ECE/CS 250
Computer Architecture

Summer 2023

From C to Binary

Tyler Bletsch
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),
Benjamin Lee (Duke), Amir Roth (Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty

Outline

e Previously:
e Computer is machine that does what we tell it to do

e Next:
 How do we tell computers what to do?
e How do we represent data objects in binary?
e How do we represent data locations in binary?

Representing High Level Things in Binary

e Computers represent everything in binary
e Instructions are specified in binary

e Instructions must be able to describe
e Operation types (add, subtract, shift, etc.)
e Data objects (integers, decimals, characters, etc.)
e Memory locations

e Example:
int x, y; // Where are x and y? How to represent an int?
bool decision; // How do we represent a bool? Where is it?
y=X+7; // How do we specify “"add”? How to represent 7?

decision=(y>18); // Etc.

Representing Operation Types

e How do we tell computer to add? Shift? Read from memory?
Etc.

o Arbitrarily! ©

e Each Instruction Set Architecture (ISA) has its own binary
encodings for each operation type
e E.g., In MIPS:
e Integer add is: 00000 010000
e Read from memory (load) is: 010011
o Etc.

Representing Data Types

e How do we specify an integer? A character? A floating point
number? A bool? Etc.

e Same as before: binary!

e Data and interpretation are separate:

e The same 32 bits might mean one thing if interpreted as an integer,
but another thing if interpreted as a floating point number

Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length

4 bits is a nibble / What is a word? \
22> 8 bits is a byte The standard unit of manipulation
o™ 16 bits is a halfword ~ (for MIPS32) for a particular system. E.g;
long — 32 bltS iS d Word (for MIPSBZ) 2 MLZIS>?§636324b(Irfodern) 64 bit
*9> 64 bits is a double-word (for MIPS32) . Original Nintendo: 8 bt
128 bits is a quad-word ~ (for MIPS32) s e I

\- Nintendo 64: 64 bit /
Integers (char, short, int, long):
“2's Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
fleat>Sjngle Precision (32-bit representation)
sewble > Double Precision (64-bit representation)
Extended (Quad) Precision (128-bit representation)

Character (char):
chax> ASCII 7-bit code

All pink arrows are true for a MIPS32 and Intel x86 6

Basic Binary

e Advice: memorize the following
¢ 20=1
¢ 21 =2
¢ 22=4
e 23=8
¢ 24=16
e 20 =32
o 26 = 64
e 27 =128
o 28 =256
e 2°=512
e 210 =1024

Bits vs things

e If you have N bits, you can represent 2N things.

: A

e If you have T things, you need log,T bits to pick one.

You will have to answer questions of this form roughly a
thousand times in this course — note it now!

e EXxercises:
e I have 8 bits, how many integers can I represent?
o 28 =256
e I need to represent 32 cache sets. How many bits do I need?
e log,32=>5
e I have 4GB of RAM. How many bits do I need to pick one byte of it?
e log, 4G =? ¥

Binary metric system

e The binary metric system:
o 210 = 1024,

e This is basically 1000, so we can have an alternative form of metric
units based on base 2.

e 210 hytes = 1024 bytes = 1kB.

e Sometimes written as 1kiB
(pronounced “kibibyte” where the ‘bi"” means ‘binary’)
(but nobody says “kibibyte” out loud because it sounds stupid)

e 220 bytes = 1MB, 230 bytes = 1GB, 240 bytes = 1TB, etc.
e Fasy rule to convert between exponent and binary metric humber:

2% bytes = 27 - 2X0bytes =27 <X_prefix>B

"ot ater on- 213 bytes = 23 kB =8 kB

\ide:
239 pytes = 29 GB = 512 GB From o8, S92

A 205 hytes = 25B =32 B 9

What does it mean to say base 10 or base 27

e Integers in regular base

e 6253 = 6000 + 200 + 50 + 3
=6>|< 3_|_2>|< 2_|_5>|< 1_|_3>|< 0

én i B

e Integers in base
e 1101 =1000+ 100+ 00+ 1

= 1% 3+1>|< 2+0>|< 1_|_1>l<0
=8 +4 +1 @

13
e1 101
VRN
8’s place Bit 2 Bit 0

Bit 1 1’s place

4's place 2’s place

10

Decimal to binary using remainders

? Quotient | Remainder
457 + 2 = 228 1
228 + 2 = 114 0
114 + 2 = 57 0
57 -2 = 28 1
28 + 2 = 14 0
14 + 2 = 7 0
/2= 3 1
3+2= 1 1 HEERERN
1+2= 0 1 »111001001

11

Decimal to binary using comparison

111001001

Num Compare 2" >? J
457 256 1 \J
201 128 1

73 64 1

9 32 0 |

9 16 0 7

9 8 1~

1 4 0

1 2 0

1 1 1]

12

Hexadecimal

Indicates a hex number

Hex digit | Binary | Decimal _

= | OXDEADBEEF
1 0001 1 x

2 0010 2 1101 1110 1010 1101 1011 1110 1110 1111
3 0011 3

4 0100 4

5 0101 5

- ¢ 0x02468ACE
7 0111 7

. y— . 0000 0010 0100 0110 1000 1010 1100 1110
9 1001 9

A 1010 10

B 1011 11

- w = 0xX13579BDF
> 1101 13 0001 0011 0101 0111 1001 1011 1101 1111
E 1110 14

: E—— One hex digit represents 4 bits.

Two hex digits represent a byte (8 bits).

