
ECE/CS 250
Computer Architecture

Summer 2023

From C to Binary

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),

Benjamin Lee (Duke), Amir Roth (Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty

2

Outline

• Previously:

• Computer is machine that does what we tell it to do

• Next:

• How do we tell computers what to do?

• How do we represent data objects in binary?

• How do we represent data locations in binary?

3

Representing High Level Things in Binary

• Computers represent everything in binary

• Instructions are specified in binary

• Instructions must be able to describe

• Operation types (add, subtract, shift, etc.)

• Data objects (integers, decimals, characters, etc.)

• Memory locations

• Example:

int x, y; // Where are x and y? How to represent an int?

bool decision; // How do we represent a bool? Where is it?

y = x + 7; // How do we specify “add”? How to represent 7?

decision=(y>18); // Etc.

4

Representing Operation Types

• How do we tell computer to add? Shift? Read from memory?
Etc.

• Arbitrarily! ☺

• Each Instruction Set Architecture (ISA) has its own binary
encodings for each operation type

• E.g., in MIPS:

• Integer add is: 00000 010000

• Read from memory (load) is: 010011

• Etc.

5

Representing Data Types

• How do we specify an integer? A character? A floating point
number? A bool? Etc.

• Same as before: binary!

• Data and interpretation are separate:

• The same 32 bits might mean one thing if interpreted as an integer,
but another thing if interpreted as a floating point number

6

Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte

16 bits is a half-word (for MIPS32)
32 bits is a word (for MIPS32)
64 bits is a double-word (for MIPS32)

128 bits is a quad-word (for MIPS32)

Integers (char, short, int, long):
“2's Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
Single Precision (32-bit representation)
Double Precision (64-bit representation)
Extended (Quad) Precision (128-bit representation)

Character (char):
ASCII 7-bit code

What is a word?

The standard unit of manipulation

for a particular system. E.g.:
• MIPS32: 32 bits

• Intel x86_64 (modern): 64 bit

• Original Nintendo: 8 bit

• Super Nintendo: 16 bit

• Intel x86 (classic): 32 bit

• Nintendo 64: 64 bit

All pink arrows are true for a MIPS32 and Intel x86

7

Basic Binary

• Advice: memorize the following

• 20 = 1

• 21 = 2

• 22 = 4

• 23 = 8

• 24 = 16

• 25 = 32

• 26 = 64

• 27 = 128

• 28 = 256

• 29 = 512

• 210 = 1024

8

Bits vs things

• If you have N bits, you can represent 2N things.

⇕
• If you have T things, you need log2T bits to pick one.

You will have to answer questions of this form roughly a
thousand times in this course – note it now!

• Exercises:

• I have 8 bits, how many integers can I represent?

• 28 = 256

• I need to represent 32 cache sets. How many bits do I need?

• log2 32 = 5

• I have 4GB of RAM. How many bits do I need to pick one byte of it?

• log2 4G = ……?

9

Binary metric system

• The binary metric system:

• 210 = 1024.

• This is basically 1000, so we can have an alternative form of metric
units based on base 2.

• 210 bytes = 1024 bytes = 1kB.

• Sometimes written as 1kiB
(pronounced “kibibyte” where the ‘bi’ means ‘binary’)
(but nobody says “kibibyte” out loud because it sounds stupid)

• 220 bytes = 1MB, 230 bytes = 1GB, 240 bytes = 1TB, etc.

• Easy rule to convert between exponent and binary metric number:

2XY bytes = 2Y · 2X0 bytes = 2Y <X_prefix>B

This matters a

lot later on 213 bytes = 23 kB = 8 kB

239 bytes = 29 GB = 512 GB

205 bytes = 25 B = 32 B

10

What does it mean to say base 10 or base 2?

• Integers in regular base 10:

• 6253 = 6000 + 200 + 50 + 3
= 6*103 + 2*102 + 5*101 + 3*100

• Integers in base 2:

• 1101 = 1000 + 100 + 00 + 1
= 1*23 + 1*22 + 0*21 + 1*20

= 8 + 4 +1
= 13

• 1 1 0 1

Digit Base Place

Digit Base Place

Bit 0

1’s placeBit 1

2’s place

Bit 2

4’s place

Bit 3

8’s place

11

Decimal to binary using remainders

? Quotient Remainder

457 2 = 228 1

228 2 = 114 0

114 2 = 57 0

57 2 = 28 1

28 2 = 14 0

14 2 = 7 0

7 2 = 3 1

3 2 = 1 1

1 2 = 0 1 111001001

12

Decimal to binary using comparison

Num Compare 2n ≥ ?

