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e What is an ISA?
e Assembly programming (in the MIPS ISA)
e Other ISAs



What Is a Computer?

e Machine that has storage (to hold instructions and data) and
that executes instructions

e Storage (as seen by each running program)
e Memory:
e 232 pytes for 32-bit machine
o 264 bytes for 64-bit machine [/ impossible! mystery for later... ]
e Registers: a few dozen 32-bit (or 64-bit) storage elements
e Live inside processor core

e Instructions
e Move data from memory to register or from register to memory
e Compute on values held in registers
e Switch to instruction other than the next one in order
o Etc.



What Is An ISA?

* Functional & precise specification of computer
e What storage does it have? How many registers?  —

How much memory? And how do
. . . we speci
e What instructions does it have? o esepm gts?

e How do we specify operands for instructions?
e ISA = “contract” between software and hardware

e Sort of like a “hardware API"
e Specifies what hardware will do when executing each instruction



Architecture vs. Microarchitecture

e ISA specifies WHAT hardware does, not HOW it does it

e No guarantees regarding these issues:
e How operations are implemented
o Which operations are fast and which are slow
e Which operations take more power and which take less
e These issues are determined by the microarchitecture
e Microarchitecture = how hardware implements architecture

e Can be any number of microarchitectures that implement the same
architecture (Pentium and Core i7 are almost the same
architecture, but are very different microarchitectures)

e Strictly speaking, ISA is the architecture, i.e., the interface
between the hardware and the software

e Less strictly speaking, when people talk about architecture, they're
also talking about how the architecture is implemented



Von Neumann Model of a Computer

Fetch *PC
Decode
Read Inputs

Execute

Write Output

Next PC

e Implicit model of all modern ISAs
e “von NOY-man” (German name)
e Everything is in memory (and perhaps elsewhere)
e instructions and data

o Key feature: program counter (PC)

e PC is the memory address of the currently
executing instruction

e Next PCis PC + length_of_instruction unless
instruction specifies otherwise

e Processor logically executes loop at left
¢ Instruction execution assumed atomic
e Instruction X finishes before insn X+1 starts



An Abstract 32-bit Von Neumann Architecture

Processor | (32-bit) PC
Core

registers (each
register holds one
32-bit operand)

Fetch instruction from PC
Decode instruction
Execute instruction
* Read input operand(s)
(registers and/or memory locations and/or
‘“immediates”)
» Perform operation on input operands
« Write result, if any, in output operand
(register or memory location)
Change PC to next instruction

32-bit
address of
current
instruction

Memory
232 bytes

Holds
instructions
and data




e What is an ISA?
e Assembly programming (in the MIPS ISA)
e Other ISAs
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Simple, Running Example

// silly C code // equivalent MIPS assembly code
Memory references
int sum, temp, %X, VY, loop: 1w $1, Memory[1004]é// don't quite work
while (true) { 1w $2, Memory[1008] ke tnis. well
temp = x + y; add $3, $1, $2
sum = sum + temp; add $4, S$4, S$3
} 7 loop

OK, so what does this assembly code mean?
Let’s dig into each line ...
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Simple, Running Example

loop: lw $1, Memory[1004]
lw $2, Memory[1008]
add $3, S$1, $2
add $4, $4, S$3
7 loop

NOTES

“loop:” = line label (in case we need to refer to this instruction’s PC)
lw = “load word” = read a word (32 bits) from memory

$1 = “register 1” = put result read from memory into register 1
Memory[1004] = address in memory to read from (where x lives)

Note: almost all MIPS instructions put destination (where result gets written) first (in
this case, $1)
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Simple, Running Example

loop: lw $1, Memory[1004]
lw $2, Memory[1008]
add $3, S$1, $2
add $4, $4, $3
7 loop

NOTES

lw = “load word” = read a word (32 bits) from memory

$2 = “register 2" = put result read from memory into register 2
Memory[1008] = address in memory to read from (where vy lives)
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Simple, Running Example

loop: lw $1, Memory[1004]
lw $2, Memory[1008]
add $3, $1, $2
add $4, $4, S$3
7 loop

NOTES
add $3, $1, $2= add what’s in $1 to what's in $2 and put result in $3
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Simple, Running Example

loop: lw $1, Memory[1004]
lw $2, Memory[1008]
add $3, $1, $2
add $4, $4, S$3
7 loop

NOTES
add $4, $4, $3= add what's in $4 to what's in $3 and put result in $4

Note: this instruction overwrites previous value in $4
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Simple, Running Example

loop: lw $1, Memory[1004]
lw $2, Memory[1008]
add $3, S$1, $2
add $4, $4, $3
7 loop

NOTES

j — \\jump"

loop = PC of instruction at label “loop” (the first lw instruction above)
sets next PC to the address labeled by “loop”

Note: all other instructions in this code set next PC = PC+1
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Assembly Code Format

« Every line of program has:
label (optional) — followed by ™"
instruction

loop: 1w $1, Memory[1004]
1w $2, Memory[1008]
add $3, $1, $2
add $4, $4, $3
J loop

Note: a label is just a convenient way to represent an address so
programmers don’t have to worry about numerical addresses

Also, you don't indent instructions to “nest” them — it's flat list.
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Assembly €-2> Machine Code

e Every MIPS assembly instruction has a unique 32-bit
representation

e add $3, $2, $7 <—> 00000000010001110001100000100000
e 1w $8, Mem[1004] <-> 10001100000010000000001111101100

e Computer hardware deals with bits

e We find it easier to look at the assembly
e But they're equivalent! No magical transformation.

e So how do we represent each MIPS assembly instruction with
a string of 32 bits?
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MIPS Instruction Format

opcode operands
(6 bits) (26 bits)

e opcode = what type of operation to perform
e add, subtract, load, store, jump, etc.
e 6 bits 2> how many types of operations can we specify?
e operands specify: inputs, output (optional), and next PC
(optional)
e operands can be specified with:
e register numbers
e memory addresses
e immediates (values wedged into last 26 bits of instruction)

