
ECE/CS 250
Computer Architecture

Summer 2023

Instruction Set Architecture (ISA) and Assembly Language

Tyler Bletsch

Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Alvy Lebeck (Duke), and Amir Roth (Penn)

2

Instruction Set Architecture (ISA)

• ISAs in General

• Using MIPS as primary example

• MIPS Assembly Programming

• Other ISAs

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

4

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

5

What Is a Computer?

• Machine that has storage (to hold instructions and data) and
that executes instructions

• Storage (as seen by each running program)

• Memory:

• 232 bytes for 32-bit machine

• 264 bytes for 64-bit machine [[impossible! mystery for later…]]

• Registers: a few dozen 32-bit (or 64-bit) storage elements

• Live inside processor core

• Instructions

• Move data from memory to register or from register to memory

• Compute on values held in registers

• Switch to instruction other than the next one in order

• Etc.

6

What Is An ISA?

• Functional & precise specification of computer

• What storage does it have? How many registers?
How much memory?

• What instructions does it have?

• How do we specify operands for instructions?

• ISA = “contract” between software and hardware

• Sort of like a “hardware API”

• Specifies what hardware will do when executing each instruction

And how do
we specify
these in bits?

7

Architecture vs. Microarchitecture

• ISA specifies WHAT hardware does, not HOW it does it

• No guarantees regarding these issues:

• How operations are implemented

• Which operations are fast and which are slow

• Which operations take more power and which take less

• These issues are determined by the microarchitecture

• Microarchitecture = how hardware implements architecture

• Can be any number of microarchitectures that implement the same
architecture (Pentium and Core i7 are almost the same
architecture, but are very different microarchitectures)

• Strictly speaking, ISA is the architecture, i.e., the interface
between the hardware and the software

• Less strictly speaking, when people talk about architecture, they’re
also talking about how the architecture is implemented

8

Von Neumann Model of a Computer

• Implicit model of all modern ISAs

• “von NOY-man” (German name)

• Everything is in memory (and perhaps elsewhere)

• instructions and data

• Key feature: program counter (PC)

• PC is the memory address of the currently
executing instruction

• Next PC is PC + length_of_instruction unless
instruction specifies otherwise

• Processor logically executes loop at left

• Instruction execution assumed atomic

• Instruction X finishes before insn X+1 starts

Fetch *PC

Decode

Read Inputs

Execute

Write Output

Next PC

9

Processor
Core

An Abstract 32-bit Von Neumann Architecture

Memory

232 bytes

Holds
instructions
and data

(32-bit) PC

32-bit
address of
current
instruction

registers (each
register holds one
32-bit operand)

• Fetch instruction from PC

• Decode instruction

• Execute instruction

• Read input operand(s)

(registers and/or memory locations and/or

“immediates”)

• Perform operation on input operands

• Write result, if any, in output operand

(register or memory location)

• Change PC to next instruction

10

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

11

Simple, Running Example

// silly C code

int sum, temp, x, y;

while (true){

temp = x + y;

sum = sum + temp;

}

// equivalent MIPS assembly code

loop: lw $1, Memory[1004]

lw $2, Memory[1008]

add $3, $1, $2

add $4, $4, $3

j loop

OK, so what does this assembly code mean?
Let’s dig into each line …

Memory references

don’t quite work

like this…we’ll

correct this later.

12

Simple, Running Example

loop: lw $1, Memory[1004]

lw $2, Memory[1008]

add $3, $1, $2

add $4, $4, $3

j loop

NOTES
“loop:” = line label (in case we need to refer to this instruction’s PC)
lw = “load word” = read a word (32 bits) from memory
$1 = “register 1” → put result read from memory into register 1

Memory[1004] = address in memory to read from (where x lives)

Note: almost all MIPS instructions put destination (where result gets written) first (in
this case, $1)

13

Simple, Running Example

loop: lw $1, Memory[1004]

lw $2, Memory[1008]

add $3, $1, $2

add $4, $4, $3

j loop

NOTES
lw = “load word” = read a word (32 bits) from memory
$2 = “register 2” → put result read from memory into register 2

Memory[1008] = address in memory to read from (where y lives)

14

Simple, Running Example

loop: lw $1, Memory[1004]

lw $2, Memory[1008]

add $3, $1, $2

add $4, $4, $3

j loop

NOTES
add $3, $1, $2= add what’s in $1 to what’s in $2 and put result in $3

15

Simple, Running Example

loop: lw $1, Memory[1004]

lw $2, Memory[1008]

add $3, $1, $2

add $4, $4, $3

j loop

NOTES
add $4, $4, $3= add what’s in $4 to what’s in $3 and put result in $4

Note: this instruction overwrites previous value in $4

16

Simple, Running Example

loop: lw $1, Memory[1004]

lw $2, Memory[1008]

add $3, $1, $2

add $4, $4, $3

j loop

NOTES
j = “jump”
loop = PC of instruction at label “loop” (the first lw instruction above)
sets next PC to the address labeled by “loop”

Note: all other instructions in this code set next PC = PC+1

17

Assembly Code Format

• Every line of program has:
label (optional) – followed by “:”
instruction
comment (optional) – follows “#”

loop: lw $1, Memory[1004] # read from address 1004

lw $2, Memory[1008]

add $3, $1, $2

add $4, $4, $3

j loop # jump back to instruction at label loop

Note: a label is just a convenient way to represent an address so
programmers don’t have to worry about numerical addresses

Also, you don’t indent instructions to “nest” them – it’s flat list.

18

Assembly → Machine Code

• Every MIPS assembly instruction has a unique 32-bit
representation
• add $3, $2, $7 → 00000000010001110001100000100000

• lw $8, Mem[1004] → 10001100000010000000001111101100

• Computer hardware deals with bits

• We find it easier to look at the assembly

• But they’re equivalent! No magical transformation.

• So how do we represent each MIPS assembly instruction with
a string of 32 bits?

19

MIPS Instruction Format

• opcode = what type of operation to perform

• add, subtract, load, store, jump, etc.

• 6 bits → how many types of operations can we specify?

• operands specify: inputs, output (optional), and next PC
(optional)

• operands can be specified with:

• register numbers

• memory addresses

• immediates (values wedged into last 26 bits of instruction)

opcode

(6 bits)

operands

(26 bits)

20

MIPS Instruction Formats

• 3 variations on theme from previous slide

• All MIPS instructions are either R, I, or J type

• Note: all instructions have opcode as first 6 bits

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type

21

MIPS Format – R-Type Example

• add $1, $2, $3 # $1 = $2 + $3

• add Rd, Rs, Rt # d=dest, s=source, t=??