457 256 1

201 128 1

73 64 1

9 32 0

9 16 0

9 8 1

1 4 0

1 2 0

1 1 1

111001001

13

Hexadecimal

Hex digit Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

0xDEADBEEF
1101 1110 1010 1101 1011 1110 1110 1111

0x02468ACE
0000 0010 0100 0110 1000 1010 1100 1110

0x13579BDF
0001 0011 0101 0111 1001 1011 1101 1111

Indicates a hex number

14

Binary to/from hexadecimal

• 01011011001000112 -->

• 0101 1011 0010 00112 -->

• 5 B 2 316

1 F 4 B16 -->

0001 1111 0100 10112 -->

00011111010010112

Hex digit Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

15

BitOps: Unary

• Bit-wise complement (~)

• Flips every bit.

~0x0d // (binary 00001101)

== 0xf2 // (binary 11110010)

Not the same as Logical NOT (!) or sign change (-)

char i, j1, j2, j3;

i = 0x0d; // binary 00001101

j1 = ~i; // binary 11110010

j2 = -i; // binary 11110011

j3 = !i; // binary 00000000

16

BitOps: Two Operands

• Operate bit-by-bit on operands to produce a result operand of
the same length

• And (&): result 1 if both inputs 1, 0 otherwise

• Or (|): result 1 if either input 1, 0 otherwise

• Xor (^): result 1 if one input 1, but not both, 0 otherwise

• Useful identities (applied per-bit):
• X & 1 = X ANDing with 1 does nothing

• X & 0 = 0 ANDing with 0 gives zero

• X | 0 = X ORing with 0 does nothing

• X | 1 = 1 ORing with 1 gives one

• X ^ 0 = X XORing with 0 does nothing

• X ^ 1 = ~X XORing with 1 flips the bit

17

Two Operands... (cont’d)

• Examples

0011 1000

& 1101 1110

0001 1000

0011 1000

| 1101 1110

1111 1110

0011 1000

^ 1101 1110

1110 0110

18

Shift Operations

• x << y is left (logical) shift of x by y positions

• x and y must both be integers

• x should be unsigned or positive

• y leftmost bits of x are discarded

• zero fill y bits on the right

01111001 << 3

11001000

these 3 bits are zero filled

these 3 bits are discarded

19

ShiftOps... (cont’d)

• x >> y is right (logical) shift of x by y positions

• y rightmost bits of x are discarded

• zero fill y bits on the left

01111001 >> 3

00001111

these 3 bits are zero filled

these 3 bits are discarded

20

Bitwise Recipes

• Set a certain bit to 1?

• Make a MASK with a one at every position you want to set:
m = 0x02; // 000000102

• OR the mask with the input:
v = 0x41; // 010000012
v |= m; // 010000112

• Clear a certain bit to 0?

• Make a MASK with a zero at every position you want to clear:
m = 0xFD; // 111111012 (could also write ~0x02)

• AND the mask with the input:
v = 0x27; // 001001112
v &= m; // 001001012

• Get a substring of bits (such as bits 2 through 5)?
Note: bits are numbered right-to-left starting with zero.

• Shift the bits you want all the way to the right then AND them with an appropriate mask:
v = 0x67; // 011001112
v >>= 2; // 000110012
v &= 0x0F; // 000010012

21

Binary Math : Addition

• Suppose we want to add two numbers:

00011101

+ 00101011

• How do we do this?

22

Binary Math : Addition

• Suppose we want to add two numbers:

00011101 695

+ 00101011 + 232

• How do we do this?

• Let’s revisit decimal addition

• Think about the process as we do it

23

Binary Math : Addition

• Suppose we want to add two numbers:

00011101 695

+ 00101011 + 232

7

• First add one’s digit 5+2 = 7

24

Binary Math : Addition

• Suppose we want to add two numbers:

1

00011101 695

+ 00101011 + 232

27

• First add one’s digit 5+2 = 7

• Next add ten’s digit 9+3 = 12 (2 carry a 1)

25

Binary Math : Addition

• Suppose we want to add two numbers:

00011101 695

+ 00101011 + 232

927

• First add one’s digit 5+2 = 7

• Next add ten’s digit 9+3 = 12 (2 carry a 1)

• Last add hundred’s digit 1+6+2 = 9

26

Binary Math : Addition

• Suppose we want to add two numbers:

00011101

+ 00101011

• Back to the binary:

• First add 1’s digit 1+1 = …?

