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This Unit: Pipelining

• Basic Pipelining

• Pipeline control

• Data Hazards

• Software interlocks and 
scheduling

• Hardware interlocks and 
stalling

• Bypassing

• Control Hazards

• Fast and delayed branches

• Branch prediction 

• Multi-cycle operations

• Exceptions
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Readings

• P+H

• Chapter 4: Section 4.5-end of Chapter 4
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Pipelining

• Important performance technique

• Improves insn throughput (rather than insn latency)

• Laundry / SubWay analogy

• Basic idea: divide instruction’s “work” into stages

• When insn advances from stage 1 to 2

• Allow next insn to enter stage 1

• Etc.

• Key idea: each instruction does same amount of work as 
before

+ But insns enter and leave at a much faster rate
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5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not re-latched after ALU stage (why not?)
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Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback

• Latches (pipeline registers) named by stages they separate

• PC, F/D, D/X, X/M, M/W
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Aside: Not All Pipelines Have 5 Stages

• H&P textbook uses well-known 5-stage pipe != all pipes have 
5 stages

• Some examples

• OpenRISC 1200: 4 stages

• Sun UltraSPARC T1/T2 (Niagara/Niagara2): 6/8 stages

• AMD Athlon: 10 stages

• Pentium 4: 20 stages

• ICQ: why does Pentium 4 have so many stages?

• ICQ: how can you possibly break “work” to do single insn into 
that many stages?

• Moral of the story: in ECE/CS 250, we focus on H&P 5-stage 
pipe, but don’t forget that this is just one example
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Pipeline Example: Cycle 1

• 3 instructions
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Pipeline Example: Cycle 2
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Pipeline Example: Cycle 3
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Pipeline Example: Cycle 4

• 3 instructions
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Pipeline Example: Cycle 5
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Pipeline Example: Cycle 6
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Pipeline Example: Cycle 7
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Pipeline Diagram

• Pipeline diagram: shorthand for what we just saw

• Across: cycles

• Down: insns

• Convention: X means lw $4,0($5) finishes execute stage and 
writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($5) F D X M W

sw $6,4($7) F D X M W
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What About Pipelined Control?

• Should it be like single-cycle control?

• But individual insn signals must be staged

• How many different control units do we need?

• One for each insn in pipeline?

• Solution: use simple single-cycle control, but pipeline it

• Single controller

• Key idea: pass control signals with instruction through pipeline
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Pipelined Control
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Pipeline Performance Calculation

• Single-cycle

• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

• Pipelined

• Clock period = 12ns  (why not 10ns?)

• CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

• Performance = 12ns/insn

CPI = “Cycles Per Instruction”:
Important performance metric!
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Why Does Every Insn Take 5 Cycles?

• Why not let add skip M and go straight to W?

• It wouldn’t help: peak fetch still only 1 insn per cycle

• Structural hazards: not enough resources per stage for 2 insns
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Pipeline Hazards

• Hazard: condition leads to incorrect execution if not fixed

• “Fixing” typically increases CPI

• Three kinds of hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• E.g., structural hazard on RegFile write port

• Fix by proper ISA/pipeline design: 3 rules to follow

• Each insn uses every structure exactly once

• For at most one cycle

• Always at same stage relative to F

• Data hazards (next)

• Control hazards (a little later)
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Data Hazards

• Let’s forget about branches and control for a while

• The sequence of 3 insns we saw earlier executed fine…

• But it wasn’t a real program

• Real programs have data dependences

• They pass values via registers and memory
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Data Hazards

• Would this “program” execute correctly on this pipeline?

• Which insns would execute with correct inputs?

• add is writing its result into $3 in current cycle 

– lw read $3 2 cycles ago → got wrong value

– addi read $3 1 cycle ago → got wrong value

• sw is reading $3 this cycle → OK (regfile timing: write first half)

add $3,$2,$1lw $4,0($3)sw $3,0($7) addi $6,$3,1
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Memory Data Hazards

• What about data hazards through memory? No
• lw following sw to same address in next cycle, gets right value

• Why? DMem read/write take place in same stage

• Data hazards through registers? Yes (previous slide)

• Occur because register write is 3 stages after register read

• Can only read a register value 3 cycles after writing it 

sw $5,0($1)lw $4,0($1)
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Fixing Register Data Hazards

• Can only read register value 3 cycles after writing it

• One way to enforce this: make sure programs can’t do it

• Compiler puts two independent insns between write/read insn pair

• If they aren’t there already

• Independent means: “do not interfere with register in question”

• Do not write it: otherwise meaning of program changes

• Do not read it: otherwise create new data hazard

• Code scheduling: compiler moves around existing insns to do this

• If none can be found, must use NOPs

• This is called software interlocks

• MIPS: Microprocessor w/out Interlocking Pipeline Stages
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Software Interlock Example

sub $3,$2,$1

lw $4,0($3)

sw $7,0($3)

add $6,$2,$8

addi $3,$5,4

• Can any of last 3 insns be scheduled between first two?

• sw $7,0($3)? No, creates hazard with sub $3,$2,$1

• add $6,$2,$8? OK

• addi $3,$5,4? YES...-ish. Technically. (but it hurts to think about)

• Would work, since lw wouldn’t get its $3 from it due to delay

• Makes code REALLY hard to follow – each instruction’s effects “happen” at 
different delays (memory writes “immediate”, register writes delayed, etc.)