• Op = 6-bit code for “add” = 000000

• Rs = 00010

• Rt = 00011

• Rd = 00001

• don’t worry about Sh and Func fields for now

opcode Rs Rt Rd Sh and Func

000000 00010 00011 00001 00000100000

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

Note: the MIPS
architecture has 32
registers. Therefore, it
takes log232=5 bits to
specify any one of them.

If you’re looking back at this slide later on: Okay, let’s talk about Sh and Func.
Sh is just the shift amount, used only for bit shifting instructions (sll, srl, srv).

Func is the interesting one. In order to allow more opcodes than just the 26=64 that you’d expect, opcode 000000 is special. It means
“R-type instruction whose actual verb is given in the Func field”. So an R-type add is encoded with Op=000000 and Func=100000.

Here’s two references with the actual tables involved: this page covers it well, this book excerpt shows it in Fig A.10.2.

https://www.math.unipd.it/~sperduti/ARCHITETTURE-1/mips32.pdf
https://www.math.unipd.it/~sperduti/ARCHITETTURE-1/mips32.pdf

22

Uh-Oh

• Let’s try a lw (load word) instruction

• lw $1, Memory[1004]

• 6 bits for opcode

• That leaves 26 bits for address in memory

• But an address is 32 bits long!

• What gives?

opcode

(6 bits)

operands

(26 bits)

23

Memory Operand Addressing (for loads/stores)

• We have to use indirection to specify memory operands

• Addressing mode: way of specifying address
• (Register) Indirect: lw $1,($2) # $1=memory[$2]

• Displacement: lw $1,8($2) # $1=memory[$2+8]

• Index-base: lw $1,($2,$3) # $1=memory[$2+$3]

• Memory-indirect: lw $1,@($2) # $1=memory[memory[$2]]

• Auto-increment: lw $1,($2)+ # $1=memory[$2++]

• What high-level language idioms are these used for?

^ Last three not supported in MIPS

24

MIPS Addressing Modes

• MIPS implements only displacement addressing mode

• Why? Experiment on VAX (ISA with every mode) found distribution

• Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%

• 80% use displacement or register indirect (=displacement 0)

• I-type instructions: 16-bit displacement

• Is 16-bits enough?

• Yes! VAX experiment showed 1% accesses use displacement >215

Op(6) Rs(5) Rt(5) Immed(16)I-type

lw $1,8($2)

100011 00001 000000000000100000010

25

Back to the Simple, Running Example

• assume $6=1004=address of variable x in C code example

• and recall that 1008=address of variable y in C code example

loop: lw $1, Memory[1004] → lw $1, 0($6) # put val of x in $1

lw $2, Memory[1008] → lw $2, 4($6) # put val of y in $2

add $3, $1, $2

add $4, $4, $3

j loop

26

MIPS Format – I-Type Example

• lw $1, 0($6) // $1 = Memory [$6 + 0]

• lw Rt, immed(Rs)

• Opcode = 6-bit code for “load word” = 100011

• Rs = 6 = 00110

• Rt = 1 = 00001

• Immed = 0000 0000 0000 0000 = 010

opcode Rs Rt immed

100011 00110 00001 0000000000000000

Op(6) Rs(5) Rt(5) Immed(16)I-type

27

• Alignment: require that objects fall on address that
is multiple of their size

• 32-bit integer

• Aligned if address % 4 = 0 [% is symbol for “mod”]

• (Binary ends in 00)

• (Hex ends in 0, 4, 8, or C)

• 64-bit integer?

• Aligned if ?

• Question: what to do with unaligned accesses
(uncommon case)?

• Support in hardware? Makes all accesses slower

• Trap to software routine? Possibility

• MIPS? ISA support: unaligned access using two
instructions:
ulw @XXXX10 = lwl @XXXX10; lwr @XXXX10

0 1 2 3

Aligned

Not

Memory Addressing Issue: Alignment

Byte #

28

Declaring Space in Memory for Data

• Add two numbers x and y:
.text # declare text segment

main: # label for main

la $3, x # la = “load address” of x into $3

lw $4, 0($3) # load value of x into $4

la $3, y # load address of y into $3

lw $5, 0($3) # load value of y into $5

add $6, $4,$5 # compute x+y, put result in $6

…

.data # declare data segment

x: .word 10 # initialize x to 10

y: .word 3 # initialize y to 3

emptystr: .space 32 # 32 bytes of nulls

hellostr: .asciiz “hello” # 6 bytes incl. null terminator

◄ What memory region?
Static (AKA global)

29

MIPS Operand Model

• MIPS is a “load-store” architecture

• All computations done on values in registers

• Can only access memory with load/store instructions

• 32 32-bit integer registers

• Actually 31: $0 is hardwired to value 0

• Also, certain registers conventionally used for special purposes

• We’ll talk more about these conventions later

• 32 32-bit Floating Point registers

• Can also be treated as 16 64-bit Floating Point registers

• HI,LO: destination registers for multiply/divide

30

How Many Registers?

• Registers faster than memory → have as many as possible? No!

• One reason registers are faster is that there are fewer of them

• Smaller storage structures are faster (hardware truism)

• Another is that they are directly addressed (no address calc)

• More registers → larger specifiers → fewer regs per instruction

• Not everything can be put in registers

• Structures, arrays, anything pointed-to

• Although compilers are getting better at putting more things in

• More registers means more saving/restoring them

• At procedure calls and context switches

• Number of registers:
• 32-bit x86: 8

• MIPS32: 32

• ARM: 16

• 64-bit x86: 16 (plus some weird special purpose ones)

31

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

MIPS Register Usage/Naming Conventions

• It turns out the registers also have names as well as numbers

• Why? We’ll see later.

• For now: $s and $t are general purpose, others are special-purpose.

32

System calls

• How do we do Input/Output (read/print from console, etc.)?

• We ask an Operating System (OS) to do it for us

• The OS manages hardware so we don’t have to worry about it

• How do we, a user program, ask the OS for something?

• Special hardware support: system calls

• It’s like a summoning ritual:

1. Place the right values in certain registers

2. Believe

3. Issue a syscall instruction

4. Thing you wanted to print gets printed,
thing you wanted to read appears in a register,
etc.

33

System Call Instruction

• What does our system call ritual look like?