27

Binary Math : Addition

• Suppose we want to add two numbers:

1

00011101

+ 00101011

0

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)

28

Binary Math : Addition

• Suppose we want to add two numbers:

11

00011101

+ 00101011

00

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)

• Then 2’s digit: 1+0+1 =2 (0 carry a 1)

• You all finish it out….

29

Binary Math : Addition

• Suppose we want to add two numbers:

111111

00011101 = 29

+ 00101011 = 43

01001000 = 72

• Can check our work in decimal

30

Issues for Binary Representation of Numbers

• How to represent negative numbers?

• There are many ways to represent numbers in binary

• Binary representations are encodings → many encodings possible

• What are the issues that we must address?

• Issue #1: Complexity of arithmetic operations

• Issue #2: Negative numbers

• Issue #3: Maximum representable number

• Choose representation that makes these issues easy for
machine, even if it’s not easy for humans (i.e., ECE/CS 250
students)

• Why? Machine has to do all the work!

31

Sign Magnitude

• Use leftmost bit for + (0) or – (1):

• 6-bit example (1 sign bit + 5 magnitude bits):

• +17 = 010001

• -17 = 110001

• Pros:

• Conceptually simple

• Easy to convert

• Cons:

• Harder to compute (add, subtract, etc) with

• Positive and negative 0: 000000 and 100000

32

1’s Complement Representation for Integers

• Use largest positive binary numbers
to represent negative numbers

• To negate a number,

invert (“not”) each bit:

0 → 1

1 → 0

• Cons:

• Still two 0s (yuck)

• Still hard to compute with

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 -7

1001 -6

1010 -5

1011 -4

1100 -3

1101 -2

1110 -1

1111 -0

33

2’s Complement Integers

• Use large positives to represent negatives

• (-x) = 2n - x

• This is 1’s complement + 1

• So, to negate, just invert bits and add 1

6-bit examples:

0101102 = 2210 ; 1010102 = -2210

110 = 0000012; -110 = 1111112

010 = 0000002; -010 = 0000002 → good!

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

34

Another way to think about 2’s complement

• Regular base 10:

• 6253 = 6000 + 200 + 50 + 3
= 6*103 + 2*102 + 5*101 + 3*100

• Unsigned base 2:

• 1101 = 1000 + 100 + 00 + 1
= 1*23 + 1*22 + 0*21 + 1*20

= 8 + 4 +1
= 13

• Signed base 2:

• 1101 = -1000 + 100 + 00 + 1
= 1*-23 + 1*22 + 0*21 + 1*20

= -8 + 4 + 1
= -3

Alternately,
flip the bits and add 1:

1101
Flip: 0010
+1: 0011

That’s 3 in binary,
so the number is indeed -3

Two’s complement is like making the highest order bit apply a negative value!

Digit Base Place

Digit Base Place

35

Pros and Cons of 2’s Complement

• Advantages:
• Only one representation for 0 (unlike 1’s comp): 0 = 000000

• Addition algorithm is much easier than with sign and magnitude

• Independent of sign bits

• Disadvantage:
• One more negative number than positive

• Example: 6-bit 2’s complement number

1000002 = -3210; but 3210 could not be represented

All modern computers use 2’s complement for integers

36

Integer ranges

• If I have an n-bit integer:

• And it’s unsigned, then I can represent {0 .. 2𝑛 − 1}

• And it’s signed, then I can represent {−(2𝑛−1) .. 2𝑛−1 − 1}

• Result:
Size in

bits
Size in
bytes Datatype Unsigned range Signed range

8 1 char 0 .. 255 -128 .. 127

16 2 short 0 .. 65,535 -32,768 .. 32,767

32 4 int 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647

64 8 long long
0 ..

18,446,744,073,709,600,000
-9,223,372,036,854,780,000 ..

9,223,372,036,854,780,000

Remember: if you have N bits,

you can represent 2N things

How to get unsigned integers in C? Just say unsigned:

int x; // defaults to signed

unsigned int y; // explicitly unsigned

37

• Most computers today support 32-bit (int) or 64-bit integers

• Specify 64-bit using gcc C compiler with long long

• To extend precision, use sign bit extension

• Integer precision is number of bits used to represent a number

Examples

1410 = 0011102 in 6-bit representation.

1410 = 0000000011102 in 12-bit representation

-1410 = 1100102 in 6-bit representation

-1410 = 1111111100102 in 12-bit representation.

2’s Complement Precision Extension

38

Binary Math : Addition

• Let’s look at another binary addition:

01011101

+ 01101011

39

Binary Math : Addition

• What about this one:

1111111

01011101 = 93

+ 01101011 = 107

11001000 = -56

• But… that can’t be right?