13

Binary to/from hexadecimal

Hex digit | Binary | Decimal _

» 0101101100100011, -->
e 0101 1011 0010 0011, -->
e 5 B 2 3,

1 F 4 B>
0001 1111 0100 1011, -->

0001111101001011,

M BH O Q W P W 0 9 60 s W N Rr O

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

14

BitOps: Unary

e Bit-wise complement (~)
e Flips every bit.

~0x0d // (binary 00001101)
== 0xf2 // (binary 11110010)

Not the same as Logical NOT (') or sign change (-)

char i, j1, j2, 3j3;

i = 0x0d; // binary 00001101
jl = ~i; // binary 11110010
j2 = -i; // binary 11110011
j3 = 'i; // binary 00000000

15

BitOps: Two Operands

e Operate bit-by-bit on operands to produce a result operand of
the same length

And (&): result 1 if both inputs 1, 0 otherwise
Or (]): result 1 if either input 1, 0 otherwise
Xor (~): result 1 if one input 1, but not both, 0 otherwise

Useful identities (applied per-bit):

1
0

0
1

X
0

ANDing with 1 does nothing
ANDing with 0 gives zero

ORing with 0 does nothing
ORing with 1 gives one

XORing with 0 does nothing
XORing with 1 fljps the bit

16

Two Operands... (cont’d)

e Examples

0011 1000
& 1101 1110

0001 1000

0011 1000
1101 1110

1111 1110

0011 1000
~ 1101 1110

1110 0110

17

Shift Operations

- x << vy is left (logical) shift of x by y positions
- x and y must both be integers
- x should be unsigned or positive
- y leftmost bits of x are discarded
e zero fill y bits on the right

these 3 bhits are discarded

/_A_\

01111001 << 3

these 3 hits are zero filled

18

ShiftOps... (cont’d)

- x >> vy is right (logical) shift of x by y positions
- y rightmost bits of x are discarded
e zero fill y bits on the left

these 3 bits are discarded

/_A_\

01111001 >> 3

AR T

00001111
Y

these 3 bhits are zero filled

19

Bitwise Recipes

e Set a certain bit to 17

e Make a MASK with a one at every position you want to set:
m = 0x02; // 00000010,

¢ OR the mask with the input:
v = 0x41; // 01000001,
v o= m; // 01000011,

e C(Clear a certain bit to 0?

o Make a MASK with a zero at every position you want to clear:
m = OxFD; // 11111101, (could also write ~0x02)

e AND the mask with the input:
v = 0x27; // 00100111,
v &= m; // 00100101,

e Get a substring of bits (such as bits 2 through 5)?
Note: bits are numbered right-to-left starting with zero.
e Shift the bits you want all the way to the right then AND them with an appropriate mask:
v = 0x67; // 01100111,

v >>= 2; // 00011001,
v &= 0x0F; // 1001,

20

Binary Math : Addition

e Suppose we want to add two numbers:

00011101
+ (00101011

e How do we do this?

21

Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232

e How do we do this?
e | et’s revisit decimal addition
e Think about the process as we do it

22

Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232
’

e First add one’s digit 5+2 = 7

23

Binary Math : Addition

e Suppose we want to add two numbers:

1
00011101 695
+ 00101011 + 232
271

e First add one’s digit 5+2 = 7
e Next add ten’s digit9+3 =12 (2carryal)

24

Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232
9277

e First add one’s digit 5+2 = 7
e Next add ten’s digit9+3 =12 (2carryal)
e Last add hundred’s digit 1+6+2 =9

25

Binary Math : Addition

e Suppose we want to add two numbers:

00011101
+ (00101011

e Back to the binary:
. First add 1's digit 1+1 = ..”?

26

Binary Math : Addition

e Suppose we want to add two numbers:
1

00011101
+ 00101011
0
e Back to the binary:
. First add 1's digit 1+1 =2 (0O carrya 1)

27

Binary Math : Addition

e Suppose we want to add two numbers:
11

00011101
+ 00101011
00
e Back to the binary:
° First add 1's digit 1+1 =2 (0O carrya 1)
e Then 2's digit: 1+0+1 =2 (0 carrya 1)
. You all finish it out....

28

Binary Math : Addition

e Suppose we want to add two numbers:

111111

00011101 = 29
+ 00101011 = 43

01001000 = 72

e Can check our work in decimal

29

Issues for Binary Representation of Numbers

e How to represent negative numbers?

e There are many ways to represent numbers in binary
e Binary representations are encodings - many encodings possible
e What are the issues that we must address?

o Issue #1: Complexity of arithmetic operations
e [ssue #2: Negative numbers
o Issue #3: Maximum representable number

e Choose representation that makes these issues easy for
machine, even if it's not easy for humans (i.e., ECE/CS 250
students)

e Why? Machine has to do all the work!

30

Sign Magnitude

e Use leftmost bit for + (0) or — (1):

e 6-bit example (1 sign bit + 5 magnitude bits):
e +17 =010001

e -17 = 110001

e Pros:
e Conceptually simple
e Easy to convert

e Cons:

o Harder to compute (add, subtract, etc) with
e Positive and negative 0: 000000 and 100000

31

1’s Complement Representation for Integers

e Use largest positive binary numbers 0000 O
to represent negative numbers 88‘1’3 ;
e To negate a number, 0011 3
i |\ ” T 0100 4
invert ("not”) each bit: 0101 &
0->1 0110 6
0111 4
1->0 1000 -7
. 1001 -6
e Cons:
1010 -5
e Still two 0s (yuck) 1011 -4
e Still hard to compute with 1100 -3
1101 -2
1110 -1
1111 -0
SE\T\'\E
oN OES ™\

32

2’s Complement Integers

e Use large positives to represent negatives
e (-X) =2"-X

e Thisis 1's complement + 1

e S0, to negate, just invert bits and add 1

6-bit examples:

010110, = 22,,; 101010, = -22,,

1,, = 000001,; -1,, = 111111,

0,, = 000000,; -0,, = 000000, > good!