1. Put a “system call code” into register $v0

• Example: if $v0==1, then syscall will print an integer

2. Put arguments (if any) into registers $a0, $a1, or $f12 (for floating
point)

3. Issue the syscall

4. Results returned in registers $v0 or $f0 (for floating point)

34

SPIM System Call Support

code service ArgType Arg/Result

1 print int Provide int in $a0

2 print float Provide float in $f12

3 print double Provide double in $f12 & $f13

4 print string Provide string buffer address $a0

5 read integer Get back int in $v0

6 read float Get back float in $f0

7 read double Get back double in $f0 & $f1

8 read string Provide $a0=buffer, $a1=length

9 sbrk $a0=amount Get back address in $v0

10 exit

Plus a few more for general file IO which we shouldn’t need.

Asks the OS to allocate some memory on the heap. This is what malloc is based on.

In fact, as far as you’re concerned, in MIPS, the sbrk syscall is your malloc!

35

Syscall example

addone.s: Take in an integer, then return that integer plus one.
Example for ECE/CS 250
Updated by Tyler Bletsch 2022-05-18

.text # Code segment

.align 2 # ensure data segment items align to 2^2 = 4 bytes

.globl main # indicate that 'main' label is a function
main: # MAIN procedure Entrance

li $v0, 4 #\
la $a0, prompt # > Print a string for the input prompt
syscall #/

li $v0, 5 #\
syscall #/ Read a number
the number is now in $v0

addi $t0, $v0, 1 # Add one to the number and put the result in $t0 for use later

li $v0, 4 #\
la $a0, response # > Print a prefix message for the output
syscall #/

move $a0, $t0 # Copy the number to be printed from $t0 into $a0,

since that's where it has to be for the syscall
li $v0, 1 #\
syscall #/ Print the number in $a0

li $v0, 0 # \ return 0 from main
jr $ra # /

.end main # end of main function

.data # Start of data segment

prompt: .asciiz "Give me a number: "
response: .asciiz "That number plus one is: "

36

Control Instructions – Changing the PC

• Most instructions set next PC = PC+1

• But what about handling control flow?

• Conditional control flow: if condition is satisfied, then change
control flow

• if/then/else

• while() loops

• for() loops

• switch

• Unconditional control flow: always change control flow

• procedure calls

• How do we implement control flow in assembly?

37

Control Instructions

• Three issues:

1. Testing for condition: Is PC getting changed?

2. Computing target: If so, then where to?

3. Dealing with procedure calls (later)

• Types of control instructions
• conditional branch: beq, beqz, bgt, etc.

• if condition is met, “branch” to some new PC; else PC=PC+1

• many flavors of branch based on condition (<, >0, <=, etc.)

• unconditional jump: j, jr, jal, jalr

• change PC to some new PC

• several flavors of jump based on how new PC is specified

38

Control Instructions I: Condition Testing

• Three options for testing conditions

• Option I: implicit condition codes (CCs) (not used in MIPS except for floats)

subi $2,$1,10 // sets “negative” CC

bn target // if negative CC set, goto target

bn = “Branch if Negative”

• Option II: compare and branch instructions (sorta used in MIPS)

beq $1,$2,target // if $1==$2, goto target

beq = “Branch if Equal”

• Option III: condition registers, separate branch insns (in MIPS)

slti $2,$1,10 // set $2 if $1<10

slti = “Set Less-Than Immediate”

bnez $2,target // if $2 != 0, goto target

bnez = “Branch if Not-Equal to Zero”

not

actual

MIPS

code

actual

MIPS

actual

MIPS

39

MIPS Conditional Branches

• MIPS uses combination of options II and III
• (II) Compare 2 registers and branch: beq, bne

• Equality and inequality only

+ Don’t need adder for comparison

• (II) Compare 1 register to zero and branch: bgtz, bgez, bltz, blez

• Greater/less than comparisons

+ Don’t need adder for comparison

• (III) Set explicit condition registers: slt, sltu, slti, sltiu, etc.

• Why?

• 86% of branches in programs are (in)equalities or comparisons to 0

• OK to take two insns to do remaining 14% of branches

• Make the common case fast (MCCF)!

40

Control Instructions II: Computing Target

• Three options for computing targets (target = next PC)

• Option A: PC-relative (next PC = current PC +/- some value)

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Option B: Absolute (next PC = some value)

• Position independent outside procedure

• Used for procedure calls

• Option C: Indirect (next PC = contents of a register)

• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switches

• How far do you need to jump?

• Typically not so far within a procedure (they don’t get very big)

• Further from one procedure to another

41

MIPS: Computing Targets

• MIPS uses all 3 ways to specify target of control insn
• PC-relative → conditional branches: bne, beq, blez, etc.

• 16-bit relative offset, <0.1% branches need more

• PC = PC + 4 + immediate if condition is true (else PC=PC+4)

• Absolute → unconditional jumps: j target

• 26-bit offset (can address 228 words < 232
→ what gives?)

• Indirect → Indirect jumps: jr $31

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

42

Control Idiom: If-Then-Else

• Control idiom: if-then-else
if (A < B) A++; // assume A in register $1

else B++; // assume B in $2

slt $3,$1,$2 // if $1<$2, then $3=1

beqz $3,else // branch to else if !condition

addi $1,$1,1

j endif // jump to endif

else:

addi $2,$2,1

endif:

General form of if/then/else
1. If <CONDITION> is false, branch to else

2. <THEN-BODY>
3. j endif
3. else:

4. <ELSE-BODY>
5. endif:

General form of if/then (no else)
1. If <CONDITION> is false, branch to endif

2. <THEN-BODY>
3. endif:

43

Control Idiom: While loop

• Control idiom: while loop
while (A < B) { A++; } // assume A in register $1

loop:

slt $3,$1,$2 // if $1<$2, then $3=1

beqz $3,endloop // branch to escape if !condition

addi $1,$1,1

j loop // loop to top

endloop:

General form of ‘while’ loop
1. loop:

2. If <CONDITION> is false, branch to endloop

3. <BODY>
4. j loop
5. endloop:

44

Control Idiom: Arithmetic For Loop

• Second idiom: “for loop” with arithmetic induction

int A[100], sum, i, N;

for (i=0; i<N; i++){ // assume: i in $1, N in $2

sum += A[i]; // &A[i] in $3, sum in $4

}

li $1, 0 # initialize i to 0

Not shown: initialize $3 to A (address of start of array)

loop: slt $8,$1,$2 # if i<N, then $8=1; else $8=0

beqz $8,endloop # test for exit at loop header

lw $9,0($3) # $9 = A[i] (not &A[i])

add $4,$4,$9 # sum = sum + A[i]

addi $3,$3,4 # increment &A[i] by sizeof(int)

addi $1,$1,1 # i++

j loop # backward jump

endloop:
General form of ‘for’ loop

1. Do <INITIALIZER>
2. loop:

3. If <CONDITION> is false, branch to endloop

4. <BODY>
5. <INCREMENTER>
6. j loop
7. endloop:

45

Revisiting Control Idioms: Pointer For Loop

• Control idiom: for loop with pointer induction
struct node_t { int val; struct node_t *next; };

struct node_t *p, *head;

int sum=0;

for (p=head; p!=NULL; p=p->next) // p in $1, head in $2

sum += p->val // sum in $3

li $3, 0 # sum = 0

move $1,$2 # p = head

loop: beq $1,$0,endloop # if p==0 (NULL), goto exit

lw $5,0($1) # $5 = *p = p→val

add $3,$3,$5 # sum = sum + p→val

lw $1,4($1) # p = *(p+1) = p→next

j loop # go back to top of loop

endloop: General form of ‘for’ loop

1. Do <INITIALIZER>
2. loop:

3. If <CONDITION> is false, branch to endloop

4. <BODY>
5. <INCREMENTER>
6. j loop
7. endloop:

46

Some of the Most Important Instructions

• Math/logic
• add, sub, mul, div

• Access memory
• lw = load (read) word:
lw $3, 4($5) # $3 = memory[$5+4]

• sw = store (write) word:
sw $3, 4($5) # memory[$5+4] = $3

• Change PC, perhaps conditionally
• Branches: blt, bgt, beqz, etc.

• Jumps: j, jr, jal (will see last two later)

• Handy miscellaneous instructions
• la = load address

• move: move $1, $5 # copies (doesn’t move!) $5 into $1

• li = load immediate:
li $5, 42 # writes value 42 into $5

(terrible name for instr!! not a load – no memory access!)

Note: sw is unusual in that the
destination of instruction isn’t
first operand!

47

Clarifying “load” instructions (1)

int array[] = {55, 27, 19, 88};

char str[] = "hello";

int main() {

int r1 = 5;

int* r2 = array;

int r3 = *r2;

int r4 = r1;

}

.data

array: .word 55, 27, 19, 88

str: .asciiz "hello"

.text

main:

li $1, 5

la $2, array

lw $3, 0($2)

move $4, $1

• “Load immediate” isn’t really a load (it doesn’t come from memory)

• “Load address” is just a “load immediate”, but the assembler figures out
the immediate from labels

• “Move” just copies values between registers

• Of the instructions shown, only “load word” actually loads from memory

C code MIPS assembly code

48

Clarifying “load” instructions (2)

CPU

Reg 1

Reg 2

Reg 3

Reg 31

…

Memory

…

Active instruction: li $1, 5

CPU

Reg 1

Reg 2

Reg 3

Reg 31

…

Memory

…

Active instruction: la $1, thing

Load immediate instruction: li

Load immediate instruction: la

CPU

Reg 1

Reg 2

Reg 3

Reg 31
…

Memory

0x1234

…

Active instruction: lw $2, 4($1)

CPU

Reg 1

Reg 2

Reg 3

Reg 31

…

Memory

…

Active instruction: move $3, $2

Load word instruction: lw

Move instruction: move

=5

←0x7f20

=0x7f20

←0x7f24
=0x1234

0x1234

=0x1234

Note: we didn’t actually

read from memory!

Here we *did* read from memory!

0x7f20

49

What about store word (sw)?

CPU

Reg 1

Reg 2

Reg 3

Reg 31
…

Memory

0x1234

…

Active instruction: lw $2, 4($1)

Load word instruction: lw

←0x7f24
=0x1234

CPU

Reg 1

Reg 2

Reg 3

Reg 31

…

Memory

…

Active instruction: sw $2, 4($1)

Store word instruction: sw

←0x7f24
0x5678

=0x5678

Difference between lw and sw:
• lw goes from memory to register

• sw goes from register to memory

50

Structs in assembly language

• Consider this struct:

struct student {

int id;

char name[16];

float gpa;

}

int id char name[16] float gpa

Offset from start of struct: 0 4 20 24

sizeof(struct student) == 24 bytes

// size = 4

// size = 16

// size = 4

If we have a pointer to this struct in $1, then:
• Can load the id with: lw $2, 0($1)

• Can load the first character of the name with: lb $2, 4($1)
Why just first character? It’s a string! Can’t ever load it all into a register!

• Can load the float with: l.s $f2, 20($1)
What’s this l.s thing? It’s like lw, but for floats. You’ll learn float instructions on your own in Homework 2

51

Many Other Operations

• Many types of operations

• Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned)

• FP arithmetic: add, sub, mul, div, sqrt

• Integer logical: and, or, xor, not, sll, srl, sra

• Packed integer: padd, pmul, pand, por… (saturating/wraparound)

• What other operations might be useful?

• More operation types == better ISA??

• DEC VAX computer had LOTS of operation types

• E.g., instruction for polynomial evaluation (no joke!)

• But many of them were rarely/never used (ICQ: Why not?)

• We’ll talk more about this issue later …

52

Flavors of Math Instructions

• We already know about add
• add $3, $4, $5

• Also have addi = “add immediate” [Note: I-type instr]
• addi $3, $4, 42 # $3 = $4 + 42

• And addu = “add unsigned”
• addu $3, $4, $5

same as add, but treat values as unsigned ints

• And even addiu = “add immediate unsigned”
• addiu $3, $4, 42

• Same variants for sub, etc.

53

Flavors of Load/Store Instructions

• We already know about lw and sw
• lw $3, 12($5)

• sw $4, -4($6)

• Also have load/store instructions that operate at non-word-size
granularity
• lb = load byte, lh = load halfword

• sb = store byte, sh = store halfword

• Loads can access smaller size but always write all 32 bits of
destination register

• By default, sign-extend to fill register

• Unless specified as unsigned with instrs: lbu, lhu

54

Datatypes

• Datatypes

• Software view: property of data

• Hardware view: data is just bits, property of operations

• Same 32 bits could be interpreted as int or as instruction, etc.