• What do you expect for the answer?

• What is it in 8-bit signed 2’s complement?

40

Integer Overflow

• Answer should be 200

• Not representable in 8-bit signed representation

• No right answer

• This is called integer Overflow

• Real problem in programs

• How to solve?

I add two

ints and

it overflows

41

Adding works for unsigned and signed

• Addition works the same way for unsigned and signed
numbers. WOW!!

• But watch out for overflow…
(And overflow for unsigned is different than overflow for signed)

Meaning if you assume…

Signed Unsigned

1111

0101 5 5

+ 1111 -1 15

0100 4 20 4???

Meaning if you assume…

Signed Unsigned

1

0101 5 5

+ 0001 1 1

0110 6 6

Meaning if you assume…

Signed Unsigned

1111

1101 -3 13

+ 1111 -1 15

1100 -4 28 12???

Meaning if you assume…

Signed Unsigned

1

0101 5 5

+ 0100 4 4

1001 9 -7??? 9

42

Subtraction

• 2’s complement makes subtraction easy:

• Remember: A - B = A + (-B)

• And: -B = ~B + 1

 that means flip bits (“not”)

• So we just flip the bits and start with carry-in (CI) = 1

• Later: No new circuits to subtract (re-use adder hardware!)

1

0110101 -> 0110101

- 1010010 + 0101101

43

What About Non-integer Numbers?

• There are infinitely many real numbers between two integers

• Many important numbers are real

• Speed of light ~= 3x108

• Pi = 3.1415…

• Fixed number of bits limits range of integers

• Can’t represent some important numbers

• Humans use Scientific Notation

• 1.3x104

44

Option 1: Fixed point

• Use normal integers, but (X*2K) instead of X

• Example: 32 bit int, but use X*65536

• 3.1415926 * 65536 = 205887

• 0.5 * 65536 = 32768 , etc..

• Pros:

• Addition/subtraction just like integers (“free”)

• Cons:

• Mul/div require renormalizing (divide by 64K)

• Range limited (no good rep for large + small)

• Can be good in specific situations

45

Can we do better?

• Think about scientific notation for a second:

• For example:

6.02 * 1023

• Real number, but comprised of ints:

• 6 generally only 1 digit here

• 02 any number here

• 10 always 10 (base we work in)

• 23 can be positive or negative

• Can we do something like this in binary?

46

Option 2: Floating Point

• How about:
+/- X.YYYYYY * 2+/-N

• Big numbers: large positive N

• Small numbers (<1): negative N

• Numbers near 0: small N

• This is “floating point” : most common way

47

IEEE single precision floating point

• Specific format called IEEE single precision:
+/- 1.YYYYY * 2(N-127)

• “float” in Java, C, C++,…

• Assume first bit is always 1 (saves us a bit)

• 1 sign bit (+ = 0, 1 = -)

• 8 bit biased exponent (do N-127)

• Implicit 1 before binary point

• 23-bit mantissa (YYYYY)

48

Binary fractions

• 1.YYYY has a binary point

• Like a decimal point but in binary

• After a decimal point, you have

• tenths

• hundredths

• thousandths

• …

• So after a binary point you have…

• Halves

• Quarters

• Eighths

• …

49

Floating point example

• Binary fraction example:
101.101 = 4 + 1 + ½ + 1/8 = 5.625

• For floating point, needs normalization:
1.01101 * 22

• Sign is +, which = 0

• Exponent = 127 + 2 = 129 = 1000 0001

• Mantissa = 1.011 0100 0000 0000 0000 0000

0 1000 0001 011 0100 0000 0000 0000 0000

022233031

0100 0000 1011 0100 0000 0000 0000 0000

0x 4 0 b 4 0 0 0 0

Can use hex to represent those bits in a less annoying way:

50

Floating Point Representation

Example:

What floating-point number is:

0xC1580000?

51

Answer

What floating-point number is

0xC1580000?

1100 0001 0101 1000 0000 0000 0000 0000

1 1000 0010 101 1000 0000 0000 0000 0000 X =

022233031

s E F

Sign = 1 which is negative

Exponent = (128+2)-127 = 3
Mantissa = 1.1011

-1.1011x23 = -1101.1 = -13.5

52

Trick question

• How do you represent 0.0?

• Why is this a trick question?

• 0.0 = 0.00000

• But need 1.XXXXX representation?