£S THIS

0
CyERYBODY

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PR b AOSLUGENOTRWN RO

33

Another way to think about 2’s complement

e Reqgular base

e 6253 =6000 + 200 + 50 + 3
=6>|< 3_|_2>|< 2_|_5>|< 1_|_3>|< 0

o oo

e Unsigned base
e 1101 1000 + 100 + 00 + 1

1% 3+1>|< 2+0>|< 1_|_1>|<0
8 +4 +1

13

e Sighed _

e 1101 -1000 + 100+ 00 + 1
1*_3+1* 2_|_O>l< 1_|_1*0
8+4+1

-3

Alternately,

flip the bits and add 1:

1101
Flip: 0010
+1: 0011

That's 3 in binary,

so the number is indeed -3

[Two’s complement is like making the highest order bit apply a negative value!]

34

Pros and Cons of 2’s Complement

e Advantages:
e Only one representation for 0 (unlike 1's comp): 0 = 000000
e Addition algorithm is much easier than with sign and magnitude
e Independent of sign bits

e Disadvantage:
e One more negative number than positive
e Example: 6-bit 2's complement number
100000, = -32,,; but 32, could not be represented

All modern computers use 2’s complement for integers

35

Integer ranges

Remember: if you have N bits,
you can represent 2N things

e If I have an n-bit integer: K

e And it's unsigned, then I can represent{0 .. 2" -1}
2" — 1}

e And it's signed, then I can represent {—(2™" 1)

e Result:

i T e I
1 char .. 255 -128 .. 127
2 short 0 .. 65,535 -32,768 .. 32,767
32 4 int 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647
0 .. -9,223,372,036,854,780,000 ..
64 8 long long 18,446,744,073,709,600,000 9,223,372,036,854,780,000

How to get unsigned integers in C? Just say unsigned:

// defaults to signed

int x;
// explicitly unsigned

unsigned int y;

36

2’s Complement Precision Extension

e Most computers today support 32-bit (int) or 64-bit integers
e Specify 64-bit using gcc C compiler with long long

e To extend precision, use sign bit extension
e Integer precision is number of bits used to represent a number

Examples
14,,= 001110, in 6-bit representation.
14,,= 000000001110, in 12-bit representation

-14,, = 110010, in 6-bit representation
-14,,= 111111110010, in 12-bit representation.

37

Binary Math : Addition

e |Let's look at another binary addition:

01011101
+ 01101011

38

Binary Math : Addition

e \What about this one:

1111111

01011101 = 93
+ 01101011 = 107

11001000 = =506

e But... that can't be right?

e What do you expect for the answer?
e What is it in 8-bit signed 2's complement?

39

Integer Overflow

e Answer should be 200

e Not representable in 8-bit signed representation
e No right answer

e This is called integer Overflow
e Real problem in programs
e How to solve? It hurts

when

| add two
ints and NN SEpAR
it overflows SESEENTHEE T
P » L N \.

~.‘ » Then don't

\\ do that

e

STARECAT.COI ' H’L\\

40

Adding works for unsigned and signed

o Addition works the same way for unsigned and signed
numbers. WOW!!

e But watch out for overflow...

(And overflow for unsigned is different than overflow for signed)

Meaning if you assume... Meaning if you assume...
Signed Unsigned Signed Unsigned
0101 5 5 1101 -3 13
+ 0001 1 1 + 1111 -1 15
0110 6 6 1100 -4 28 12°??
Meaning if you assume... Meaning if you assume...
Signed Unsigned Signed Unsigned
0101 5 5 0101 5 5
+ 0100 4 4 + 1111 -1 15
1001 9 -77?? 9 0100 4 20 4°%

41

Subtraction

e 2's complement makes subtraction easy:
e Remember: A-B =A + (-B)
e And: -B=~B+1
A that means flip bits (“not”)
e S0 we just flip the bits and start with carry-in (CI) = 1
e Later: No new circuits to subtract (re-use adder hardware!)

1
0110101 -> 0110101
- 1010010 + 0101101

42

What About Non-integer Numbers?

e There are infinitely many real numbers between two integers

e Many important numbers are real
e Speed of light ~= 3x108
e Pi = 3.1415...

e Fixed number of bits limits range of integers
e Can't represent some important numbers

e Humans use Scientific Notation
e 1.3x104

43

Option 1: Fixed point

e Use normal integers, but (X*2K) instead of X
e Example: 32 bit int, but use X*65536
e 3.1415926 * 65536 = 205887
e 0.5 * 65536 = 32768 , etc..

e Pros:
e Addition/subtraction just like integers (“free”)

e Cons:
e Mul/div require renormalizing (divide by 64K)
e Range limited (no good rep for large + small)

e Can be good in specific situations

44

Can we do better?

e Think about scientific notation for a second:
e For example:

6.02 * 1023
e Real number, but comprised of ints:
e 6 generally only 1 digit here
e 02 any number here
e 10 always 10 (base we work in)
e 23 can be positive or negative

e Can we do something like this in binary?