• Hardware datatypes

• Integer: 8 bits (byte), 16b (half), 32b (word), 64b (long)

• IEEE754 FP: 32b (single-precision), 64b (double-precision)

• Packed integer: treat 64b int as 8 8b int’s or 4 16b int’s

• Packed FP

55

Procedure Calls: A Simple, Running Example

main: li $1, 1 # $1 = 1
li $2, 2 # $2 = 2
$3 = call foo($1, $2) # this is NOT actual MIPS code
add $4, $3, $3
{rest of main}
{end program}

foo: sub $5, $1, $2
return ($5)

--
main is the caller
foo is the callee

56

Procedure Calls: Jump-and-Link and Return

main: li $1, 1
li $2, 2
$3 = call foo($1, $2) → jal foo # jal = jump and link

add $4, $3, $3
{rest of main}

foo: sub $5, $1, $2
return ($5) → jr $ra

--
jal does two things:

1) sets PC = foo (just like a regular jump instruction)
2) “links” to PC after the jal → saves that PC in register $31

MIPS designates $31 for a special purpose: it’s the return address ($ra)

jr sets PC to the value in $ra → computer executes add instr after jal

57

Procedure Calls: Why Link?

main: li $1, 1
li $2, 2
$3 = call foo($1, $2) → j foo # j = jump

r1: add $4, $3, $3
add $1, $1, $4
j foo

r2: sub $2, $1, $3
{rest of main}

foo: sub $5, $1, $2
return ($5) → OK, now what?? Jump to r1? Jump to r2?

--
Since function can be called from multiple places, must explicitly
remember (link!) where called from.

58

Procedure Calls: Passing Args & Return Values

main: li $1, 1
li $2, 2
move $a0, $1 # pass first arg in $a0
move $a1, $2 # pass second arg in $a1
jal foo
add $4, $3, $3 → add $4, $v0, $v0 # return value in $v0 now

{rest of main}

foo: sub $5, $a0, $a1
move $v0, $5 # pass return value in $v0
jr $ra

--
Must use specific registers for passing arguments and return values.
MIPS denotes $a0-$a3 as argument registers.
MIPS denotes $v0-$v1 as return value registers.

59

Passing Arguments by Value or by Reference

• Passing arguments

• By value: pass contents [$3+4] in $a0

int n; // n in 4($3)

foo(n);

lw $a0,4($3)

jal foo

• By reference: pass address $3+4 in $a0

int n; // n in 4($3)

bar(&n);

addi $a0,$3,4

jal bar

60

Procedures Must Play Nicely Together

main: li $1, 1
li $2, 2
move $a0, $1
move $a1, $2
jal foo
add $4, $v0, $v0
add $6, $4, $1 # $1 should still be 1
{rest of main}

foo: sub $5, $a0, $a1
li $1, 3 # $1 now equals 3
add $5, $5, $1
move $v0, $5
jr $ra

What would happen if main uses $1 after calling
foo but foo also uses $1?

Not good, right? Let’s see why …

61

Brief Detour to HLL Programming

int main (){
int x=1;
int y=2;
int z = foo(x,y);
z = z + x;

}

int foo(int a1, int a2){
// code written by other person
return a1+a2;

}

Programmer of main() assumes that x will still
equal 1 after call to foo(). But that won’t
happen if foo() messes with registers that x was
using.

62

Procedures Must Play Nicely Together

main: li $1, 1
li $2, 2
move $a0, $1
move $a1, $2
jal foo
add $4, $v0, $v0
add $6, $4, $1 # $1 should still be 1
{rest of main}

foo: sub $5, $a0, $a1
li $1, 3 # $1 now equals 3
add $5, $5, $1
move $v0, $5
jr $ra

This seems contrived. Why can’t the
programmer of foo just not use $1 Problem
solved, right?

Nope! In real-world, one person doesn’t write
all of the software. My code must play well with
your code.

63

Procedures Use the Stack

• In general, procedure calls obey stack discipline

• Local procedure state contained in stack frame

• Where we can save registers to avoid problem in last slide

• When a procedure is called, a new frame opens

• When a procedure returns, the frame collapses

• Procedure stack is in memory

• Starts at “top” of memory and grows down

A A

B

A

B

C

A

B

AA calls B

B calls C

C returns

B returns

64

Preserving Registers Across Procedures

main: li $1, 1
li $2, 2
move $a0, $1
move $a1, $2
jal foo
add $4, $v0, $v0
add $6, $4, $1
{rest of main}

foo: sub $5, $a0, $a1
li $1, 3
add $5, $5, $1
move $v0, $5
jr $ra

memory

main’s frame
stack pointer
(during main) Stack pointer

is address of
bottom of

current stack
frame. Always
held in register

$sp.

65

Preserving Registers Across Procedures

main: li $1, 1
li $2, 2
move $a0, $1
move $a1, $2
jal foo
add $4, $v0, $v0
add $6, $4, $1
{rest of main}

foo: make frame (move stack ptr)
save $1 in stack frame
sub $5, $a0, $a1
li $1, 3
add $5, $5, $1
move $v0, $5
restore $1 from stack frame
destroy frame
jr $ra

memory

main’s frame

stack pointer
(during foo)

foo’s frame

66

Preserving Registers Across Procedures

main: li $1, 1
li $2, 2
move $a0, $1
move $a1, $2
jal foo
add $4, $v0, $v0
add $6, $4, $1
{rest of main}

foo: make frame → subi $sp, $sp, 4
save $1 on stack frame → sw $1, 0($sp)

sub $5, $a0, $a1
li $1, 3
add $5, $5, $1
move $v0, $5
restore $1 from stack frame → lw $1, 0($sp)
destroy frame → addi $sp, $sp, 4

jr $ra

memory

main’s frame

$sp
(during foo)

foo’s frame

67

Who Saves/Restores Registers?

main: li $1, 1
li $2, 2
move $a0, $1
move $a1, $2
jal foo
add $4, $v0, $v0
add $6, $4, $1
{rest of main}

foo: subi $sp, $sp, 4
sw $1, 0($sp)
sub $5, $a0, $a1
li $1, 3
add $5, $5, $1
move $v0, $5
lw $1, 0($sp)
addi $sp, $sp, 4
jr $ra

In this example, the callee
(foo) saved/restored

registers. But why didn’t
the caller (main) do that

instead?

memory

main’s frame

$sp
(during foo)

foo’s frame

68

Two strategies for ensuring good happy registers

Caller-saved registers

• Right before a call, save the
registers whose values you care
about to the stack

• Right after it returns, restore them

Callee-saved registers

• At the top of the function, save
registers you will modify to the stack

• Right before you return, restore them

Caller

Callee

I don’t trust that function I’m calling not to

screw up my registers…he might consider

them to be temporary! I’ll back them up to

the stack first and restore them after…

Wooo, the caller was right, I’m

trashing these registers!!!!!!!