19



MIPS Instruction Formats

e 3 variations on theme from previous slide
o All MIPS instructions are either R, I, or J type
e Note: all instructions have opcode as first 6 bits

R-type

I-type

J-type

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)
Op(6) Rs(5) Rt(5) Immed(16)
Op(6) Target(26)

20



MIPS Format — R-Type Example

R-type | Op(6) Rs(5) | Rt(5) |Rd(5) | Sh(5) | Func(6)

e add $1, $2, $3 #$1 =9$2+ $3 Note: the MIPS

e add Rd, Rs, Rt  # d=dest, s=source, t=?? |architecture = has 32
registers. Therefore, it

e Op = 6-bit code for "add” = 000000 takes log,32=5 bits to

e Rs = 00010 specify any one of them.
e Rt = 00011
e Rd = 00001

don’t worry about Sh and Func fields for now

opcode | Rs Rt Rd] Sh and Func
000000 |00010 j00011 00001 J00O000100000

If you're looking back at this slide later on: Okay, let’s talk about Sh and Func.
Sh is just the shift amount, used only for bit shifting instructions (s11, srl, srv).
Func is the interesting one. In order to allow more opcodes than just the 26=64 that you'd expect, opcode 000000 is special. It means
“R-type instruction whose actual verb is given in the Func field”. So an R-type add is encoded with Op=000000 and Func=100000.
Here’s two references with the actual tables involved: this page covers it well, this book excerpt shows it in Fig A.10.2. 21



https://www.math.unipd.it/~sperduti/ARCHITETTURE-1/mips32.pdf
https://www.math.unipd.it/~sperduti/ARCHITETTURE-1/mips32.pdf

Uh-Oh

opcode operands
(6 bits) (26 bits)

o |et's try a Iw (load word) instruction
e lw $1, Memory[1004]

e 6 bits for opcode
e That leaves 26 bits for address in memory

e But an address is 32 bits long!
e What gives?
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Memory Operand Addressing (for loads/stores)

e We have to use indirection to specify memory operands
e Addressing mode: way of specifying address

e (Register) Indirect: 1w $1, ($2) # Sl=memory[$2]

e Displacement: 1w $1,8(52) # S$l=memory[$2+8]

e Index-base: lw $1, ($2,$3) # Sl=memory[$2+$3]

e Memory-indirect: lw $1,Q($2) # $l=memory[memory[$2]]
e Auto-increment: lw $1, ($2)+ # Sl=memory[$2++]

What high-level language idioms are these used for?
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MIPS Addressing Modes

e MIPS implements only displacement addressing mode
e Why? Experiment on VAX (ISA with every mode) found distribution
e Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%
e 80% use displacement or register indirect (=displacement 0)

e [-type instructions: 16-bit displacement
e Is 16-bits enough?
e Yes! VAX experiment showed 1% accesses use displacement >21>

I-type Op(6) Rs(5) | Rt(5) | Immed(16)

100011 00010 00001 0000000000001000

ST

lw $1,8($2)
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Back to the Simple, Running Example

e assume $6=1004=address of variable x in C code example
« and recall that 1008=address of variable y in C code example

loop:

ISt Memory 3664+ 2 1w S1, 0($6) # put val of x in $1
Iw—S$2—Memory+668+—2> 1w $2, 4($6) # put val of v in $2
add $3, $1, $2

add $4, $4, $3

7 loop
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MIPS Format — I-Type Example

I-type Op(6) Rs(5) | Rt(5) | Immed(16)

« 1w $1, 0($6) // $1
e |[w Rt, immed(Rs)
e Opcode = 6-bit code for “load word” = 100011
e Rs =6 =00110
e Rt =1 = 00001
e Immed = 0000 0000 0000 0000 = 0y,

Memory [$6 + O]

opcode Rs Rt immed
100011 00110 00001 0000000000000000
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Memory Addressing Issue: Alignment

Alignment: require that objects fall on address that
is multiple of their size

32-bit integer
e Aligned if address % 4 = 0 [% is symbol for “mod”]
e (Binary ends in 00)
e (Hex endsin 0, 4, 8, or C)
64-bit integer?
e Aligned if ?
Question: what to do with unaligned accesses
(uncommon case)?
e Support in hardware? Makes all accesses slower
e Trap to software routine? Possibility

e MIPS? ISA support: unaligned access using two
instructions:
ulw @XXXX10 = 1wl (@XXXX10; lwr (@XXXX10

Not

Byte #

I o
=
N
w



Declaring Space in Memory for Data

e Add two numbers x and v:

.text # declare text segment
main: # label for main
la $3, x # la = “load address” of x into $3
lw $4, 0($3) # load value of x into $4
la $3, y # load address of y into $3
lw $5, 0(S$3) # load value of y into $5
add $6, $4,$5 # compute x+y, put result in $6

.data # declare data segment
.word 10 # initialize x to 10 < What memory region?
Static (AKA global)
.word 3 # initialize y to 3
.space 32 # 32 bytes of nulls
.asciiz “hello” # 6 bytes incl. null terminator
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MIPS Operand Model

e MIPS is a “load-store” architecture
e All computations done on values in registers
e Can only access memory with load/store instructions
e 32 32-bit integer registers
o Actually 31: $0 is hardwired to value 0
e Also, certain registers conventionally used for special purposes
e We'll talk more about these conventions later
e 32 32-bit Floating Point registers
e Can also be treated as 16 64-bit Floating Point registers
e HI,LO: destination registers for multiply/divide

29



How Many Registers?

e Registers faster than memory = have as many as possible? No!
e One reason registers are faster is that there are fewer of them

e Smaller storage structures are faster (hardware truism)
Another is that they are directly addressed (no address calc)

e More registers - larger specifiers = fewer regs per instruction
Not everything can be put in registers

e Structures, arrays, anything pointed-to

e Although compilers are getting better at putting more things in
More registers means more saving/restoring them

e At procedure calls and context switches

Number of registers:

32-bit x86: 8

MIPS32: 32

ARM: 16

64-bit x86: 16 (plus some weird special purpose ones)
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MIPS Register Usage/Naming Conventions

e It turns out the registers also have names as well as numbers
e Why? We'll see later.

e For now: $s and $t are general purpose, others are special-purpose.

