
ECE/CS 250
Computer Architecture

Summer 2023

Basics of Logic Design: 
Storage Elements and the Register File

(Sequential Logic)

Tyler Bletsch

Duke University 

Slides are derived from work by
Daniel J. Sorin (Duke), Alvy Lebeck (Duke), and Drew Hilton (Duke)



2

So far…

• We can make logic to compute “math”

• Add, subtract … and you can do mul/div in 350

• Assume for now that mul/div can be built

• Bitwise: AND, OR, NOT,…

• Shifts (left or right)

• Selection (MUX)

• …pretty much anything

• But processors need state (hold value)

• Registers

• …



3

Storage

• All the circuits we looked at so far are combinational circuits: 
the output is a Boolean function of the inputs.

• We need circuits that can remember values  (registers, 
memory)

• The output of the circuit is a function of the input and a 
function of a stored value (state)   

• Circuits with storage are called sequential circuits

• Key to storage: feedback loops from outputs to inputs



4

Ideal Storage – Where We’re Headed

• Ultimately, we want something that can hold 1 bit and we 
want to control when it is re-written

• However, instead of just giving it to you as a magic black box, 
we’re going to first dig a bit into the box

• I will not test you on the insides of the “flip flop”

“flip flop” = 

device that  

holds one 

bit (0 or 1)

bit to be written
bit currently being held

bit to control 

when we write



5

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S
D

E

Q

Q

R

S

D Latch

D

latch

D Q

E Q

D

latch

D
Q

E

D

latch

D
Q

E
!Q !Q

QD

C

DFF

D Q

E Q

D Flip-Flop

32 bit reg

D Q

E Q

Register

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)



6

FF Step #1: NOR-based Set-Reset (SR) Latch

R

S

Q

Q

0

1
0

1
0

0

R

S

Q

Q

0

0
1

0
1

0

R  S  Q

0  0  Q

0  1  1

1  0  0

1  1  - Don’t set both S & R to 1.

Seriously, don’t do it.



7

R

S

Q

Q

0

1
0

1
0

0

R

S

Q

Q

0

0
1

0
1

1

Set-Reset Latch (Continued)

Time

S 0

1

R
0

1

Q
0

1



8

R

S

Q

Q

0

1
0

1
0

0

R

S

Q

Q

0

0
1

0
1

1

Set-Reset Latch (Continued)

Time

S 0

1

R
0

1

Q
0

1

Set Signal Goes High

Output Signal Goes High



9

R

S

Q

Q

0

1
0

1
0

0

R

S

Q

Q

0

0
1

0
1

1

Set-Reset Latch (Continued)

Time

S 0

1

R
0

1

Q
0

1

Set Signal Goes Low

Output Signal Stays High



10

R

S

Q

Q

0

1
0

1
0

0

R

S

Q

Q

0

0
1

0
1

1

Set-Reset Latch (Continued)

Time

S 0

1

R
0

1

Q
0

1

Until Reset Signal 

Goes High

Then Output Signal Goes Low



11

SR Latch

• Downside: S and R at once = chaos

• Downside: Bad interface

• So let’s build on it to do better



12

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S
D

E

Q

Q

R

S

D Latch

D

latch

D Q

E Q

D

latch

D
Q

E

D

latch

D
Q

E
!Q !Q

QD

C

DFF

D Q

E Q

D Flip-Flop

32 bit reg

D Q

E Q

Register

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)



13

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S
D

E

Q

Q

R

S

D Latch

D

latch

D Q

E Q

D

latch

D
Q

E

D

latch

D
Q

E
!Q !Q

QD

C

DFF

D Q

E Q

D Flip-Flop

32 bit reg

D Q

E Q

Register

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)



14

FF Step #2: Data Latch (“D Latch”)

Starting with SR Latch

Q

Q

R

S



15

Data Latch (D Latch)

Starting with SR Latch

Change interface to 

Data + Enable (D + E)

If E=0, then R=S=0.

If E=1, then S=D and R=!D

Data

Enable

Q

Q

R

S



16

Data Latch (D Latch)

Data

Enable

Q

Q

D   E   Q

0   1   0

1   1   1

- 0   Q

Time

D
0

1

E
0

1

Q
0

1

E goes high

D “latched”

Stays as output

R

S



17

Data Latch (D Latch)

Data

Enable

Q

Q

D   E   Q

0   1   0

1   1   1

- 0   Q

Time

D
0

1

E
0

1

Q
0

1

Does not

affect Output

E goes low

Output unchanged

By changes to D

R

S



18

Data Latch (D Latch)

Data

Enable

Q

Q

D   E   Q

0   1   0

1   1   1

- 0   Q

Time

D
0

1

E
0

1

Q
0

1

E goes high

D “latched”

Becomes new output

R

S



19

Data Latch (D Latch)

Data

Enable

Q

Q

D   E   Q

0   1   0

1   1   1

- 0   Q

Time

D
0

1

E
0

1

Q
0

1

Slight Delay

(Logic gates take time)

R

S



20

Logic Takes Time

• Logic takes time:

• Gate delays: delay to switch each gate

• Wire delays: delay for signal to travel down wire

• Other factors (not going into them here)

• Need to make sure that signals timing is right

• Don’t want to have races or wacky conditions..