Caller

Callee

I can trust the callee, he wouldn’t mess

with my registers. They’re safe.

Oh whoops, I just used some of

these registers! Luckily I saved

them at the start…I’ll restore

them right before I return and

the caller will never know!

func1:

addiu $sp, $sp, -4

...

sw $t0, 0($sp)

jal func2

lw $t0, 0($sp)

...

addiu $sp, $sp, 4

func3:

...

jal func4

...

func4:

addiu $sp, $sp, -4

sw $s0, 0($sp)

...

use $s0 somehow

...

lw $s0, 0($sp)

addiu $sp, $sp, 4

69

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

MIPS Register Usage/Naming Conventions

Important: The only general purpose registers are the $s and $t registers.

Everything else has a specific usage:

$a = arguments, $v = return values, $ra = return address, etc.

Also 32 floating-point registers: $f0 .. $f31

$f0,$f2: Return value (like $v)
$f4..$f10: Temp (like $t)
$f12..$f14: Arguments (like $a)
$f16..$f18: Temp (like $t)
$f20..$f30: Saved (like $s)

70

MIPS/GCC Procedure Calling Conventions

Calling Procedure

• Step-1: Pass the arguments

• First four arguments (arg0-arg3) are passed in registers $a0-$a3

• Remaining arguments are pushed onto the stack

(in reverse order, arg5 is at the top of the stack)

• Step-2: Save caller-saved registers

• Save registers $t0-$t9 if they contain live values at the call site

• Step-3: Execute a jal instruction

• Step-4: Restore any $t registers you saved

71

MIPS/GCC Procedure Calling Conventions (cont.)

Called Routine

• Step-1: Establish stack frame

• Subtract the frame size from the stack pointer
addiu $sp, $sp, -<frame_size>

• Step-2: Save callee-saved registers in the frame

• Register $ra is saved if routine makes a call

• Registers $s0-$s7 are saved if they are used

Negative frame-size,
e.g. -8 to reserve
space for 2 words.

72

MIPS/GCC Procedure Calling Conventions (cont.)

On return from a call

• Step-1: Put returned values in registers $v0 and $v1
(if values are returned)

• Step-2: Restore callee-saved registers

• $ra, $s0 - $s7

• Step-3: Pop the stack

• Add the frame size to $sp
addiu $sp, $sp, <frame-size>

• Step-4: Return

• Jump to the address in $ra
jr $ra

73

Which flavor of register to use?

• When to use callee-saved $s register vs
caller-saved $t register?

• Choose to minimize saving/restoring needed

• Can get complicated in practice

• Simple heuristic (gives decent efficiency):

• If your function calls another function, use $s registers
(if you make 5 calls, you’d need to save/restore a $t register 5 times,
this way you just save it once)

• If your function does not call other functions, use $t registers
(no need to save/restore at all!)

vs.

Note: $ra is considered a callee-saved register,
and is trashed if your function makes a call!
Gotta save/restore $ra if you call anything!

74

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

PC

75

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

PC

76

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

PC

$ra

77

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

PC

$ra

78

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

PC

$ra

79

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $raPC

$ra

80

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

$raPC

81

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

$ra

PC

82

The importance of saving $ra

f:

...

...

jal g

...

...

jr $ra

g:

...

...

jal h

...

...

jr $ra

h:

...

...

...

...

...

jr $ra

$raPC
Where we should

have gone!!

83

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

PC

Let’s try this again, but we’ll save/restore

$ra on the stack properly.

84

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

PC

85

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

PC

$ra

86

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

PC

$raThe copy of $ra

saved in g’s stack

87

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

PC

$raThe copy of $ra

saved in g’s stack

88

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

PC

$raThe copy of $ra

saved in g’s stack

89

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $raPC

$raThe copy of $ra

saved in g’s stack

90

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

$raThe copy of $ra

saved in g’s stack
PC

91

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

$raThe copy of $ra

saved in g’s stack

PC

92

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

$ra
The copy of $ra

saved in g’s stack

PC

93

The importance of saving $ra

f:

<save $ra>

...

...

jal g

...

...

<restore $ra>

jr $ra

g:

<save $ra>

...

...

jal h

...

...

<restore $ra>

jr $ra

h:

...

...

...

...

...

jr $ra

$raPC

94

Functions vs inner labels

• To the assembler, labels are just labels – no difference

• To programmer, it’s wise to distinguish:

• Function entry point: Meets calling conventions, usable by others

• Inner label: Bookmark inside function for a loop/conditional

• Tip: Start all inner labels with an underscore to distinguish

takes a char* string, returns number of space characters

count_spaces:

we'll use the provided a0 as our moving pointer

li $t1, 32 # value of a space character

li $v0, 0 # running total starts at 0

_loop:

lb $t0, 0($a0) # get this character

beqz $t0, _endloop # break on null terminator

bne $t0, $t1, _dontincrement # check if space

addi $v0, $v0, 1 # if so, increment

_dontincrement:

addi $a0, $a0, 1 # increment pointer

j _loop # regardless, loop

_endloop:

jr $ra # return

95

Keep your functions separate

• Functions should be contiguous with one single entry
point and clearly defined return point(s)

takes a char* string, returns number of space characters

count_spaces:

we'll use the provided a0 as our moving pointer

li $t1, 32 # value of a space character

li $v0, 0 # running total starts at 0

_loop:

lb $t0, 0($a0) # get this character

beqz $t0, _endloop # break on null terminator

j _skip # jump over unrelated stuff

send_email_to_grandma:

<code> # wait.

<code> # what?

<code> # why is there another

jr $ra # function inside this one??