O zero constant 16 sO callee saves

1 at reserved for assembler

2 vO0 expression evaluation & 23 s7

3 vl function results 24 t8 temporary (cont’d)

4 a0 arguments 25 19

5 al

7 a3 28 gp pointer to global area
8 tO temporary: caller saves 29 sp stack pointer

. 30 fp frame pointer
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System calls

e How do we do Input/Output (read/print from console, etc.)?

e We ask an Operating System (OS) to do it for us
e The OS manages hardware so we don't have to worry about it

e How do we, a user program, ask the OS for something?
e Special hardware support: system calls

e It's like @ summoning ritual:
1. Place the right values in certain registers
2. Believe
3. Issue a syscall instruction

P

4. Thing you wanted to print gets printed,
thing you wanted to read appears in a register,
etc.

32



System Call Instruction

e What does our system call ritual look like?
1. Put a “system call code” into register $v0
e Example: if $v0==1, then syscall will print an integer
2. Put arguments (if any) into registers $a0, $al, or $f12 (for floating
point)
3. Issuethe syscall
4. Results returned in registers $v0 or $f0 (for floating point)

33



SPIM System Call Support

code service ArgType Arg/Result

1 print int Provide int in $a0

2 print float Provide float in $£12

4 print string Provide string buffer address $a0
5 read integer Get back int in $v0

6 read float Get back float in $£0

8 read string Provide $a0=Dbuffer, $al=length
9 sbrk $a0=amount Get back address in $vO0

10 exit

Asks the OS to allocate some memory on the heap. This is what malloc is based on.
In fact, as far as you’re concerned, in MIPS, the sbrk syscall is your malloc!

Plus a few more for general file IO which we shouldn’t need. »



Syscall example

.text

.align 2

.globl main

main:
1i Sv0o, 4
la $al0, prompt
syscall
1i Sv0, 5
syscall
addi sto0, svo0, 1
1i Sv0o, 4
la Sal, response
syscall
move Sa0, StoO
1i Sv0o, 1
syscall
1i Sv0o, O
Jr Sra

.end main
.data

prompt: .asciiz "Give me a number: "
response: .asciiz "That number plus one is: " 35



Control Instructions — Changing the PC

e Most instructions set next PC = PC+1
e But what about handling control flow?

e Conditional control flow: if condition is satisfied, then change
control flow
e if/then/else
e while() loops
e for() loops
e switch
e Unconditional control flow: always change control flow
e procedure calls

e How do we implement control flow in assembly?

36



Control Instructions

e Three issues:
1. Testing for condition: Is PC getting changed?
2. Computing target: If so, then where to?
3. Dealing with procedure calls (later)

e Types of control instructions
e conditional branch: beqg, beqgz, bgt, etc.
e if condition is met, “branch” to some new PC; else PC=PC+1
e many flavors of branch based on condition (<, >0, <=, etc.)
e unconditional jump: 5§, jr, jal, jalr
e change PC to some new PC
e several flavors of jump based on how new PC is specified
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Control Instructions |: Condition Testing

e Three options for testing conditions

e Option I: implicit condition codes (CCs) (not used in MIPS except for fioats )
subi $2,%$1,10 // sets “negative” CC
bn target // if negative CC set, goto target

# bn = “Branch if Negative”
e Option IT: compare and branch instructions (sorta used in MIPS)

actual beq $1,52,target // if $1==$2, goto target
s # beq = “Branch if Equal”

e Option III: condition registers, separate branch insns (in MIPS)
slti $2,$1,10 // set $2 if $1<10
- # slti = “Set Less-Than Immediate”
MIPS bnez $2,target // if $2 !'= 0, goto target
# bnez = “Branch if Not-Equal to Zero”
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MIPS Conditional Branches

e MIPS uses combination of options II and III
e (II) Compare 2 registers and branch: beq, bne
e Equality and inequality only
+ Don't need adder for comparison
e (II) Compare 1 register to zero and branch: bgtz, bgez, bltz, blez
e Greater/less than comparisons

+ Don't need adder for comparison
o (IIT) Set explicit condition registers: s1t, sltu, slti, sltiu, etc.

e Why?
e 86% of branches in programs are (in)equalities or comparisons to 0
e OK to take two insns to do remaining 14% of branches
e Make the common case fast (MCCF)!
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Control Instructions |l: Computing Target

e Three options for computing targets (target = next PC)
e Option A: PC-relative (next PC = current PC +/- some value)
e Position-independent within procedure
e Used for branches and jumps within a procedure
e Option B: Absolute (next PC = some value)
e Position independent outside procedure
e Used for procedure calls
e Option C: Indirect (next PC = contents of a register)
e Needed for jumping to dynamic targets
o Used for returns, dynamic procedure calls, switches

e How far do you need to jump?
e Typically not so far within a procedure (they don't get very big)
e Further from one procedure to another

40



MIPS: Computing Targets

e MIPS uses all 3 ways to specify target of control insn
e PC-relative = conditional branches: bne, beq, blez, etc.

e 16-bit relative offset, <0.1% branches need more
e PC = PC + 4 + immediate if condition is true (else PC=PC+4)

I-type Op(6) Rs(5) | Rt(5) | Immed(16)

e Absolute = unconditional jumps: §j target
e 26-bit offset (can address 228 words < 232 - what gives?)