45

Option 2: Floating Point

e How about:
+/- X.YYYYYY * 2+/-N

e Big numbers: large positive N
e Small numbers (<1): negative N

e Numbers near 0: small N

e This is “floating point” : most common way

46

IEEE single precision floating point

e Specific format called IEEE single precision:
+/- 1.YYYYY * 2(N-127)

e “float” in Java, C, C++,...

e Assume first bit is always 1 (saves us a bit)
e 1signbit(+=0,1=-)

e 8 bit biased exponent (do N-127/)

o Implicit 1 before binary point

o 23-bit mantissa (YYYYY)

47

Binary fractions

e 1.YYYY has a binary point
e Like a decimal point but in binary
o After a decimal point, you have
e tenths
e hundredths
e thousandths

e So after a binary point you have...

e Halves
* Quarters T
e Eighths Vi | Fis| Pl e | Fia| e| Piaf e
® nan .Ll; f{ 4 ;‘i
h
0 1

48

Floating point example

e Binary fraction example:
101.101 = 4+ 1+ V2 + 1/3=5.625

e For floating point, needs normalization:
1.01101 * 22

e Signis +, which =0
e Exponent = + 2 =129 = 1000 0001
e Mantissa = 1.011 0100 0000 0000 0000 0000

3130 23 22 0
k)lOOO 0001011 0100 0000 0000 0000 0000

Can use hex to represent those bits in a less annoying way:

0100 0000 1011 0100 0000 0000 0000 0000
O0x 4 0 b 4 0 0 0 0

49

Floating Point Representation

Example:
What floating-point number is:
0xC15800007?

Answer

What floating-point number is
0xC15800007?
1100 0001 0101 1000 0000 0000 0000 0000

3130 23 22 0
X = 1{1000 0010 101 1000 O0OOO 00OOO o0O0OO 0000|
S E F

Sign =1 which Is negative

Exponent = (128+2)- =3
Mantissa = 1.1011

-1.1011x23 =-1101.1 =-13.5

Trick question

e How do you represent 0.0?

e Why is this a trick question?
e 0.0 = 0.00000
e But need 1.XXXXX representation?

e Exponent of 0 is denormalized

e Implicit 0. instead of 1. in mantissa
e Allows 0000....0000 to be 0
e Helps with very small humbers near 0

e Results in +/- 0 in FP (but they are “equal”)

52

Other Weird FP numbers

e Exponent = 1111 1111 also not standard
e All 0 mantissa: +/- o

1/0 = +o0
-1/0 = -0
e Non zero mantissa: Not a Number (NaN)

sgrt(-42) = NaN

53

Floating Point Representation

e Double Precision Floating point:

64-bit representation:
e 1-bit sign
o 11-bit (biased) exponent
e 52-bit fraction (with implicit 1).

e "double” in Java, C, C++, ...

S EXp Mantissa
1 11-bit 52 - bit

54

What About Strings?

e Many important things stored as strings...
e E.g., your name

e How should we store strings?

55

Standardized ASCII (0-127)

Dec HxOct Char Dec Hx Oct Himl Chr [Dec Hx Oct Himl Chr) Dec Hx Qct Htrml Chr
0O 0000 NUL f{rall) 32 20 040 Space| 64 40 100 «#64; [| 98 60 140 `
1 1 001 50H (start of heading) 33 21 041 ŏ: ! 65 41 101 A & 97 61 141 «#97: a
2 Z 002 5TX [(start of text) 34 22 042 «#34r "7 ge 4z 102 #6656 E 98 62 142 «#95: b
3 3 003 ETX [(end of text) 35 23 043 # # 67 43 103 «#07; C 99 563 143 «#99; ¢
4 4 004 EOT (end of transmission) 36 24 044 $ 7 65 44 104 «#63; D |100 &4 144 d d
L 5 005 ENQ (enquiry) 37 25 045 % % A9 45 105 «#59; E (101 &5 145 e ©
6 & 006 ACE [(acknowledge) 38 26 046 ő & 70 46 106 «#70; F [l102 66 146 &#l02; £
7 7 007 BEL (bell) 39 27 047 ' " 71 47 107 G: G |103 &7 147 g 9
& & 010 B3 (backspace) A0 28 050 (| 72 43 110 «#72; H 104 68 150 «#104; h
9 9 01l TAE (horizontal tab) 41 29 051)) 73 49 111 I I |105 69 151 i 1
10 & 012 LF (NL line feed, new line)| 42 24 052 &#dZ; * 74 4k 112 «#74; J |l06 64 152 &#l06;]
11 B 013 VT (wertical tab) 43 2B 053 +:; + 75 4B 115 «#75; E |107 6B 153 k k
1z C 014 FF (NP form feed, new page)| 44 2C 054 ,: | 76 4C 114 ˺ L |108 6C 154 l 1
13 D 015 CE (carriage return) 45 2D 085 -: - 77 4D 115 M: M (109 6D 155 m I
14 E 0l 30 (shift out) 45 ZE 056 .7 . 78 4E 116 K N |110 6E 156 &#ll0; n
15 F 017 31 (shift in) 47 2F 087 / / 79 4F 117 O 0 |111 &F 157 &«#lll; o
16 10 020 DLE (data link escape) 43 30 060 + 0 g0 50 1z0 &«#30; P (112 70 1a0 lZ2: D
17 11 021 DCLl (device control 1) 49 31 06l 1 1 gl 51 121 l1:; 0 (113 71 1Al q: d
13 12 022 DCE [(dewice control Z) B0 32 0RZ «#50; 2 g2 52 122 B |114 72 1Az &#ll4; ¢
19 13 023 DC3 [(dewice control 3) Bl 33 0/3 3 3 83 53 123 S 5 |115 73 163 &#ll5; =
20 14 024 DC4 [(dewice control 4) B2 34 06d 4 4 gd 54 124 " T |116 74 164 &#lla; ©
21 15 025 NAE [(negatiwve acknowledge) 53 35 065 5:7 5 85 55 125 «#85; T (117 75 lah u U
22 16 026 3YN (synchronous idle) 54 36 066 6 6 g6 56 1Ze #8607 V (118 76 lag q:; ¥
23 17 027 ETE (end of trans. block) E5 37 0R7 7: 7 g7 57 127 %: W |119 77 167 &#ll9:; w
24 18 030 CAN [cancel) B6 38 070 «#56; 8 85 58 130 # ¥ |120 78 170 &#lzZ0; X
25 19 031 EM (end of medium) BT 39 071 =#57; 9 G9 59 131 ' T |121 79 171 =#12l; ¥
26 14 032 5UE [(substitute) B8 34 072 7 a0 54 132 Z £ |122 ThA 17:2 &#lZIE; =
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 153 «#91; [|123 7B 175 { |
28 1C 034 F2 [(file separator) 60 3C 074 < < 92 5C 134 \ % (124 7C 174 =#l24; |
29 1D 035 G2 (group Separator) gl 30 075 l; = Q3 ED 135]] |125 7D 175 &#lZ25:)
30 1E 036 B2 (record separator]) G2 3E 076 >F 94 SE 136 «#94; ~ |126 TE 176 &«#lzZ6; ~
31 1F 037 US [(unit separataor) 63 3F 077 &«#63; 2 95 S5F 157 «#95; |127 7F 177 DEL