21

Clocks

• Processors have a clock:

• Alternates 0 1 0 1

• Like the processor’s internal metronome

• Latch → logic → latch in one clock cycle

• 3.4 GHz processor = 3.4 Billion clock cycles/sec 
One clock cycle



22

FF Step #3: Using Level-Triggered D Latches

• First thoughts: Level Triggered

• Latch enabled when clock is high

• Hold value when clock is low

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3



23

Strawman: Level Triggered

• How we’d like this to work

• Clock is low, all values stable

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

010 111
100 001

0

Clk



24

Strawman: Level Triggered

• How we’d like this to work

• Clock goes high, latches capture and xmit new val

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

010 010
100 100

0

Clk



25

Strawman: Level Triggered

• How we’d like this to work

• Signals work their way through logic w/ high clk

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

010 010
100 100

0

Clk



26

Strawman: Level Triggered

• How we’d like this to work

• Clock goes low before signals reach next latch

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

010 010
100 100

0

Clk



27

Strawman: Level Triggered

• How we’d like this to work

• Clock goes low before signals reach next latch

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

111 010
000 100

0

Clk



28

Strawman: Level Triggered

• How we’d like this to work

• Everything stable before clk goes high

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

111 010
000 100

0

Clk



29

Strawman: Level Triggered

• How we’d like this to work

• Clk goes high again, repeat

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

111 111
000 000

0

Clk



30

Strawman: Level Triggered

• Problem: What if signal reaches latch too early?

• I.e., while clk is still high

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

111 111
101 000

0

Clk



31

Strawman: Level Triggered

• Problem: What if signal reaches latch too early?

• Signal goes right through latch, into next stage..

D

latch

D Q

E Q

D

latch

D Q

E Q

Logic

Clk

3 3

111 111
101 101

0

Clk



32

That would be bad…

• Getting into a stage too early is bad

• Something else is going on there → corrupted

• Also may be a loop with one latch

• Consider incrementing counter (or PC)

• Too fast: increment twice?  Eeek…

D

latch

D Q

E Q

+1

3

001

010



33

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S
D

E

Q

Q

R

S

D Latch

D

latch

D Q

E Q

D

latch

D
Q

E

D

latch

D
Q

E
!Q !Q

QD

C

DFF

D Q

E Q

D Flip-Flop

32 bit reg

D Q

E Q

Register

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)



34

FF Step #4: Edge Triggered

• Instead of level triggered

• Latch a new value at a clock level (high or low)

• We use edge triggered

• Latch a value at an clock edge (rising or falling)

Falling Edges

Rising Edges



35

Our Ultimate Goal: D Flip-Flop

• Rising edge triggered D Flip-flop

• Two D Latches w/ opposite clking of enables

D

latch

D Q

E

D

latch

D Q

E Q Q

QD

C



36

D Flip-Flop

• Rising edge triggered D Flip-flop

• Two D Latches w/ opposite clking of enables

• On Low Clk, first latch enabled (propagates value)

• Second not enabled, maintains value

D

latch

D Q

E

D

latch

D Q

E Q Q

QD

C



37

D Flip-Flop

• Rising edge triggered D Flip-flop

• Two D Latches w/ opposite clking of enables

• On Low Clk, first latch enabled (propagates value)

• Second not enabled, maintains value

• On High Clk, second latch enabled

• First latch not enabled, maintains value 

D

latch

D Q

E

D

latch

D Q

E Q Q

QD

C



38

D Flip-Flop

• No possibility of “races” anymore

• Even if I put 2 DFFs back-to-back…

• By the time signal gets through 2nd latch of 1st DFF

1st latch of 2nd DFF is disabled

• Still must ensure signals reach DFF before clk rises

• Important concern in logic design “making timing” 

D

latch

D Q

E

D

latch

D Q

E Q

D

C

D

latch

D Q

E

D

latch

D Q

E Q

C



39

D Flip-flops (continued…)