J-type Op(6) Target(26)

e Indirect = Indirect jumps: jr $31

R-type | Op(6) Rs(5) | Rt(5) | Rd(5) | Sh(5) | Func(6)

41



Control Idiom: If-Then-Else

e Control idiom: if-then-else

if (A < B) ; // assume A in register $1
else B++; // assume B in $2
slt $3,81,82 /] if $1<$2, then $3=1
beqz $3,else // branch to else if Icondition
j endif // jump to endif
else:

addi $2,82,1

endif:
General form of if/then/else General form of if/then (no else)
1. If <CONDITION> is false, branch to else 1. If <CONDITION> is false, branch to endif
2. <THEN-BODY> 2. <THEN-BODY>
3.3 endif 3.endif:
3. else:
4, <ELSE-BODY>
5.endif: 42




Control Idiom: While loop

e Control idiom: while loop

while (A < B) { ; } // assume A in register $1
loop:
slt $3,%$1,$2 /] if $1<$2, then $3=1
beqgz $3,endloop // branch to escape if !condition
j loop // loop to top
endloop:

General form of ‘while’ loop
1. loop:
2. If <CONDITION> is false, branch to endloop
3. <BODY>
4. j loop
5. endloop:
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Control Idiom: Arithmetic For Loop

e Second idiom: “for loop” with arithmetic induction
int A[100], sum, i, N;
for ( ; A<N; i++) { // assume: iin $1, N in $2
; /[ &A[i] in $3, sum in $4

# initialize ito O
# Not shown: initialize $3 to A (address of start of array)
loop: slt $8,51,82 # if i<N, then $8=1; else $8=0
begz $8,endloop # test for exit at loop header
# $9 = A[i] (not &A[i])
# sum = sum + A[i]

addi $3,83,4 # increment &A[i] by sizeof(int)
addi $1,%1,1 #i++
J loop # backward jump

endl oop: L b <INITI§EInZe|£?z| >form of “for’ loop

2. loop:

3. If <CONDITION> is false, branch to endloop
4. <BODY>

5. <INCREMENTER>

6. j loop

7. endloop:




Revisiting Control Idioms: Pointer For Loop

e Control idiom: for loop with pointer induction
struct node t { int val; struct node t *next; };
struct node t *p, *head;

int sum=0;

for ( ; p'=NULL; p=p->next) // pin $1, head in $2
// sum in $3
1i 83, O #sum =20
# p = head

loop: beq $1,%0,endloop # if p==0 (NULL), goto exit
# $5 = *p = p>val
# sum = sum + p->val
lw $1,4($1) #p = *(p+1) = ponext
j loop # go back to top of loop

endl OOP : General form of ‘for’ loop

1. Do <INITIALIZER>

2. loop:

3. If <CONDITION> is false, branch to endloop
4. <BODY>

5. <INCREMENTER>

6. j loop 45
7. endloop:




Some of the Most Important Instructions

e Math/logic

e add, sub, mul, div

Note: sw is unusual in that the
destination of instruction isn’t

P Access memory first operand!
« 1w = load (read) word:
1w $3, 4(S5) # S$3 = memory[S$5+4]
« sw = store (write) word:
sw $3, 4($5) # memory[$5+4] = $3

e Change PC, perhaps conditionally
e Branches: blt, bgt, beqgz, etc.
e Jumps: j, jr, jal (will see last two later)

e Handy miscellaneous instructions
« 1a = load address
e move: move $1, $5 # copies (doesn’t move!) $5 into $1

« 1i = load immediate:
1i $5, 42 # writes wvalue 42 into $5

. . 46
(terrible name for instr!! not a load — no memory access!)



Clarifying “load” instructions (1)

Coote o JHiPS assembly code

.data
int arrayl[] = {55, 27, 19, 88}; array: .word 55, 27, 19, 88
char str[] = "hello"; str: .asciiz "hello"
.text
int main() { main:
int rl = 5; 1i $1, 5
int* r2 = array; la $2, array
int r3 = *r2; lw $3, 0($2)
int r4 = rl; move $4, S$1

 "Load immediate” isn't really a /oad (it doesn’t come from memory)

e "Load address” is just a “load immediate”, but the assembler figures out
the immediate from labels

e “"Move" just copies values between registers
e Of the instructions shown, only “load word"” actually /oads from memory
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Clarifying “load” instructions (2)

Load immediate instruction: 1i Load word instruction: 1w
CPU Memory CPU Memory
— ——
Active instruction: 11 $1, 5 % Active instruction: 1w $2, 4 ($1) %
— <
,—/ — R —
— SN S —
Regl =5 — Reg 1 B4 —
Reg 2 % Reg 2 =0x1234 \— \@HOX7‘Q4
Reg 3 — Reg 3 — =
: — B —
Reg 31 — Reg 31 —
Load immediate instruction: 1a Move instruction: move
CPU Memory CPU Memory
—
Active instruction: 1a $1, thing Active instruction: move $3, $2
\0)(7@0
Reg 1 =0x7f20~~ = ~ — _ e
Reg - Ox7i20 now points 15|~ = ~|~ > %ﬂﬂmo Reg —
g — < Reg 2 —
Regs. — Reg3_oriza —
Reg 31 — Reg 31 —
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What about store word (sw)?