Source: www.LookupTables.com

One Interpretation of 128-255

122 ¢ 144 E 161 i 177 3 193 L 2090 = 235 B 14 =+
120 o 145 = 162 & 17TR B 194 0 1é T 42 =
130 @ 46 £ 163 u 179 | 195 p 21 L 237 o400 243 <
131 & 147 164 £ 180 96 — 22 b 22 0m 244 [
132 4 142 6 165 M 181 A 197 4+ 213 g 229 g 245
133 & 149 & 166 ° 122 192 F 214 230 0 46 -
134 i 150 o 167 ° 183 4 9o 215§ [g 247 =
135 ¢ 151 o 168 184 1 00 L 26+ 23T 02 248 ¢
136 & 152 _ 1§ 185 0 g 217 A 33 @ 249

137 & 153 O 17 o 18 | 02 L 28 - 4 oo 2500 .
138 & 13 0 171 % 187 g 03 0+ 29 235 & 251 o
130§ 156 £ 172 % lgg 4 W04 220 g 0 23w 252
140 % 157 ¥ 173 g U M5 = 2| 137 253 2
141 i 152 _ 174 &« 190 A4 06 & oz | o= 254 W
142 A 159 g 175 » 191 4 07 L 233 W gm0 255

143 A 160 4 176 i 19z L 208 L 224 p 240 =

Source: www.LookupTables.com

57

(This allowed totally sweet ASCII art in the 1990s)

—#~— THE-TRAIiNER-MACHIiNE --\-

LnLbaanily ———— _§ § N J§

TRAINED GAME
COMPANY
PiRACY GROUP

CODER

TRAINED iTEMS
STAMP
PACKAGER

mm m GAME RATINGS:

HARDWARE SUPPORT

GFX: sUga [1 3S0DUND: GRAVIS [1
Uga [1 5B 16b [1

Ega [1 SE PRO [1

Cga [1 3B mono [1
ROLAND [1

PRO AUDIO [1

ADLiB [1

HONKER [1

ADDiTiONAL NOTES:

Sources:

. http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
e http://roy-sac.deviantart.com/art/Siege-1SO-nfo-ASCII-Logo-35940815 PERSONAL GREETINGS:
. ://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

GROUF GREETiNGS:

http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

About those control codes...

Dec HzOct Shar
0 0 000 NUL (rmll)

J‘ \O0 Null terminator ©

) \a Make a beep or flash |
7 007 EEL (bell)

; g8 010 BEZ (backspace) /J Backspace key |
9 9 0Ll TAE {horizontal tab) ——== \t Tabkey
10 & 012 LF (NL line feed, new line
i) | We need to talk

about CR and LF...

13 D 015 CE (carriage return)

\e Used for “extended” control codes, like terminal color

to indicate a reset.

mple:
Cyan on blue. \e i- \e Jold, \e underline.\e Reset.

erline, 7=[{IMAE, 9=Strikeout

44

3393 ;1 33 93 ;1

27 1B 033 E3C [escape)

3 96 ;1 26 96 ;1 96 ;1 [EH
;1037 97 ;137 97 ;1 37 97 ;1 37 97 ;1 (22,9754

;136 96 ;1 26 ;1

(Greyed out ones almost never used) 59

About CR and LF

e History: first computer “displays” were modified typewriters

e CR = "Carriage return” = \r = 0x0D

e Move typey part to the left — move cursor to left of screen
e LF ="Line feed” = \n = 0x0A

e Move paper one line down — Move cursor one down

e Windows: "“Pretend to be a typewriter”
e Every time you press enter you get CR+LF (bytes 0D,0A)
e Linux/Mac: “You are not a typewriter”
e Every time you press enter you get LF (byte 0A)
o This effects ALL TEXT DOCUMENTS!!!
* Not all apps cope automatically! It will bite you one day for sure!

Outline

e Previously:
e Computer is machine that does what we tell it to do

e Next:
 How do we tell computers what to do?
e How do we represent data objects in binary?
e How do we represent data locations in binary?

61

Computer Memory

e Where do we put these numbers?
e Registers [more on these later]
e In the processor core
o Compute directly on them
e Few of them (~16 or 32 registers, each 32-bit or 64-bit)

e Memory [Our focus now]
e External to processor core
e Load/store values to/from registers
e Very large (multiple GB)

62

Memory Organization

e Memory: billions of locations...how to get the right one?
e Each memory location has an address
e Processor asks to read or write specific address
e Memory, please load address 0x123400
o Memory, please write OXFE into address 0x8765000
e Kind of like a giant array

e Array of what?
e Bytes?
e 32-bit ints?
e 64-bit ints?