• Could also do falling edge triggered

• Switch which latch has NOT on clk

• D Flip-flop is ubiquitous

• Typically people just say “latch” and mean DFF

• Which edge: doesn’t matter

• As long as consistent in entire design

• We’ll use rising edge



40

D flip flops

• Generally don’t draw clk input

• Have one global clk, assume it goes there

• Often see > as symbol meaning clk

• Maybe have explicit enable

• Might not want to write every cycle

• If no enable signal shown, implies always enabled

• Inside DFF, E signal is ANDed with Clk: 
if E is off, Clk is ignored (so we don’t commit changes)

• Get output and NOT(output) for “free”

DFF

D Q

E Q

DFF

D Q

Q

DFF

D Q

> Q



41

Skipping ahead to the D Flip-flop

• There’s the Data input – what to be saved

• There’s a clock: a regular oscillation between 0 and 1 that 
tells us when to save a value; it’s edge triggered

• Configured to store at every rising edge (default) or every falling edge

• Generally drawn as a > notch in the component; may be omitted in 
schematics (a single global clock is implied)

• There may be an Enable line: clock edges that occur when 
disabled don’t “count”. (If omitted, then always enabled)

• Stored data comes out on the Q line

• Also get its negation on the !Q line for free

Falling Edges

Rising Edges

DFF

D Q

E

Q>



42

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S
D

E

Q

Q

R

S

D Latch

D

latch

D Q

E Q

D

latch

D
Q

E

D

latch

D
Q

E
!Q !Q

QD

C

DFF

D Q

E Q

D Flip-Flop

32 bit reg

D Q

E Q

Register

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)



43

Stick a bunch of DFFs together to make a register

32 bit reg
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

in0

in1

in2

in31

. . .

out0

out1

out2

out31

enable

• Make an n-bit register? Combine n DFFs together!

• A MIPS register can be made with 32 flip flops



44

Next evolution: multiple registers

32 bit reg

D Q

E Q

Register

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

DFF

D Q

E Q

(nice!)

En0

En1

En30

En31

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

WrData

En0

En1

En30

En31

…

Register File
(Tremendous!)



45

Multiple registers: Register File

• So do we just replicate this 32 times to get the 32 registers for 
a MIPS processor?

• Not exactly

• Register File (the physical storage for the regs)

• MIPS register file has 32 32-bit registers

• How do we build a Register File using D Flip-Flops?

• What other components do we need?



46

Register File Design

• Two problems: write and read

• Writing the registers

• Need to pick which reg

• Have reg num (e.g., 19)

• Need to make En19=1

• En0, En1,… = 0

• Read: Use a mux to pick?

• 32-input mux = slow

• Need a better method…

• Let’s talk about writing first.

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

… …
WrData

En0

En1

En30

En31



47

First: A Decoder

• First task: convert binary number to “one hot”

• N bits in

• 2N bits out

• 2N-1 bits are 0, 1 bit (matching the input) is 1

D
e
c
o
d
e
r

3

101

0
0

0
0

0
1

0
0



48

Decoder Logic

• Decoder basically AND gates for each output:

• Out0 only on if input 000

In0

In1

In2

Out0

3-input gates are fine.

In theory, gates can have any # of inputs

In practice >4 converted to multiple gates



49

Decoder Logic

• Decoder basically AND gates for each output:

• Out1 only on if input 001

In0

In1

In2

Out0

Out1

Repeat for all outputs:

AND together right bits

(gets messy fast on a slide)



50

Register File

• Now we know how to write:

• Send write data to all regs

• Use decoder to convert reg # to one hot

• Use one hot encoding of reg # to enable right reg

• Still need to fix read side

• 32 input mux (the way we’ve made it) not realistic

• To do this: expand our world from {1,0} to {1, 0, Z}

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

WrData

En0

En1

En30

En31

…

Rd

D
e

c
o

d
e

r

…

5



51

Kind of like water in a pipe…

• To understand Z, let’s make an analogy

• Think of a wire as a pipe

• Has water = 1

• Has water = 0

• This wire is 0 (it has no water)



52

Kind of like water in a pipe…

• To understand Z, let’s make an analogy

• Think of a wire as a pipe

• Has water = 1

• Has water = 0

• This wire is 1 (it is full of water)



53

Kind of like water in a pipe…

• To understand Z, let’s make an analogy

• Think of a wire as a pipe

• Has water = 1

• Has water = 0

• Suppose a gate drives a 0 onto this wire
• Think of it as sucking the water out

0



54

Kind of like water in a pipe…

• To understand Z, let’s make an analogy

• Think of a wire as a pipe

• Has water = 1

• Has water = 0

• Suppose the gate now drives a 1
• Think of it as pumping water in

1



55

Remember this rule?

• Remember I told you not to connect two outputs?

• If one gate tries to drive a 1 and the other drives a 0

• One pumps water in.. The other sucks it out

• Except it’s electric charge, not water

• “Short circuit” → lots of current → lots of heat

a
b

c

d

BAD!