• Exponent of 0 is denormalized

• Implicit 0. instead of 1. in mantissa

• Allows 0000….0000 to be 0

• Helps with very small numbers near 0

• Results in +/- 0 in FP (but they are “equal”)

53

Other Weird FP numbers

• Exponent = 1111 1111 also not standard

• All 0 mantissa: +/- ∞

1/0 = +∞

-1/0 = -∞

• Non zero mantissa: Not a Number (NaN)

sqrt(-42) = NaN

54

Floating Point Representation

• Double Precision Floating point:

64-bit representation:
• 1-bit sign

• 11-bit (biased) exponent

• 52-bit fraction (with implicit 1).

• “double” in Java, C, C++, …

1 11-bit 52 - bit

ExpS Mantissa

55

What About Strings?

• Many important things stored as strings…

• E.g., your name

• How should we store strings?

56

Standardized ASCII (0-127)

57

One Interpretation of 128-255

58

Sources:

• http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604

• http://roy-sac.deviantart.com/art/Siege-ISO-nfo-ASCII-Logo-35940815

• http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

(This allowed totally sweet ASCII art in the 1990s)

http://roy-sac.deviantart.com/art/Cardinal-NFO-File-ASCII-35664604
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803
http://roy-sac.deviantart.com/art/deviantART-ANSI-Logo-31556803

59

About those control codes…

\0 Null terminator ☺

\a Make a beep or flash

(Greyed out ones almost never used)

\t Tab key

Backspace key

\e Used for “extended” control codes, like terminal color

We need to talk

about CR and LF…

60

About CR and LF

• History: first computer “displays” were modified typewriters

• CR = “Carriage return” = \r = 0x0D

• Move typey part to the left → move cursor to left of screen

• LF = “Line feed” = \n = 0x0A

• Move paper one line down → Move cursor one down

• Windows: “Pretend to be a typewriter”

• Every time you press enter you get CR+LF (bytes 0D,0A)

• Linux/Mac: “You are not a typewriter”

• Every time you press enter you get LF (byte 0A)

• This effects ALL TEXT DOCUMENTS!!!

• Not all apps cope automatically! It will bite you one day for sure!

61

Outline

• Previously:

• Computer is machine that does what we tell it to do

• Next:

• How do we tell computers what to do?

• How do we represent data objects in binary?

• How do we represent data locations in binary?

62

Computer Memory

• Where do we put these numbers?

• Registers [more on these later]

• In the processor core

• Compute directly on them

• Few of them (~16 or 32 registers, each 32-bit or 64-bit)

• Memory [Our focus now]

• External to processor core

• Load/store values to/from registers

• Very large (multiple GB)

63

Memory Organization

• Memory: billions of locations…how to get the right one?

• Each memory location has an address

• Processor asks to read or write specific address

• Memory, please load address 0x123400

• Memory, please write 0xFE into address 0x8765000

• Kind of like a giant array

• Array of what?

• Bytes?

• 32-bit ints?

• 64-bit ints?

64

Memory Organization

• Most systems: byte (8-bit) addressed

• Memory is “array of bytes”

• Each address specifies 1 byte

• Support to load/store 8, 16, 32, 64 bit quantities

• Byte ordering varies from system to system

• Some systems “word addressed”

• Memory is “array of words”

• Smaller operations “faked” in processor

• Not very common

65

Word of the Day: Endianess

Byte Order

• Big Endian: byte 0 is eight most significant bits
MIPS, IBM 360/370, Motorola 68k, Sparc, HP PA

• Little Endian: byte 0 is eight least significant bits
Intel 80x86, DEC Vax, DEC Alpha

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

(most significant byte) (least significant byte)

Program
X = 0x12345678; // X lives at address 0x1000

0x1000: 12

0x1001: 34

0x1002: 56

0x1003: 78

0x1000: 78

0x1001: 56

0x1002: 34

0x1003: 12

Memory layout on a

little endian system
Memory layout on a

big endian system

66

What is an array?

• The shocking truth:
You’ve been using pointers all along!

• Every array IS a pointer to a block of memory

• Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N things later from pointer P

• “Thing” depends on the datatype of the P

• Can dereference such pointers to get what’s there
• Interpreted according to the datatype of P

• E.g. *(nums-1) is a number related to how we represent the letter ‘o’.

00 00 00 09 ‘h’ ‘e’ ‘l’ ‘l’ ‘o’ 00 00 06 00 07 00 08

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

msg nums&x

nums+1 nums+2

msg+1 msg+2 msg+3 msg+4 msg+5 msg+6 msg-1msg-2msg-3msg-4

nums-1

67

What is an array?

• The shocking truth:
You’ve been using pointers all along!