63

Memory Organization

e Most systems: byte (8-bit) addressed
e Memory is “array of bytes”
e Each address specifies 1 byte
e Support to load/store 8, 16, 32, 64 bit quantities
e Byte ordering varies from system to system

e Some systems “word addressed”
e Memory is “array of words”
e Smaller operations “faked” in processor
e Not very common

64

Word of the Day: Endianess

Byte Order

e Big Endian: byte 0 is eight most significant bits
MIPS, IBM 360/370, Motorola 68k, Sparc, HP PA

o Little Endian: byte 0 is eight least significant bits
Intel 80x86, DEC Vax, DEC Alpha

little endian byte O

3 2 1 o/

msb Isb
(most significant byte) (least significant byte)
/ 0 1 2 3
big endian byte O
Program
lx = 0x12345678; // X lives at address 0x1000‘
0x1000: 12 0x1000: 78
0x1001: 34 Memory layout on a Memory layout on a 0x1001: 56
0x1002: 56 big endian system little endian system 0x1002: 34

0x1003: 78 0x1003: 12

65

What is an array?

. _ lan
e The shocking truth:
You've been using pointers all along!

e Every array LS a pointer to a block of memory

e Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N tAings later from pointer P

e "Thing” depends on the datatype of the P
e Can dereference such pointers to get what's there

e Interpreted according to the datatype of P
e E.g. *(nums-1) is a number related to how we represent the letter ‘0’

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

&X msg nums
Y Y v
00 [00 [00 09 [h ['e’ [['’ |00 [00 [06 00 [07 00 |08
rr (N A I A | T T
- msg-4 msg-3 msg-2 msg-1 msg+l msg+2 msg+3 msg+4 msg+5 msg+6 o
T nums+1 nums+2

nums-1 66

What is an array?

e The shocking truth:
You've been using pointers all along!

e Every array LS a pointer to a block of memory

e Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N tAings later from pointer P

e "Thing” depends on the datatype of the P
e Can dereference such pointers to get what's there

e Interpreted according to the datatype of P
e E.g. *(nums-1) is a number related to how we represent the letter ‘0’

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

&X msg nums
Y Y v
09 100 [00 00 [h ['e’ [['’ |00 [06 [00 07 [00 08 |00
rr (N A I A | T T
- msg-4 msg-3 msg-2 msg-1 msg+l msg+2 msg+3 msg+4 msg+5 msg+6 o
T nums+1 nums+2

nums-1 67

Memory Layout

2"-1;

e Memory is array of bytes, but there Stack
are conventions as to what goes
where in this array lL

e Text: instructions (the program to

Typical
execute) | ﬁ Addracs
e Data: global variables Space
e Stack: local variables and other Heap
per-function state; starts at top &
grows down

e Heap: dynamically allocated
variables; grows up

e What if stack and heap overlap???? o LReserved

68

Memory Layout: Example

int anumber 3;
int factorial (int =) {
if (x == 0) {
return 1;
}
else {

return x * factorial (x - 1);

int main (void) {
int = factorial (anumber);
int* = malloc (sizeof (int) *64) ;
printf (“%d\n”, z);

return 0;

Heap

0 Reserved

} // v is alocal on stack, *p is in heap

Typical

TT‘ Address

Space

69

Summary: From C to Binary

e Everything must be represented in binary!

e Pointer is memory location that contains address of another
memory location

e Computer memory is linear array of bytes
e Integers:
e unsigned {0..2"-1} vs signed {-2"1.. 2"1-1} (“2's complement”)
e char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)
e Floats: IEEE representation,
e float (32-bit: 1 sign, 8 exponent, 23 mantissa)
e double (64-bit: 1 sign, 11 exponent, 52 mantissa)
e Strings: char array, ASCII representation

e Memory layout
e Stack for local, static for globals, heap for malloc’d stuff (must free!)

70

POINTERS, ARRAYS, AND MEMORY

~AGAIN~

The following slides re-state a lot of what we've covered but in a
different way. We'll likely skip it for time, but you can use the
slides as an additional reference.

71

Let’s do a little Java...

public class Example ({
public static void swap (int x, int y) {
int temp = x;
X =y;
y = temp;
}

public static void main (String[] args) {

int a = 42;
int b = 100;
swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

72

Let’s do a little Java...

public class Example ({ Stack
public static void swap (int x, int y) { :
int temp = x; rer
a 42
X =y; b 100
y = temp;

}

public static void main (String[] args) {
int a = 42;
int b = 100;
mmm) swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

73

Let’s do a little Java...

public class Example ({ Stack
public static void swap (int x, int y) { .
mmm) int temp = x; i
a 42
X =y b 100
y = temp;
) swap
42
public static void main (String[] args) { ; 100
int a = 42; temp 227
0 int b = 100; RA c0
C
—yswap (a, b);
System.out.println(“a =% + a + “ b =" + b);

}
e What does this print? Why?

74

Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
mmm) int temp = Xx;
X =y,
y = temp;
}
public static void main (String[] args) {
int a = 42;
int b = 100;
C%::$swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

Stack
main
a 47
b 100
swap
X 42
Y% 100
temp 42
RA cO

75

Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
int temp = x;
) X = Y
y = temp;
}
public static void main (String[] args) {
int a = 42;
int b = 100;
C%::$swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

Stack
main
a 47
b 100
swap
X 100
Y% 100
temp 42
RA cO

76

Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
int temp = x;
X =y,
mm) vy = temp;
}
public static void main (String[] args) {
int a = 42;
int b = 100;
C%::$swap (a, b);
System.out.println(Ya = + a + “ b = "% + b);

}
e What does this print? Why?