56

So this third option: Z

• There is a third possibility:  Z (“high impedance”)

• Neither pushing water in, nor sucking it out

• Just closed off/blocked

• Prevents electricity from flowing through

• Gate that gives us Z : Tri-state

D  E  Q

0  1  0

1  1  1

- 0  Z
D

Q

E



57

We’ve had this rule one day… and you break it

It’s ok to connect multiple outputs together

Under one circumstance: 

All but one must be outputting Z at any time

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1



58

Mux, implemented with tri-states

• We can build effectively a mux
from tri-states

• Much more efficient for large #s of 
inputs (e.g., 32)

D
e
c
o
d
e
r

5

11110

0

0

1

0

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

… …

… …



59

En0

En1

En30

En31

Register File

• Now we can write and read in one clock cycle!

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

WrData

En0

En1

En30

En31

…

These enables come from a 

decoder for which register to write

These enables come from a 

decoder for which register to read



60

Ports

• What we just saw: read port

• Ability to do one read / clock cycle

• May want more: read 2 source registers per instr

• Maybe even more if we do many instrs at once

• This design: can just replicate port

• Another decoder

• Another set of tri-states

• Another output bus (wire connecting the tri-states)

• Earlier: write port

• Ability to do one write/cycle

• Could add more



61

Minor Detail

• FYI:  This is not how a modern register file is implemented

• (Though it is how other things are implemented)

• Actually done with SRAM

• We’ll see that later this semester…



62

Summary

Can layout logic to compute things

Add, subtract,…

Now can store things

D flip-flops

Registers

Also understand clocks

Just about ready to make a datapath!


	Slide 1: ECE/CS 250 Computer Architecture  Summer 2023
	Slide 2: So far…
	Slide 3: Storage
	Slide 4: Ideal Storage – Where We’re Headed
	Slide 5: Building up to the D Flip-Flop and beyond
	Slide 6: FF Step #1: NOR-based Set-Reset (SR) Latch
	Slide 7: Set-Reset Latch (Continued)
	Slide 8: Set-Reset Latch (Continued)
	Slide 9: Set-Reset Latch (Continued)
	Slide 10: Set-Reset Latch (Continued)
	Slide 11: SR Latch
	Slide 12: Building up to the D Flip-Flop and beyond
	Slide 13: Building up to the D Flip-Flop and beyond
	Slide 14: FF Step #2: Data Latch (“D Latch”)
	Slide 15: Data Latch (D Latch)
	Slide 16: Data Latch (D Latch)
	Slide 17: Data Latch (D Latch)
	Slide 18: Data Latch (D Latch)
	Slide 19: Data Latch (D Latch)
	Slide 20: Logic Takes Time
	Slide 21: Clocks
	Slide 22: FF Step #3: Using Level-Triggered D Latches
	Slide 23: Strawman: Level Triggered
	Slide 24: Strawman: Level Triggered
	Slide 25: Strawman: Level Triggered
	Slide 26: Strawman: Level Triggered
	Slide 27: Strawman: Level Triggered
	Slide 28: Strawman: Level Triggered
	Slide 29: Strawman: Level Triggered
	Slide 30: Strawman: Level Triggered
	Slide 31: Strawman: Level Triggered
	Slide 32: That would be bad…
	Slide 33: Building up to the D Flip-Flop and beyond
	Slide 34: FF Step #4: Edge Triggered
	Slide 35: Our Ultimate Goal: D Flip-Flop
	Slide 36: D Flip-Flop
	Slide 37: D Flip-Flop
	Slide 38: D Flip-Flop
	Slide 39: D Flip-flops (continued…)
	Slide 40: D flip flops
	Slide 41: Skipping ahead to the D Flip-flop
	Slide 42: Building up to the D Flip-Flop and beyond
	Slide 43: Stick a bunch of DFFs together to make a register
	Slide 44: Next evolution: multiple registers
	Slide 45: Multiple registers: Register File
	Slide 46: Register File Design
	Slide 47: First: A Decoder
	Slide 48: Decoder Logic
	Slide 49: Decoder Logic
	Slide 50: Register File
	Slide 51: Kind of like water in a pipe…
	Slide 52: Kind of like water in a pipe…
	Slide 53: Kind of like water in a pipe…
	Slide 54: Kind of like water in a pipe…
	Slide 55: Remember this rule?
	Slide 56: So this third option: Z
	Slide 57: We’ve had this rule one day… and you break it
	Slide 58: Mux, implemented with tri-states
	Slide 59: Register File
	Slide 60: Ports
	Slide 61: Minor Detail
	Slide 62: Summary