Load word instruction: 1w

CPU

Active instruction: 1w $2,

Reg 1
Reg2 =0x1234
Reg3

Reg 31

4(81)
Q0«\'7;?4

~

Memory

~

~
\4 0x1234 |—0x7f24

Difference between lw and sw:
* 1w goes from memory to register

* sw goes from register to memory

Store word instruction: sw

CPU

Active instruction: sw $2,

Reg 1
Reg2 0x5678
Reg 3

Reg 31

4($1)
=0,
NCI

-\—

Memory

=0x5678|<0x7f24

49



Structs in assembly language

e Consider this struct:
struct student {
int 1d;
char name[l6];

float gpa;

} sizeof(struct student) == 24 bytes
A

int id char name[1l6] float gpa

I P

Offset from start of struct: 0 4 20

If we have a pointer to this struct in $1, then:
« Canload the id with: 1w $2, 0($1)
« Can load the first character of the name with: 1b $2, 4 ($1)

Why just first character? It's a string! Can’t ever load it all into a register!

« Canload the floatwith: 1.s $£2, 20($1)

What's this 1. s thing? It's like 1w, but for floats. You'll learn float instructions on your own in Homework 2 50



Many Other Operations

e Many types of operations
e Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned)
e FP arithmetic: add, sub, mul, div, sqgrt
e Integer logical: and, or, xor, not, sll, srl, sra
e Packed integer: padd, pmul, pand, por... (saturating/wraparound)
e What other operations might be useful?
e More operation types == better ISA??

e DEC VAX computer had LOTS of operation types

e E.qg., instruction for polynomial evaluation (no joke!)
e But many of them were rarely/never used (ICQ: Why not?)
o We'll talk more about this issue later ...
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Flavors of Math Instructions

e We already know about add
e add $3, $4, $5

e Also have addi = “add immediate” [Note: I-type instr]
e addi $3, $4, 42 # $3 = $4 + 42

e And addu = “add unsigned”

e addu $3, $4, S5
# same as add, but treat values as unsigned ints

e And even addiu = “add immediate unsigned”
e addiu $3, $4, 42

e Same variants for sub, etc.
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Flavors of Load/Store Instructions

o We already know about 1w and sw
e 1w $3, 12(S$S5)
e sw S4, -4($6)

e Also have load/store instructions that operate at non-word-size
granularity

« 1b = load byte, 1h = load halfword
- sb = store byte, sh = store halfword
e Loads can access smaller size but always write all 32 bits of
destination register

e By default, sign-extend to fill register
e Unless specified as unsigned with instrs: 1bu, 1hu
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Datatypes

e Datatypes
o Software view: property of data
e Hardware view: data is just bits, property of operations
e Same 32 bits could be interpreted as int or as instruction, etc.

e Hardware datatypes

e Integer: 8 bits (byte), 16b (half), 32b (word), 64b (long)

e IEEE754 FP: 32b (single-precision), 64b (double-precision)
e Packed integer: treat 64b int as 8 8b int's or 4 16b int’s

e Packed FP
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Procedure Calls: A Simple, Running Example

main: i $1, 1 #%$1=1
i $2, 2 #9$2=2
$3 = call foo($1, $2)  # this is NOT actual MIPS code
add $4, $3, $3
{rest of main}
{end program}

foo: sub $5, $1, $2
return ($5)

main is the caller
foo is the callee
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Procedure Calls: Jump-and-Link and Return

main: i $1, 1
i $2, 2

$3—=-call-feol$1,$2) - jal foo # jal = jump and link
add $4, $3, $3
{rest of main}

foo: sub $5, $1, $2
return-($5) = jr $ra

jal does two things:
1) sets PC = foo (just like a regular jump instruction)
2) “links” to PC after the jal > saves that PC in register $31

MIPS designates $31 for a special purpose: it's the return address ($ra)

jr sets PC to the value in $ra - computer executes add instr after jal
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Procedure Calls: Why Link?

main: i $1, 1

i $2, 2

$3=-<allfool$,$2) > jfoo  #j=jump
rl: add $4, $3, $3

add $1, $1, $4

j foo
r2: sub $2, $1, $3

{rest of main}

foo: sub $5, $1, $2
returr{$5) 2> OK, now what?? Jump to r1? Jump to r2?

Since function can be called from multiple places, must explicitly
remember (link!) where called from.
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Procedure Calls: Passing Args & Return Values

main: li$1, 1
i $2, 2
move $a0, $1  # pass first arg in $a0

move $al, $2 # pass second arg in $al
jal foo

add-$4-9$3-%$3--> add $4, $v0, $v0 # return value in $v0 now
{rest of main}

foo: sub $5, $a0, $al

move $v0, $5  # pass return value in $v0
jr $ra

Must use specific registers for passing arguments and return values.
MIPS denotes $a0-$a3 as argument registers.

MIPS denotes $v0-$v1 as return value registers.
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Passing Arguments by Value or by Reference

e Passing arguments
e By value: pass contents [$3+4] in $a0
int n; // nin 4($3)
foo(n) ;
lw $a0,4($3)
jal foo

e By reference: pass address $3+4 in $a0
int n; // nin 4($3)
bar (&n) ;
addi $a0,$3,4
jal bar
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Procedures Must Play Nicely Together

main: i $1, 1 What would happen if main uses $1 after calling
i $2, 2 foo but foo also uses $17?

move $a0, $1
move $al, $2
jal foo

add $4, $v0, $vO0

add $6, $4, $1 # $1 should still be 1
{rest of main}

Not good, right? Let's see why ...

foo: sub $5, $a0, $al

i $1, 3 # $1 now equals 3
add $5, $5, $1

move $v0, $5

jr $ra
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Brief Detour to HLL Programming

int main (){
int x=1;
int y=2;
int z = foo(Xx,y);
Z=27Z+X;
)

int foo(int al, int a2){

Programmer of main() assumes that x will still
equal 1 after call to foo(). But that won't
happen if foo() messes with registers that x was
using.