• Every array IS a pointer to a block of memory

• Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N things later from pointer P

• “Thing” depends on the datatype of the P

• Can dereference such pointers to get what’s there
• Interpreted according to the datatype of P

• E.g. *(nums-1) is a number related to how we represent the letter ‘o’.

09 00 00 00 ‘h’ ‘e’ ‘l’ ‘l’ ‘o’ 00 06 00 07 00 08 00

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

msg nums&x

nums+1 nums+2

msg+1 msg+2 msg+3 msg+4 msg+5 msg+6 msg-1msg-2msg-3msg-4

nums-1

68

Memory Layout

Stack

Static

Data

Text

Reserved0

2n-1

Typical

Address

Space
Heap

• Memory is array of bytes, but there
are conventions as to what goes
where in this array

• Text: instructions (the program to
execute)

• Data: global variables

• Stack: local variables and other
per-function state; starts at top &
grows down

• Heap: dynamically allocated
variables; grows up

• What if stack and heap overlap????

69

Memory Layout: Example

int anumber = 3;

int factorial (int x) {

if (x == 0) {

return 1;

}

else {

return x * factorial (x – 1);

}

}

int main (void) {

int z = factorial (anumber);

int* p = malloc(sizeof(int)*64);

printf(“%d\n”, z);

return 0;

}

Stack

Static

Data

Text

Reserved0

2n-1

Typical

Address

Space
Heap

// p is a local on stack, *p is in heap

70

Summary: From C to Binary

• Everything must be represented in binary!

• Pointer is memory location that contains address of another
memory location

• Computer memory is linear array of bytes

• Integers:

• unsigned {0..2n-1} vs signed {-2n-1 .. 2n-1-1} (“2’s complement”)

• char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)

• Floats: IEEE representation,

• float (32-bit: 1 sign, 8 exponent, 23 mantissa)

• double (64-bit: 1 sign, 11 exponent, 52 mantissa)

• Strings: char array, ASCII representation

• Memory layout

• Stack for local, static for globals, heap for malloc’d stuff (must free!)

71

POINTERS, ARRAYS, AND MEMORY
~AGAIN~

The following slides re-state a lot of what we’ve covered but in a
different way. We’ll likely skip it for time, but you can use the

slides as an additional reference.

72

Let’s do a little Java…

public class Example {

public static void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

public static void main (String[] args) {

int a = 42;

int b = 100;

swap (a, b);

System.out.println(“a =“ + a + “ b = “ + b);

}

}

• What does this print? Why?

73

Let’s do a little Java…

public class Example {

public static void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

public static void main (String[] args) {

int a = 42;

int b = 100;

swap (a, b);

System.out.println(“a =“ + a + “ b = “ + b);

}

}

• What does this print? Why?

a 42

b 100

main

Stack

74

Let’s do a little Java…

public class Example {

public static void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

public static void main (String[] args) {

int a = 42;

int b = 100;

swap (a, b);

System.out.println(“a =“ + a + “ b = “ + b);

}

}

• What does this print? Why?

a 42

b 100

main

x 42

y 100

temp ???

RA c0

swap

c0

Stack

75

Let’s do a little Java…

public class Example {

public static void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

public static void main (String[] args) {

int a = 42;

int b = 100;

swap (a, b);

System.out.println(“a =“ + a + “ b = “ + b);

}

}

• What does this print? Why?

a 42

b 100

main

x 42

y 100

temp 42

RA c0

swap

c0

Stack

76

Let’s do a little Java…

public class Example {

public static void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

public static void main (String[] args) {

int a = 42;

int b = 100;

swap (a, b);

System.out.println(“a =“ + a + “ b = “ + b);

}

}

• What does this print? Why?

a 42

b 100

main

x 100

y 100

temp 42

RA c0

swap

c0

Stack

77

Let’s do a little Java…

public class Example {

public static void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

public static void main (String[] args) {

int a = 42;

int b = 100;

swap (a, b);

System.out.println(“a =“ + a + “ b = “ + b);

}

}

• What does this print? Why?

a 42

b 100

main

x 100

y 42

temp 42

RA c0

swap

c0

Stack

78

Let’s do a little Java…

public class Example {

public static void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

public static void main (String[] args) {

int a = 42;

int b = 100;

swap (a, b);

System.out.println(“a =“ + a + “ b = “ + b);

}

}

• What does this print? Why?

a 42

b 100

main

Stack

79

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a ??

b ??

main

Stack

80

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a

b ??

main

Ex2

data 42

Stack Heap

81

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a

b

main

Ex2

data 42

Ex2

data 100

Stack Heap

82

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a

b

main

Ex2

data 42

Ex2

data 100

x

y

temp ??