Stack
main
a 47
b 100
swap
X 100
Y 42
temp 42
RA cO

77

Let’s do a little Java...

public class Example ({ Stack
public static void swap (int x, int y) { :
int temp = x; rer
a 42
X =y; b 100
y = temp;

}

public static void main (String[] args) {

int a = 42;
int b = 100;
swap (a, b);

mmm) System.out.println(®a = + a + “ b =" + b);

}
}

e What does this print? Why?

78

Let’s do some different Java...

public class Ex2 { Stack

int data;
public Ex2 (int d) { data = d; }
public static void swap (Ex2 x, Ex2 y) {

main

a ?27?
b 2?7

int temp = x.data;

x.data = y.data;
y.data = temp;
}
public static void main (String[] args) ({
mmm) Example a = new Example (42);
Example b = new Example (100);
swap (a, b);
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

79

Let’s do some different Java...

public class Ex2 { Stack Heap
int data;

public Ex2 (int d) { data = d; }
public static void swap (Ex2 x, Ex2 y) {

main

int temp = x.data; data 42

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) ({
Example a = new Example (42);

mms) Example b = new Example (100) ;
swap (a, b);
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

80

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; } R
public static void swap (Ex2 x, Ex2 y) ({ b Ex2
data 42

int temp = x.data;

x.data = y.data;
y.data = temp;

}

public static void main (String[] args) ({
Example a = new Example (42);

Example b = new Example (100); — Ex2
mms) swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

81

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }

. . . a - Ex2
public static void swap (Ex2 x, Ex2 y) { b —> i
mm) int temp = x.data; gEica o

x.data = y.data; swap
y.data = temp; %

} y

public static void main (String[] args) ({ temp 2?7
Example a = new Example (42); RA cO

c0 Example b = new Example (100); _; Ex?2
—)swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

82

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; nain
public Ex2 (int d) { data = d; } R N
public static void swap (Ex2 x, Ex2 y) { b > Ex2
mmm) int temp = x.data; data 42
x.data = y.data; swap
y.data = temp; %
} y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
0 Example b = new Example (100); _j;: Ex2
—)swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

83

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
. . . a - Ex2
public static void swap (Ex2 x, Ex2 y) { b -> Lo
int temp = x.data; seteel
mm) x.data = y.data; swap
y.data = temp; %
} y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
0 Example b = new Example (100); _; Ex2
—swap (a, b); data 100
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

84

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
. . . a - Ex2
public static void swap (Ex2 x, Ex2 y) { b —> i
int temp = x.data; caice. LOU
x.data = y.data; swap
mmm) y.data = temp;
X
} y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
c0 Example b = new Example (100); _; Ex?2
—yswap (a, b); data 42
System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

85

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; } R
public static void swap (Ex2 x, Ex2 y) ({ b Ex2
data 100

int temp = x.data;

x.data = y.data;
y.data = temp;

}

public static void main (String[] args) ({
Example a = new Example (42);

Example b = new Example (100); — Ex2
swap (a, b); data 42
mmm) System.out.println(“a =" + a.data +
“b ="+ b.data);

}
e What does this print? Why?

86

References and Pointers (review)

e Java has references:
e Any variable of object type is a reference
e Point at objects (which are all in the heap)
e Under the hood: is the memory address of the object
e Cannot explicitly manipulate them (e.g., add 4)

e Some languages (C,C++,assembly) have explicit pointers:
e Hold the memory address of something
e Can explicitly compute on them
e Can de-reference the pointer (*ptr) to get thing-pointed-to
e Can take the address-of (&x) to get something’s address
e Can do very unsafe things, shoot yourself in the foot

87

Pointers

e “address of” operator &
e don't confuse with bitwise AND operator (&&)
Given
int x; int* p; // p points to an int
P = &x;
Then

*p = 2; and x = 2; produce the same result

Note: p is a pointer, *p is an int

e What happens for p = 27?;

On 32-bit machine, p is 32-bits x 0x260f0H

p 0x26d00[0x26cbf0

88

Back to Arrays

e Java:
int [] x = new int [nElems];

e C:
int data[42]; //if size is known constant
int* data = (int*)malloc (nElem * sizeof (int)) ;

» malloc takes number of bytes
« sizeof tells how many bytes something takes

89

Arrays, Pointers, and Address Calculation

e X is a pointer, what is x+33? int* a=malloc(100*sizeof (int));

e A pointer, but where?

. ? ---]---- -=-
e what does calculation depend on: 0 1 32 33 98 99

a[33] is the same as * (a+33)
if a is 0x00a0, then a+l is
0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)

pointer depends on size of
object pointed to

e One reason why we tell compiler

what type of pointer we have, double* d=malloc (200*sizeof (double)) ;
even though all pointers are really

the same thing (and same size) @ ——T1—F " 7——F "

e Result of adding an int to a K

0 1 3 199
* (d+33) is the s3me as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)

90

More Pointer Arithmetic

address one past the end of an
array is ok for pointer comparison
only

what's at * (begin+44)?
what does begin++ mean?

how are pointers compared using <
and using == ?

what is value of end - begin?