_skip:

bne $t0, $t1, _dontincrement # check if space

addi $v0, $v0, 1 # if so, increment

_dontincrement:

addi $a0, $a0, 1 # increment pointer

j _loop # regardless, loop

_endloop:

jr $ra # return

96

Let’s walk through simple.s

• See simple.s, linked from course site by recitation 3

97

Factorial (skimming base case of recursion!)

fact: addi $sp,$sp,-8 # open frame (2 words)

sw $ra,4($sp) # save return address

sw $s0,0($sp) # save $s0

handle base case (not real code here)

if $a0=1, set $v0=1 and jump to _clean

move $s0,$a0 # copy $a0 to $s0

addi $a0,$a0,-1 # pass arg via $a0

jal fact # recursive call

mul $v0,$s0,$v0 # value returned via $v0

_clean: lw $s0,0($sp) # restore $s0

lw $ra,4($sp) # restore $ra

addi $sp,$sp,8 # collapse frame

jr $ra # return, value in $v0

98

Getting the words right

• My hypothesis: the way you phrase things can indicate
good/bad understanding of this material

• Which of the phrases below make sense?

Statement Makes sense?

I have an int in my register
Yes

I have a string in my register
No, but your register can point to a string

I have a float in my register
Yes, assuming it’s a float register ($f)

I have a struct in my register
No, but your register can point to a struct

My register points to an int
Yes

My register points to a string
Yes

My register points to a struct
Yes

68 bytes from pointer $t0 is a place in a register
No, registers are of fixed, small size. They don’t live in memory.

68 bytes from pointer $t0 is a place in memory
Yes

99

All of MIPS in two pages

• Print this quick reference linked from the course page

100

Calling convention summary

• Privacy:

• A function may not assume the state of any registers, except that $a registers
have arguments and $ra has the return address. Put return value into $v
register(s).

• Callee-saved:

• A function may not leave $s registers in a modified state when returning.

• At the top of a function, save any $s/$ra registers that will be changed; restore
right before returning

• Caller-saved:

• When making a call, save any $t registers you care about; restore right after it
returns.

• Minimize this by using $s registers in this case where possible.

• Stack frame:

• At the top of a function, reserve space (decrementing $sp) for any saving
needed (for both $s/$ra and $t) as well as any local variables needing actual
memory addresses as opposed to registers. Restore $sp before returning.

101

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

102

What Makes a Good ISA?

• Programmability

• Easy to express programs efficiently?

• Implementability

• Easy to design high-performance implementations (i.e.,
microarchitectures)?

• Compatibility

• Easy to maintain programmability as languages and programs evolve?

• Easy to maintain implementability as technology evolves?

103

Programmability

• Easy to express programs efficiently?

• For whom?

• Human

• Want high-level coarse-grain instructions

• As similar to HLL as possible

• This is the way ISAs were pre-1985

• Compilers were terrible, most code was hand-assembled

• Compiler

• Want low-level fine-grain instructions

• Compiler can’t tell if two high-level idioms match exactly or not

• This is the way most post-1985 ISAs are

• Optimizing compilers generate much better code than humans

• ICQ: Why are compilers better than humans?

104

Implementability

• Every ISA can be implemented

• But not every ISA can be implemented well

• Bad ISA → bad microarchitecture (slow, power-hungry, etc.)

• We’d like to use some of these high-performance
implementation techniques

• Pipelining, parallel execution, out-of-order execution

• We’ll discuss these later in the semester

• Certain ISA features make these difficult

• Variable length instructions

• Implicit state (e.g., condition codes)

• Wide variety of instruction formats

105

Compatibility

• Few people buy new hardware if it means they have to buy
new software, too

• Intel was the first company to realize this

• ISA must stay stable, no matter what (microarch. can change)

• x86 is one of the ugliest ISAs EVER, but survives

• Intel then forgot this lesson: IA-64 (Itanium) was a new ISA*

• Backward compatibility: very important

• New processors must support old programs (can’t drop features)

• Forward (upward) compatibility: less important

• Old processors must support new programs

• New processors only re-define opcodes that trapped in old ones

• Old processors emulate new instructions in low-level software

106

RISC vs. CISC

• RISC: reduced-instruction set computer

• Coined by Patterson in early 80’s (ideas originated earlier)

• CISC: complex-instruction set computer

• Not coined by anyone, term didn’t exist before “RISC”

• Religious war (one of several) started in mid 1980’s

• RISC (MIPS, Alpha, Power) “won” the technology battles

• CISC (IA32 = x86) “won” the commercial war

• Compatibility a stronger force than anyone (but Intel) thought

• Intel beat RISC at its own game … more on this soon

107

The Setup

• Pre-1980

• Bad compilers

• Complex, high-level ISAs

• Slow, complicated, multi-chip microarchitectures

• Around 1982

• Advances in VLSI made single-chip microprocessor possible…

• Speed by integration, on-chip wires much faster than off-chip

• …but only for very small, very simple ISAs

• Compilers had to get involved in a big way

• RISC manifesto: create ISAs that…

• Simplify single-chip implementation

• Facilitate optimizing compilation

108

The RISC Tenets

• Single-cycle execution (simple operations)

• CISC: many multi-cycle operations

• Load/store architecture

• CISC: register-memory and memory-memory instructions

• Few memory addressing modes

• CISC: many modes

• Fixed instruction format

• CISC: many formats and lengths

• Reliance on compiler optimizations

• CISC: hand assemble to get good performance

Summary

(1) Make it easy to implement in hardware

(2) Make it easy for compiler to generate code

109

Intel 80x86 ISA (aka x86 or IA-32)

• Binary compatibility across generations

• 1978: 8086, 16-bit, registers have dedicated uses

• 1980: 8087, added floating point (stack)

• 1982: 80286, 24-bit

• 1985: 80386, 32-bit, new instrs → GPR almost

• 1989-95: 80486, Pentium, Pentium II

• 1997: Added MMX instructions (for graphics)

• 1999: Pentium III

• 2002: Pentium 4

• 2004: “Nocona” 64-bit extension (to keep up with AMD)

• 2006: Core2

• 2007: Core2 Quad

• 2013: Haswell – added transactional mem features

110

80x86 Registers, Addressing Modes, Instructions

• Eight 32-bit registers (not truly general purpose)

• EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

• (Sixteen registers in modern 64-bit, plus several ‘weird’ registers)

• Six 16-bit registers for code, stack, & data

• 2-address ISA

• One operand is both source and destination

• NOT a Load/Store ISA

• One operand can be in memory

• Variable size instructions: 1-byte to 17-bytes, e.g.:

• Jump (JE) 2-bytes

• Push 1-byte

• Add Immediate 5-bytes

111

How Intel Won Anyway

• x86 won because it was the first 16-bit chip by 2 years

• IBM put it into its PCs because there was no competing choice

• Rest is historical inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…

• Because Intel (and AMD) sells the most processors…

• It has the most money…

• Which it uses to hire more and better engineers…

• Which it uses to maintain competitive performance …

• And given equal performance compatibility wins…

• So Intel (and AMD) sells the most processors…

• Moore’s law has helped Intel in a big way

• Most engineering problems can be solved with more transistors

112

Current Approach: Pentium Pro and beyond

• Instruction decode logic translates into micro-ops

• Fixed-size instructions moving down execution path

• Execution units see only micro-ops

+ Faster instruction processing with backward compatibility

+ Execution unit as fast as RISC machines like MIPS

– Complex decoding

– We work with MIPS to keep decoding simple/clean

– Learn x86 on the job!