RA c0

swap

c0

Stack Heap

83

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a

b

main

Ex2

data 42

Ex2

data 100

x

y

temp 42

RA c0

swap

c0

Stack Heap

84

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a

b

main

Ex2

data 100

Ex2

data 100

x

y

temp 42

RA c0

swap

c0

Stack Heap

85

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a

b

main

Ex2

data 100

Ex2

data 42

x

y

temp 42

RA c0

swap

c0

Stack Heap

86

Let’s do some different Java…

public class Ex2 {

int data;

public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;

x.data = y.data;

y.data = temp;

}

public static void main (String[] args) {

Example a = new Example (42);

Example b = new Example (100);

swap (a, b);

System.out.println(“a =“ + a.data +

“ b = “ + b.data);

}

}

• What does this print? Why?

a

b

main

Ex2

data 100

Ex2

data 42

Stack Heap

87

References and Pointers (review)

• Java has references:

• Any variable of object type is a reference

• Point at objects (which are all in the heap)

• Under the hood: is the memory address of the object

• Cannot explicitly manipulate them (e.g., add 4)

• Some languages (C,C++,assembly) have explicit pointers:

• Hold the memory address of something

• Can explicitly compute on them

• Can de-reference the pointer (*ptr) to get thing-pointed-to

• Can take the address-of (&x) to get something’s address

• Can do very unsafe things, shoot yourself in the foot

88

Pointers

• “address of” operator &
• don’t confuse with bitwise AND operator (&&)

Given

int x; int* p; // p points to an int

p = &x;

Then

*p = 2; and x = 2; produce the same result

Note: p is a pointer, *p is an int

• What happens for p = 2?;

0x26cbf0

x 0x26cf0

p 0x26d00

...
On 32-bit machine, p is 32-bits

89

Back to Arrays

• Java:
int [] x = new int [nElems];

• C:

int data[42]; //if size is known constant

int* data = (int*)malloc (nElem * sizeof(int));

• malloc takes number of bytes

• sizeof tells how many bytes something takes

90

• x is a pointer, what is x+33?

• A pointer, but where?
• what does calculation depend on?

• Result of adding an int to a
pointer depends on size of
object pointed to

• One reason why we tell compiler
what type of pointer we have,
even though all pointers are really
the same thing (and same size)

Arrays, Pointers, and Address Calculation

0 1 3

3

199

0 1 9932 33 98

a[33] is the same as *(a+33)

if a is 0x00a0, then a+1 is

0x00a4, a+2 is 0x00a8

(decimal 160, 164, 168)

double* d=malloc(200*sizeof(double));

*(d+33) is the same as d[33]

if d is 0x00b0, then d+1 is

0x00b8, d+2 is 0x00c0

(decimal 176, 184, 192)

int* a=malloc(100*sizeof(int));

91

0 1 4315 16 42

More Pointer Arithmetic

• address one past the end of an
array is ok for pointer comparison
only

• what’s at *(begin+44)?

• what does begin++ mean?

• how are pointers compared using <
and using == ?

• what is value of end - begin?

char* a = new char[44];

char* begin = a;

char* end = a + 44;

while (begin < end)

{

*begin = ‘z’;

begin++;

}

92

More Pointers & Arrays

int* a = new int[100];

0 1 9932 33 98

a is a pointer

*a is an int

a[0] is an int (same as *a)

a[1] is an int

a+1 is a pointer

a+32 is a pointer

*(a+1) is an int (same as a[1])

*(a+99) is an int

*(a+100) is trouble

93

Array Example

#include <stdio.h>

main()

{

int* a = (int*)malloc (100 * sizeof(int));

int* p = a;

int k;

for (k = 0; k < 100; k++)

{

*p = k;

p++;

}

printf(“entry 3 = %d\n”, a[3])

}

94

Memory Manager (Heap Manager)

• malloc() and free()

• Library routines that
handle memory
management for heap
(allocation / deallocation)

• Java has garbage
collection (reclaim
memory of unreferenced
objects)

• C must use free, else
memory leak

Available Memory

Allocated Memory

(part of this is

data structures

for managing

memory

Memory

Text

Stack

95

Strings as Arrays (review)

• A string is an array of characters with ‘\0’ at the end

• Each element is one byte, ASCII code

• ‘\0’ is null (ASCII code 0)

0 1 4315

s t ‘\0’r i g

16 42

96

strlen() again

• strlen() returns the number of characters in a string
• same as number elements in char array?

int strlen(char * s)