A N

0 1 15 16 42 43

char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{

*begin = ‘z’;

begin++;

91

More Pointers & Arrays

int* a = new int[100];

32 33 98 99

a+32 is a pointer

*(a+l) is an int (same as a[l])
* (a+99) is an int

* (a+100) is trouble

92

Array Example

#include <stdio.h>

main ()
{
int* a = (int*)malloc (100 * sizeof(int)) ;
int* p = a;
int k;
for (k = 0; k < 100; k++)
{
*p = k;
pt+;

}
printf (“entry 3 = %d\n”, a[3])

93

Memory Manager (Heap Manager)

e malloc() and free()

e Library routines that
handle memory
management for heap
(allocation / deallocation)

e Java has garbage
collection (reclaim
memory of unreferenced

Available Memory -

Allocated Memory
(part of this is
data structures

ijects) for managing
memory
e C must use free, else
memory leak

Text

Memory

94

Strings as Arrays (review)

BN AT I

S|t
0 1 1516 42 43

e A string is an array of characters with “\0" at the end
e Each element is one byte, ASCII code
e "\0"is null (ASCII code 0)

95

strlen() again

e strlen () returns the number of characters in a string
e same as number elements in char array?

int strlen(char * s)
// pre: ‘\0’ terminated
// post: returns # chars
{
int count=0;
while (*s++)
count++;

return count;

96

Vector Class vs. Arrays

e Vector Class

e insulates programmers
e array bounds checking
e automagically growing/shrinking when more items are added/deleted

e How are Vectors implemented?
e Arrays, re-allocated as needed

e Arrays can be more efficient

97

	Slide 1: ECE/CS 250 Computer Architecture Summer 2023
	Slide 2: Outline
	Slide 3: Representing High Level Things in Binary
	Slide 4: Representing Operation Types
	Slide 5: Representing Data Types
	Slide 6: Basic Data Types
	Slide 7: Basic Binary
	Slide 8: Bits vs things
	Slide 9: Binary metric system
	Slide 10: What does it mean to say base 10 or base 2?
	Slide 11: Decimal to binary using remainders
	Slide 12: Decimal to binary using comparison
	Slide 13: Hexadecimal
	Slide 14: Binary to/from hexadecimal
	Slide 15: BitOps: Unary
	Slide 16: BitOps: Two Operands
	Slide 17: Two Operands... (cont’d)
	Slide 18: Shift Operations
	Slide 19: ShiftOps... (cont’d)
	Slide 20: Bitwise Recipes
	Slide 21: Binary Math : Addition
	Slide 22: Binary Math : Addition
	Slide 23: Binary Math : Addition
	Slide 24: Binary Math : Addition
	Slide 25: Binary Math : Addition
	Slide 26: Binary Math : Addition
	Slide 27: Binary Math : Addition
	Slide 28: Binary Math : Addition
	Slide 29: Binary Math : Addition
	Slide 30: Issues for Binary Representation of Numbers
	Slide 31: Sign Magnitude
	Slide 32: 1’s Complement Representation for Integers
	Slide 33: 2’s Complement Integers
	Slide 34: Another way to think about 2’s complement
	Slide 35: Pros and Cons of 2’s Complement
	Slide 36: Integer ranges
	Slide 37: 2’s Complement Precision Extension
	Slide 38: Binary Math : Addition
	Slide 39: Binary Math : Addition
	Slide 40: Integer Overflow
	Slide 41: Adding works for unsigned and signed
	Slide 42: Subtraction
	Slide 43: What About Non-integer Numbers?
	Slide 44: Option 1: Fixed point
	Slide 45: Can we do better?
	Slide 46: Option 2: Floating Point
	Slide 47: IEEE single precision floating point
	Slide 48: Binary fractions
	Slide 49: Floating point example
	Slide 50: Floating Point Representation
	Slide 51: Answer
	Slide 52: Trick question
	Slide 53: Other Weird FP numbers
	Slide 54: Floating Point Representation
	Slide 55: What About Strings?
	Slide 56: Standardized ASCII (0-127)
	Slide 57: One Interpretation of 128-255
	Slide 58: (This allowed totally sweet ASCII art in the 1990s)
	Slide 59: About those control codes…
	Slide 60: About CR and LF
	Slide 61: Outline
	Slide 62: Computer Memory
	Slide 63: Memory Organization
	Slide 64: Memory Organization
	Slide 65: Word of the Day: Endianess
	Slide 66: What is an array?
	Slide 67: What is an array?
	Slide 68: Memory Layout
	Slide 69: Memory Layout: Example
	Slide 70: Summary: From C to Binary
	Slide 71: pointers, arrays, and memory ~again~
	Slide 72: Let’s do a little Java…
	Slide 73: Let’s do a little Java…
	Slide 74: Let’s do a little Java…
	Slide 75: Let’s do a little Java…
	Slide 76: Let’s do a little Java…
	Slide 77: Let’s do a little Java…
	Slide 78: Let’s do a little Java…
	Slide 79: Let’s do some different Java…
	Slide 80: Let’s do some different Java…
	Slide 81: Let’s do some different Java…
	Slide 82: Let’s do some different Java…
	Slide 83: Let’s do some different Java…
	Slide 84: Let’s do some different Java…
	Slide 85: Let’s do some different Java…
	Slide 86: Let’s do some different Java…
	Slide 87: References and Pointers (review)
	Slide 88: Pointers
	Slide 89: Back to Arrays
	Slide 90: Arrays, Pointers, and Address Calculation
	Slide 91: More Pointer Arithmetic
	Slide 92: More Pointers & Arrays
	Slide 93: Array Example
	Slide 94: Memory Manager (Heap Manager)
	Slide 95: Strings as Arrays (review)
	Slide 96: strlen() again
	Slide 97: Vector Class vs. Arrays

