42;
int b = 100;
swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?
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Let’s do a little Java...

public class Example ({ Stack
public static void swap (int x, int y) { :
int temp = x; rer
a 42
X =y; b 100
y = temp;

}

public static void main (String[] args) {
int a = 42;
int b = 100;
mmm) swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?
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Let’s do a little Java...

public class Example ({ Stack
public static void swap (int x, int y) { .
mmm) int temp = x; i
a 42
X =y b 100
y = temp;
) swap
42
public static void main (String[] args) { ; 100
int a = 42; temp 227
0 int b = 100; RA c0
C
—yswap (a, b);
System.out.println(“a =% + a + “ b =" + b);

}
e What does this print? Why?
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Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
mmm) int temp = Xx;
X =y,
y = temp;
}
public static void main (String[] args) {
int a = 42;
int b = 100;
C%::$swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

Stack
main
a 47
b 100
swap
X 42
Y% 100
temp 42
RA cO
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Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
int temp = x;
) X = Y
y = temp;
}
public static void main (String[] args) {
int a = 42;
int b = 100;
C%::$swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

Stack
main
a 47
b 100
swap
X 100
Y% 100
temp 42
RA cO
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Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
int temp = x;
X =y,
mm) vy = temp;
}
public static void main (String[] args) {
int a = 42;
int b = 100;
C%::$swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

Stack
main
a 47
b 100
swap
X 100
Y 42
temp 42
RA cO
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Let’s do a little Java...

public class Example ({ Stack
public static void swap (int x, int y) { :
int temp = x; rer
a 42
X =y; b 100
y = temp;

}

public static void main (String[] args) {

int a = 42;
int b = 100;
swap (a, b);

mmm) System.out.println(®a = + a + “ b =" + b);

}
}

e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack

int data;
public Ex2 (int d) { data = d; }
public static void swap (Ex2 x, Ex2 y) {

main

a ?27?
b 2?7

int temp = x.data;

x.data = y.data;
y.data = temp;
}
public static void main (String[] args) ({
mmm) Example a = new Example (42);
Example b = new Example (100);
swap (a, b);
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack Heap
int data;

public Ex2 (int d) { data = d; }
public static void swap (Ex2 x, Ex2 y) {

main

int temp = x.data; data 42

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) ({
Example a = new Example (42);

mms) Example b = new Example (100) ;
swap (a, b);
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; } R
public static void swap (Ex2 x, Ex2 y) ({ b Ex2
data 42

int temp = x.data;

x.data = y.data;
y.data = temp;

}

public static void main (String[] args) ({
Example a = new Example (42);

Example b = new Example (100); — Ex2
mms) swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }

. . . a - Ex2
public static void swap (Ex2 x, Ex2 y) { b —> i
mm) int temp = x.data; gEica o

x.data = y.data; swap
y.data = temp; %

} y

public static void main (String[] args) ({ temp 2?7
Example a = new Example (42); RA cO

c0 Example b = new Example (100); _; Ex?2
—)swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack Heap
int data; nain
public Ex2 (int d) { data = d; } R N
public static void swap (Ex2 x, Ex2 y) { b > Ex2
mmm) int temp = x.data; data 42
x.data = y.data; swap
y.data = temp; %
} y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
0 Example b = new Example (100); _j;: Ex2
—)swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
. . . a - Ex2
public static void swap (Ex2 x, Ex2 y) { b -> Lo
int temp = x.data; seteel
mm) x.data = y.data; swap
y.data = temp; %
} y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
0 Example b = new Example (100); _; Ex2
—swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
. . . a - Ex2
public static void swap (Ex2 x, Ex2 y) { b —> i
int temp = x.data; caice.  LOU
x.data = y.data; swap
mmm) y.data = temp;
X
} y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
c0 Example b = new Example (100); _; Ex?2
—yswap (a, b); data 42
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; } R
public static void swap (Ex2 x, Ex2 y) ({ b Ex2
data 100

int temp = x.data;

x.data = y.data;
y.data = temp;

}

public static void main (String[] args) ({
Example a = new Example (42);

Example b = new Example (100); — Ex2
swap (a, b); data 42
mmm) System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?
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References and Pointers (review)

e Java has references:
e Any variable of object type is a reference
e Point at objects (which are all in the heap)
e Under the hood: is the memory address of the object
e Cannot explicitly manipulate them (e.g., add 4)

e Some languages (C,C++,assembly) have explicit pointers:
e Hold the memory address of something
e Can explicitly compute on them
e Can de-reference the pointer (*ptr) to get thing-pointed-to
e Can take the address-of (&x) to get something’s address
e Can do very unsafe things, shoot yourself in the foot

87



Pointers

e “address of” operator &
e don't confuse with bitwise AND operator (&&)
Given
int x; int* p; // p points to an int
P = &x;
Then

*p = 2; and x = 2; produce the same result

Note: p is a pointer, *p is an int

e What happens for p = 27?;

On 32-bit machine, p is 32-bits x 0x260f0H

p 0x26d00[ 0x26cbf0
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Back to Arrays

e Java:
int [] x = new int [nElems];

e C:
int data[42]; //if size is known constant
int* data = (int*)malloc (nElem * sizeof (int)) ;

» malloc takes number of bytes
« sizeof tells how many bytes something takes
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Arrays, Pointers, and Address Calculation

e X is a pointer, what is x+33? int* a=malloc(100*sizeof (int));

e A pointer, but where?

. ? ---]---- -=-
e what does calculation depend on: 0 1 32 33 98 99

a[33] is the same as * (a+33)
if a is 0x00a0, then a+l is
0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)

pointer depends on size of
object pointed to

e One reason why we tell compiler

what type of pointer we have, double* d=malloc (200*sizeof (double)) ;
even though all pointers are really

the same thing (and same size) @  ——T1—F " 7——F "

e Result of adding an int to a K

0 1 3 199
* (d+33) is the s3me as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)
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More Pointer Arithmetic

address one past the end of an
array is ok for pointer comparison
only

what's at * (begin+44)?
what does begin++ mean?

how are pointers compared using <
and using == ?

what is value of end - begin?

A N

0 1 15 16 42 43

char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{

*begin = ‘z’;

begin++;
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More Pointers & Arrays

int* a = new int[100];

32 33 98 99

a+32 is a pointer

*(a+l) is an int (same as a[l])
* (a+99) is an int

* (a+100) is trouble
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Array Example

#include <stdio.h>

main ()
{
int* a = (int*)malloc (100 * sizeof(int)) ;
int* p = a;
int k;
for (k = 0; k < 100; k++)
{
*p = k;
pt+;

}
printf (“entry 3 = %d\n”, a[3])
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Memory Manager (Heap Manager)

e malloc() and free()

e Library routines that
handle memory
management for heap
(allocation / deallocation)

e Java has garbage
collection (reclaim
memory of unreferenced

Available Memory -

Allocated Memory
(part of this is
data structures

ijects) for managing
memory
e C must use free, else
memory leak

Text

Memory
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Strings as Arrays (review)

BN AT I

S|t
0 1 1516 42 43

e A string is an array of characters with “\0" at the end
e Each element is one byte, ASCII code
e "\0"is null (ASCII code 0)
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strlen() again

e strlen () returns the number of characters in a string
e same as number elements in char array?

int strlen(char * s)
// pre: ‘\0’ terminated
// post: returns # chars
{
int count=0;
while (*s++)
count++;

return count;
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Vector Class vs. Arrays

e Vector Class

e insulates programmers
e array bounds checking
e automagically growing/shrinking when more items are added/deleted

e How are Vectors implemented?
e Arrays, re-allocated as needed

e Arrays can be more efficient
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