// code written by other person

return al+a2;
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Procedures Must Play Nicely Together

. This seems contrived. Why cant the
main. |! $1,1 programmer of foo just not use $1 Problem
i $2, 2 solved, right?
move $a0, $1 |
Nope! In real-world, one person doesn’t write
move $al, $2 .
. all of the software. My code must play well with
Jal foo your code.

add $4, $v0, $v0

add $6, $4, $1 # $1 should still be 1
{rest of main}

foo: sub $5, $a0, $al
i $1, 3 # $1 now equals 3
add $5, $5, $1
move $v0, $5
jr $ra
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Procedures Use the Stack

e In general, procedure calls obey stack discipline
e Local procedure state contained in stack frame
e Where we can save registers to avoid problem in last slide
e When a procedure is called, a new frame opens
e When a procedure returns, the frame collapses

e Procedure stack is iIn memory
e Starts at “top” of memory and grows down

AcallsB B

> B calls C B8

C returns

j/_v‘\
5 B returns
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Preserving Registers Across Procedures

main:

foo:

i $1, 1
i $2, 2
move $a0, $1

stack pointer
(during main)

memory

main’s frame

move $al, $2 >

jal foo

add $4, $v0, $v0
add $6, $4, $1
{rest of main}

sub $5, $a0, $al
i $1, 3

add $5, $5, $1
move $v0, $5

jr $ra

Stack pointer
is address of
bottom of
current stack
frame. Always
held in register

$sp.
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Preserving Registers Across Procedures

main:

foo:

i $1, 1

i $2, 2

move $a0, $1
move $al, $2
jal foo

add $4, $v0, $v0
add $6, $4, $1
{rest of main}

make frame (move stack ptr)
save $1 in stack frame

sub $5, $a0, $al

i $1, 3

add $5, $5, $1

move $v0, $5

restore $1 from stack frame
destroy frame

jr $ra

stack pointer

memory

main’s frame

foo’s frame

(during foo)
>
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Preserving Registers Across Procedures

main:

foo:

li $1, 1

li $2, 2

move $a0, $1

move $al, $2

jal foo $sp
add $4, $v0, $v0 (during foog

memory

main’s frame

foo’s frame

add $6, $4, $1
{rest of main}

makeframe >
save-St-en-stackframe >
sub $5, $a0, $al

li $1, 3

add $5, $5, $1

move $v0, $5
restore-$1-from-stackframe >
destroy-frame-—>

jr $ra
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Who Saves/Restores Registers?

main: i $1, 1 memory
i $2, 2
move $a0, $1
move $al, $2
jal foo $sp foo’s frame
add $4, $v0, $v0 (during foo)
add $6, $4, $1 >
{rest of main}

main’s frame

foo: In this example, the callee

(foo) saved/restored

sub $5, $a0, $al registers. But why didn't
li $1, 3 the caller (main) do that
add $5, $5, $1 instead?

move $v0, $5

jr $ra
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Two strategies for ensuring good happy registers

Caller-saved registers

e Right before a call, save the
registers whose values you care

about to the stack

Callee-saved registers

e Right after it returns, restore them

| don’t trust that function I’'m calling not to

them to be temporary! I'll back them up to
the stack first and restore them after

screw up my registers...he might consider

/\

Wo000, the caller was right, 'm
trashing these registers!!!

A4y, Ffuncl:
‘Y114 addiu $sp, $sp, -4
S
S‘t sw $t0, 0(S$Ssp)
7 register® \S jal func2
///// HK‘\ lw $t0, 0(S$sp)

addiu $sp, $sp, 4

* At the top of the function, save

registers you will modify to the stack

¢ Right before you return, restore them

| can trust the callee, he wouldn’t mess
with my registers. They’re safe

Oh whoops, | just used some of @
these registers! Luckily | saved
them at the start...I'll restore

them right before | return and
the caller will never know!

func3:

jal funcé4

func4d: %
addiu $sp, $sp, -4
sw §s0, 0($sp) s

= Tegig
L ers
# use $s0 somehow

AN

lw $s0, 0($sp)
addiu $sp, $sp, 4



MIPS Register Usage/Naming Conventions

O zero constant 16 sO callee saves

1 at reserved for assembler

2 vO0 expression evaluation & 23 s7

3 vl function results 24 t8 temporary (cont’d)

4 a0 arguments

5 al

6 a2

7 a3 28 gp pointer to global area
8 tO0 temporary: caller saves 29 sp stack pointer

. 30 fp frame pointer
Also 32 floating-point registers: $f0 .. $f31

Important: The only general purpose registers are the $s and $t registers.

$f0,$f2: Return value (like $v)
. . g . $f4..$f10: Temp (like $t)
Everything else has a specific usage: $f12..$f14: Arguments (like $a)

= = = $f16..$f18: Temp (like $t)
$a = arguments, $v = return values, $ra = return address, etc. S e



MIPS/GCC Procedure Calling Conventions

Calling Procedure

e Step-1: Pass the arguments
e First four arguments (arg0-arg3) are passed in registers $a0-$a3

e Step-2: Save caller-saved registers
e Save registers $t0-$t9 if they contain live values at the call site

e Step-3: Execute a jal instruction

e Step-4: Restore any $t registers you saved
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MIPS/GCC Procedure Calling Conventions (cont.)

Called Routine

o Step-1: Establish stack frame Negative frame-size,
e.g. -o 1o reserve
e Subtract the frame size from the stack pointer spagce for 2 words.

addiu $sp, $sp, -<frame_size>

o Step-2: Save callee-saved registers in the frame
e Register $ra is saved if routine makes a call
e Registers $s0-$s7 are saved if they are used
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MIPS/GCC Procedure Calling Conventions (cont.)