Learn exactly how this all works in ECE 552 / CS 550

113

Concluding Remarks

1. Keep it simple and regular

• Uniform length instructions

• Fields always in same places

2. Keep it simple and fast

• Small number of registers

3. Make the common case fast

• Compromises inevitable → there is no perfect ISA

114

Outline

• What is an ISA?

• Assembly programming (in the MIPS ISA)

• Other ISAs

	Slide 1: ECE/CS 250 Computer Architecture Summer 2023
	Slide 2: Instruction Set Architecture (ISA)
	Slide 4: Outline
	Slide 5: What Is a Computer?
	Slide 6: What Is An ISA?
	Slide 7: Architecture vs. Microarchitecture
	Slide 8: Von Neumann Model of a Computer
	Slide 9: An Abstract 32-bit Von Neumann Architecture
	Slide 10: Outline
	Slide 11: Simple, Running Example
	Slide 12: Simple, Running Example
	Slide 13: Simple, Running Example
	Slide 14: Simple, Running Example
	Slide 15: Simple, Running Example
	Slide 16: Simple, Running Example
	Slide 17: Assembly Code Format
	Slide 18: Assembly Machine Code
	Slide 19: MIPS Instruction Format
	Slide 20: MIPS Instruction Formats
	Slide 21: MIPS Format – R-Type Example
	Slide 22: Uh-Oh
	Slide 23: Memory Operand Addressing (for loads/stores)
	Slide 24: MIPS Addressing Modes
	Slide 25: Back to the Simple, Running Example
	Slide 26: MIPS Format – I-Type Example
	Slide 27: Memory Addressing Issue: Alignment
	Slide 28: Declaring Space in Memory for Data
	Slide 29: MIPS Operand Model
	Slide 30: How Many Registers?
	Slide 31: MIPS Register Usage/Naming Conventions
	Slide 32: System calls
	Slide 33: System Call Instruction
	Slide 34: SPIM System Call Support
	Slide 35: Syscall example
	Slide 36: Control Instructions – Changing the PC
	Slide 37: Control Instructions
	Slide 38: Control Instructions I: Condition Testing
	Slide 39: MIPS Conditional Branches
	Slide 40: Control Instructions II: Computing Target
	Slide 41: MIPS: Computing Targets
	Slide 42: Control Idiom: If-Then-Else
	Slide 43: Control Idiom: While loop
	Slide 44: Control Idiom: Arithmetic For Loop
	Slide 45: Revisiting Control Idioms: Pointer For Loop
	Slide 46: Some of the Most Important Instructions
	Slide 47: Clarifying “load” instructions (1)
	Slide 48: Clarifying “load” instructions (2)
	Slide 49: What about store word (sw)?
	Slide 50: Structs in assembly language
	Slide 51: Many Other Operations
	Slide 52: Flavors of Math Instructions
	Slide 53: Flavors of Load/Store Instructions
	Slide 54: Datatypes
	Slide 55: Procedure Calls: A Simple, Running Example
	Slide 56: Procedure Calls: Jump-and-Link and Return
	Slide 57: Procedure Calls: Why Link?
	Slide 58: Procedure Calls: Passing Args & Return Values
	Slide 59: Passing Arguments by Value or by Reference
	Slide 60: Procedures Must Play Nicely Together
	Slide 61: Brief Detour to HLL Programming
	Slide 62: Procedures Must Play Nicely Together
	Slide 63: Procedures Use the Stack
	Slide 64: Preserving Registers Across Procedures
	Slide 65: Preserving Registers Across Procedures
	Slide 66: Preserving Registers Across Procedures
	Slide 67: Who Saves/Restores Registers?
	Slide 68: Two strategies for ensuring good happy registers
	Slide 69: MIPS Register Usage/Naming Conventions
	Slide 70: MIPS/GCC Procedure Calling Conventions
	Slide 71: MIPS/GCC Procedure Calling Conventions (cont.)
	Slide 72: MIPS/GCC Procedure Calling Conventions (cont.)
	Slide 73: Which flavor of register to use?
	Slide 74: The importance of saving $ra
	Slide 75: The importance of saving $ra
	Slide 76: The importance of saving $ra
	Slide 77: The importance of saving $ra
	Slide 78: The importance of saving $ra
	Slide 79: The importance of saving $ra
	Slide 80: The importance of saving $ra
	Slide 81: The importance of saving $ra
	Slide 82: The importance of saving $ra
	Slide 83: The importance of saving $ra
	Slide 84: The importance of saving $ra
	Slide 85: The importance of saving $ra
	Slide 86: The importance of saving $ra
	Slide 87: The importance of saving $ra
	Slide 88: The importance of saving $ra
	Slide 89: The importance of saving $ra
	Slide 90: The importance of saving $ra
	Slide 91: The importance of saving $ra
	Slide 92: The importance of saving $ra
	Slide 93: The importance of saving $ra
	Slide 94: Functions vs inner labels
	Slide 95: Keep your functions separate
	Slide 96: Let’s walk through simple.s
	Slide 97: Factorial (skimming base case of recursion!)
	Slide 98: Getting the words right
	Slide 99: All of MIPS in two pages
	Slide 100: Calling convention summary
	Slide 101: Outline
	Slide 102: What Makes a Good ISA?
	Slide 103: Programmability
	Slide 104: Implementability
	Slide 105: Compatibility
	Slide 106: RISC vs. CISC
	Slide 107: The Setup
	Slide 108: The RISC Tenets
	Slide 109: Intel 80x86 ISA (aka x86 or IA-32)
	Slide 110: 80x86 Registers, Addressing Modes, Instructions
	Slide 111: How Intel Won Anyway
	Slide 112: Current Approach: Pentium Pro and beyond
	Slide 113: Concluding Remarks
	Slide 114: Outline