// pre: ‘\0’ terminated

// post: returns # chars

{

int count=0;

while (*s++)

count++;

return count;

}

97

Vector Class vs. Arrays

• Vector Class
• insulates programmers

• array bounds checking

• automagically growing/shrinking when more items are added/deleted

• How are Vectors implemented?
• Arrays, re-allocated as needed

• Arrays can be more efficient

	Slide 1: ECE/CS 250 Computer Architecture Summer 2023
	Slide 2: Outline
	Slide 3: Representing High Level Things in Binary
	Slide 4: Representing Operation Types
	Slide 5: Representing Data Types
	Slide 6: Basic Data Types
	Slide 7: Basic Binary
	Slide 8: Bits vs things
	Slide 9: Binary metric system
	Slide 10: What does it mean to say base 10 or base 2?
	Slide 11: Decimal to binary using remainders
	Slide 12: Decimal to binary using comparison
	Slide 13: Hexadecimal
	Slide 14: Binary to/from hexadecimal
	Slide 15: BitOps: Unary
	Slide 16: BitOps: Two Operands
	Slide 17: Two Operands... (cont’d)
	Slide 18: Shift Operations
	Slide 19: ShiftOps... (cont’d)
	Slide 20: Bitwise Recipes
	Slide 21: Binary Math : Addition
	Slide 22: Binary Math : Addition
	Slide 23: Binary Math : Addition
	Slide 24: Binary Math : Addition
	Slide 25: Binary Math : Addition
	Slide 26: Binary Math : Addition
	Slide 27: Binary Math : Addition
	Slide 28: Binary Math : Addition
	Slide 29: Binary Math : Addition
	Slide 30: Issues for Binary Representation of Numbers
	Slide 31: Sign Magnitude
	Slide 32: 1’s Complement Representation for Integers
	Slide 33: 2’s Complement Integers
	Slide 34: Another way to think about 2’s complement
	Slide 35: Pros and Cons of 2’s Complement
	Slide 36: Integer ranges
	Slide 37: 2’s Complement Precision Extension
	Slide 38: Binary Math : Addition
	Slide 39: Binary Math : Addition
	Slide 40: Integer Overflow
	Slide 41: Adding works for unsigned and signed
	Slide 42: Subtraction
	Slide 43: What About Non-integer Numbers?
	Slide 44: Option 1: Fixed point
	Slide 45: Can we do better?
	Slide 46: Option 2: Floating Point
	Slide 47: IEEE single precision floating point
	Slide 48: Binary fractions
	Slide 49: Floating point example
	Slide 50: Floating Point Representation
	Slide 51: Answer
	Slide 52: Trick question
	Slide 53: Other Weird FP numbers
	Slide 54: Floating Point Representation
	Slide 55: What About Strings?
	Slide 56: Standardized ASCII (0-127)
	Slide 57: One Interpretation of 128-255
	Slide 58: (This allowed totally sweet ASCII art in the 1990s)
	Slide 59: About those control codes…
	Slide 60: About CR and LF
	Slide 61: Outline
	Slide 62: Computer Memory
	Slide 63: Memory Organization
	Slide 64: Memory Organization
	Slide 65: Word of the Day: Endianess
	Slide 66: What is an array?
	Slide 67: What is an array?
	Slide 68: Memory Layout
	Slide 69: Memory Layout: Example
	Slide 70: Summary: From C to Binary
	Slide 71: pointers, arrays, and memory ~again~
	Slide 72: Let’s do a little Java…
	Slide 73: Let’s do a little Java…
	Slide 74: Let’s do a little Java…
	Slide 75: Let’s do a little Java…
	Slide 76: Let’s do a little Java…
	Slide 77: Let’s do a little Java…
	Slide 78: Let’s do a little Java…
	Slide 79: Let’s do some different Java…
	Slide 80: Let’s do some different Java…
	Slide 81: Let’s do some different Java…
	Slide 82: Let’s do some different Java…
	Slide 83: Let’s do some different Java…
	Slide 84: Let’s do some different Java…
	Slide 85: Let’s do some different Java…
	Slide 86: Let’s do some different Java…
	Slide 87: References and Pointers (review)
	Slide 88: Pointers
	Slide 89: Back to Arrays
	Slide 90: Arrays, Pointers, and Address Calculation
	Slide 91: More Pointer Arithmetic
	Slide 92: More Pointers & Arrays
	Slide 93: Array Example
	Slide 94: Memory Manager (Heap Manager)
	Slide 95: Strings as Arrays (review)
	Slide 96: strlen() again
	Slide 97: Vector Class vs. Arrays