On return from a call

o Step-1: Put returned values in registers $v0 and $v1
(if values are returned)
o Step-2: Restore callee-saved registers
e $ra, $s0 - $s7
e Step-3: Pop the stack

e Add the frame size to $sp
addiu $sp, $sp, <frame-size>

e Step-4: Return

e Jump to the address in $ra
jr $ra
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Which flavor of register to use?

e When to use callee-saved $s register vs Wiy, 1y,

caller-saved $t register? 6t “vs.= 85 -

e Choose to minimize saving/restoring needed 77" 7% 7
e Can get complicated in practice

e Simple heuristic (gives decent efficiency):

e If your function calls another function, use $s registers

(if you make 5 calls, you'd need to save/restore a $t register 5 times,
this way you just save it once)

e If your function does not call other functions, use $t registers
(no need to save/restore at all!)

Note: $ra is considered a callee-saved register,
and is trashed if your function makes a call!
Gotta save/restore $ra if you call anything! .




The importance of saving $ra

jal g Jal h

jr Sra jr Sra jr Sra
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The importance of saving $ra

el a2l g jal h

jr Sra jr Sra jr Sra

75



The importance of saving $ra

jal g Jal h
$ra J.

jr Sra jr Sra jr Sra

76



The importance of saving $ra

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g Jal h
$ra J

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g Jal h
$ra J

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g Jal h

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g Jal h
$ra J

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g Jal h
jr Sra

jr Sra jr Sra

il
T
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The importance of saving $ra

f: g: h:
B

jal g jal h

jr Sra jr Sra jr Sra

Let’s try this again, but we’ll save/restore
$ra on the stack properly.
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The importance of saving $ra

2o a1l g Jal h

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g Jal h
$Sra J.

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g jal h

The copy of $ra
saved in g's stack $ra e o o

jr $ra jr $ra jr $ra
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The importance of saving $ra

jal g ¥ 2l h

The copy of $ra
saved in g's stack $ra e o o

jr $ra jr $ra jr $ra
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The importance of saving $ra

f: g: PC 2%
jal g jal h

jr s$ra Jr Sra Jr Sra
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The importance of saving $ra

jal g jal h

The copy of $ra
saved in g’s stack e o $ra « o o

jr Sra jr Sra jr Sra
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The importance of saving $ra

jal g jal h

The copy of $ra
saved in g’s stack e PC $ra « o

jr Sra jr Sra jr Sra
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The importance of saving $ra

il g: h
jal g jal h

PC
jr s$ra Jr Sra Jr Sra
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The importance of saving $ra

jal g jal h

f
The copy of $ra
saved in g's stack $ra o o o

Jr ora B)i- sra jr $ra
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The importance of saving $ra

jr Sra jr Sra jr Sra

ss!

ack to £!!

we escaped gb
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Functions vs inner labels

e To the assembler, labels are just labels — no difference

e To programmer, it's wise to distinguish:
e Function entry point: Meets calling conventions, usable by others
e Inner label: Bookmark inside function for a loop/conditional

e Tip: Start all inner labels with an underscore to distinguish

# takes a char* string, returns number of space characters
count_spaces:
# we'll use the provided a0 as our moving pointer

1i st1, 32 # value of a space character

1i SvO0, O # running total starts at O
_loop:

1b $t0, 0($a0) # get this character

begz $t0, endloop # break on null terminator
bne $t0, $tl, dontincrement # check if space

addi sv0, svO0, 1 # 1f so, increment
_dontincrement:

addi $a0, $a0, 1 # increment pointer

J loop # regardless, loop
_endloop:

jr Sra # return
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Keep your functions separate

e Functions should be contiguous with one single entry
point and clearly defined return point(s)

# takes a char* string, returns number of space characters
count spaces:
# we'll use the provided a0 as our moving pointer

1i s$t1, 32 # value of a space character
1i sv0, O # running total starts at O
_loop:
1b $t0, 0(S$a0) # get this character
begz $t0, _endloop # break on null terminator
- j _skip # jump over unrelated stuff
this—<
pow't d°
___ _skip:

bne $t0, $tl, dontincrement # check if space

addi $v0, S$vO, 1 # 1if so, i1ncrement
_dontincrement:

addi $a0, $a0, 1 # increment pointer

J loop # regardless, loop
_endloop:

jr Sra # return 9



Let’s walk through simple.s

o See simple.s, linked from course site by recitation 3
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Factorial (skimming base case of recursion!)

fact:

_clean:

addi $sp,S$sp,-8
sw $ra,4 (Ssp)
sw $s0,0($sp)

# open frame (2 words)
# save return address
# save $s0

# handle base case (not real code here)
# if Sal0=1, set $v0=1 and jump to clean

move $s0,$a0l
addi $a0,$a0,-1
jal fact

mul $vO0,$s0,S$vO0

lw $s0,0($sp)
lw Sra,4($sp)
addi $sp, S$sp, 8
jr $ra

# copy $a0 to $s0

# pass arg via $a0

# recursive call

# value returned via $v0

# restore $s0

# restore $ra

# collapse frame

# return, value in $v0
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Getting the words right

e My hypothesis: the way you phrase things can indicate
good/bad understanding of this material

e Which of the phrases below make sense?

I have an int in my register

I have a string in my register

I have a float in my register

I have a struct in my register

My register points to an int

My register points to a string

My register points to a struct

68 bytes from pointer $t0 is a place in a register

68 bytes from pointer $t0 is a place in memory
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Calling convention summary

Privacy:
¢ A function may not assume the state of any registers, except that $a registers
have arguments and $ra has the return address. Put return value into $v
register(s).
Callee-saved:
¢ A function may not leave $s registers in a modified state when returning.

o At the top of a function, save any $s/$ra registers that will be changed; restore
right before returning

Caller-saved:

e When making a call, save any $t registers you care about; restore right after it
returns.

e Minimize this by using $s registers in this case where possible.

Stack frame:

o At the top of a function, reserve space (decrementing $sp) for any saving
needed (for both $s/$ra and $t) as well as any local variables needing actual
memory addresses as opposed to registers. Restore $sp before returning.
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e What is an ISA?
e Assembly programming (in the MIPS ISA)
e Other ISAs
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What Makes a Good ISA?

e Programmability
o Easy to express programs efficiently?

e Implementability

e Easy to design high-performance implementations (i.e.,
microarchitectures)?

o Compatibility

e Easy to maintain programmability as languages and programs evolve?
e Easy to maintain implementability as technology evolves?
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Programmability

e Easy to express programs efficiently?
e For whom?

e Human
e Want high-level coarse-grain instructions
e As similar to HLL as possible
e This is the way ISAs were pre-1985
o Compilers were terrible, most code was hand-assembled
o Compiler
e Want low-level fine-grain instructions
e Compiler can't tell if two high-level idioms match exactly or not
e This is the way most post-1985 ISAs are
e Optimizing compilers generate much better code than humans
e ICQ: Why are compilers better than humans?
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Implementability

e Every ISA can be implemented
e But not every ISA can be implemented well
e Bad ISA - bad microarchitecture (slow, power-hungry, etc.)

e We'd like to use some of these high-performance
implementation techniques

e Pipelining, parallel execution, out-of-order execution
e We'll discuss these later in the semester

e Certain ISA features make these difficult
e Variable length instructions
e Implicit state (e.g., condition codes)
e Wide variety of instruction formats
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Compatibility

e Few people buy new hardware if it means they have to buy
new software, too

e Intel was the first company to realize this

e ISA must stay stable, no matter what (microarch. can change)
e x86 is one of the ugliest ISAs EVER, but survives

e Intel then forgot this lesson: IA-64 (Itanium) was a new ISA*

e Backward compatibility: very important
e New processors must support old programs (can’t drop features)

e Forward (upward) compatibility: less important
e Old processors must support new programs
e New processors only re-define opcodes that trapped in old ones
e Old processors emulate new instructions in low-level software
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RISC vs. CISC

e RISC: reduced-instruction set computer
e Coined by Patterson in early 80’s (ideas originated earlier)

e CISC: complex-instruction set computer
* Not coined by anyone, term didn't exist before “RISC"

e Religious war (one of several) started in mid 1980’s
e RISC (MIPS, Alpha, Power) “won” the technology battles
e CISC (IA32 = x86) “won” the commercial war
e Compatibility a stronger force than anyone (but Intel) thought
e Intel beat RISC at its own game ... more on this soon
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The Setup

e Pre-1980
e Bad compilers
e Complex, high-level ISAs
e Slow, complicated, multi-chip microarchitectures

e Around 1982

e Advances in VLSI made single-chip microprocessor possible...

e Speed by integration, on-chip wires much faster than off-chip
e ...but only for very small, very simple ISAs
e Compilers had to get involved in a big way

e RISC manifesto: create ISAs that...
e Simplify single-chip implementation
e Facilitate optimizing compilation
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The RISC Tenets

e Single-cycle execution (simple operations)
e CISC: many multi-cycle operations
e Load/store architecture
e CISC: register-memory and memory-memory instructions

e Few memory addressing modes
e CISC: many modes

e Fixed instruction format
e CISC: many formats and lengths

 Reliance on compiler optimizations
e CISC: hand assemble to get good performance

Summary
(1) Make it easy to implement in hardware

(2) Make it easy for compiler to generate code
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Intel 80x86 ISA (aka x86 or |A-32)

e Binary compatibility across generations

e 197/8: 8086, 16-bit, registers have dedicated uses
e 1980: 8087, added floating point (stack)

e 1982: 80286, 24-bit

e 1985: 80386, 32-bit, new instrs - GPR almost

e 1989-95: 80486, Pentium, Pentium II

e 1997: Added MMX instructions (for graphics)

e 1999: Pentium III

e 2002: Pentium 4

e 2004: "Nocona” 64-bit extension (to keep up with AMD)
e 2006: Core2

e 2007: Core2 Quad

e 2013: Haswell — added transactional mem features
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80x86 Registers, Addressing Modes, Instructions

e Eight 32-bit registers (not truly general purpose)

o EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

e (Sixteen registers in modern 64-bit, plus several ‘weird’ registers)
e Six 16-bit registers for code, stack, & data

e 2-address ISA

e One operand is both source and destination

e NOT a Load/Store ISA

e One operand can be in memory

e Variable size instructions: 1-byte to 17-bytes, e.qg.:
e Jump (JE) 2-bytes
e Push 1-byte
o Add Immediate 5-bytes
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How Intel Won Anyway

e X86 won because it was the first 16-bit chip by 2 years

e IBM put it into its PCs because there was no competing choice
e Rest is historical inertia and “financial feedback”

e x86 is most difficult ISA to implement and do it fast but...

e Because Intel (and AMD) sells the most processors...

e It has the most money...

e Which it uses to hire more and better engineers...

e Which it uses to maintain competitive performance ...

e And given equal performance compatibility wins...

e So Intel (and AMD) sells the most processors...

e Moore’s law has helped Intel in a big way
e Most engineering problems can be solved with more transistors
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Current Approach: Pentium Pro and beyond

e Instruction decode logic translates into micro-ops

e Fixed-size instructions moving down execution path

e Execution units see only micro-ops

+ Faster instruction processing with backward compatibility
+ Execution unit as fast as RISC machines like MIPS

— Complex decoding
— We work with MIPS to keep decoding simple/clean

— Learn x86 on the job!

Learn exactly how this all works in ECE 552 / CS 550
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Concluding Remarks

1. Keep it simple and regular
e Uniform length instructions
e Fields always in same places

2. Keep it simple and fast
e Small number of registers

3. Make the common case fast

e Compromises inevitable - there is no perfect ISA
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e What is an ISA?
e Assembly programming (in the MIPS ISA)
e Other ISAs
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