• Let’s not do this, and just add a nops where needed

• Still need one more insn, use nop
sub $3,$2,$1

add $6,$2,$8

nop

lw $4,0($3)

sw $7,0($3)

addi $3,$5,4
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Software Interlock Performance

• Software interlocks
• 20% of insns require insertion of 1 nop

• 5% of insns require insertion of 2 nops

• CPI is still 1 technically

• But now there are more insns

• #insns = 1 + 0.20*1 + 0.05*2 = 1.3

– 30% more insns (30% slowdown) due to data hazards
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Hardware Interlocks

• Problem with software interlocks? Not compatible

• Where does 3 in “read register 3 cycles after writing” come from?

• From structure (depth) of pipeline

• What if next MIPS version uses a 7 stage pipeline?

• Programs compiled assuming 5 stage pipeline will break

• A better (more compatible) way: hardware interlocks

• Processor detects data hazards and fixes them

• Two aspects to this

• Detecting hazards

• Fixing hazards
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Detecting Data Hazards

• Compare F/D insn input register names with output register 
names of older insns in pipeline

Hazard =

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)
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Fixing Data Hazards

• Prevent F/D insn from reading (advancing) this cycle
• Write nop into D/X.IR (effectively, insert nop in hardware)

• Also clear the datapath control signals

• Disable F/D latch and PC write enables (why?)

• Re-evaluate situation next cycle
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Hardware Interlock Example: cycle 1

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1
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Hardware Interlock Example: cycle 2

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1
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Hardware Interlock Example: cycle 3

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 0
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Pipeline Control Terminology

• Hardware interlock maneuver is called stall or bubble

• Mechanism is called stall logic

• Part of more general pipeline control mechanism

• Controls advancement of insns through pipeline

• Distinguished from pipelined datapath control

• Controls datapath at each stage

• Pipeline control controls advancement of datapath control
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Pipeline Diagram with Data Hazards

• Data hazard stall indicated with d*

• Stall propagates to younger insns

• This is not OK (why?)

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F d* d* D X M W

sw $6,4($7) F D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F d* d* D X M W

sw $6,4($7) F D X M W
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Hardware Interlock Performance

• Hardware interlocks: same as software interlocks
• 20% of insns require 1 cycle stall (i.e., insertion of 1 nop)

• 5% of insns require 2 cycle stall (i.e., insertion of 2 nops)

• CPI = 1 + 0.20*1 + 0.05*2 = 1.3

• So, either CPI stays at 1 and #insns increases 30% (software)

• Or, #insns stays at 1 (relative) and CPI increases 30% (hardware)

• Same difference

• Anyway, we can do better
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Observe

• This situation seems broken
• lw $4,0($3) has already read $3 from regfile

• add $3,$2,$1 hasn’t yet written $3 to regfile

• But fundamentally, everything is still OK
• lw $4,0($3) hasn’t actually used $3 yet

• add $3,$2,$1 has already computed $3
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Bypassing

• Bypassing

• Reading a value from an intermediate (marchitectural) source

• Not waiting until it is available from primary source (RegFile)

• Here, we are bypassing the register file

• Also called forwarding
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WX Bypassing

• What about this combination?

• Add another bypass path and MUX input

• First one was an MX bypass

• This one is a WX bypass
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ALUinB Bypassing

• Can also bypass to ALU input B
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WM Bypassing?

• Does WM bypassing make sense?

• Not to the address input (why not?)

• Address input requires the ALU to compute; 
value is not ready anywhere in the CPU

• But to the store data input, yes
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Bypass Logic

• Each MUX has its own, here it is for MUX ALUinA

(D/X.IR.RS1 == X/M.IR.RD) → mux select = 0

(D/X.IR.RS1 == M/W.IR.RD) → mux select = 1

Else → mux select = 2
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Bypass and Stall Logic

• Two separate things

• Stall logic controls pipeline registers

• Bypass logic controls muxes

• But complementary

• For a given data hazard: if can’t bypass, must stall

• Slide #40 shows full bypassing: all bypasses possible

• Is stall logic still necessary?
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Yes, Load Output to ALU Input
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Pipeline Diagram With Bypassing

• Sometimes you will see it like this

• Denotes that stall logic implemented at X stage, rather than D

• Equivalent, doesn’t matter when you stall as long as you do

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F d* D X M W

sub $9,$10,$11 F D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F D d* X M W

sub $9,$10,$11 F D X M W
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Pipelining and Multi-Cycle Operations

• What if you wanted to add a multi-cycle operation?

• E.g., 4-cycle multiply

• P/W: separate output latch connects to W stage

• Controlled by pipeline control and multiplier FSM

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

P

IR

X

P/W

Xctrl

a

d



46

A Pipelined Multiplier

• Multiplier itself is often pipelined: what does this mean?

• Product/multiplicand register/ALUs/latches replicated

• Can start different multiply operations in consecutive cycles
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What about Stall Logic?

Stall = (OldStallLogic) ||

(F/D.IR.RS1 == D/P0.IR.RD) || (F/D.IR.RS2 == D/P0.IR.RD) ||

(F/D.IR.RS1 == P0/P1.IR.RD) || (F/D.IR.RS2 == P0/P1.IR.RD) ||

(F/D.IR.RS1 == P1/P2.IR.RD) || (F/D.IR.RS2 == P1/P2.IR.RD)
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Actually, It’s Somewhat Nastier

• What does this do?  Hint: think about structural hazards

Stall = (OldStallLogic) || 

(F/D.IR.RD != null && D/P0.IR.RD != null) 
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Pipeline Diagram with Multiplier

• This is the situation that the previous logic tries to avoid

• Two instructions trying to write RegFile in same cycle

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

sub $6,$1,$8 F d* d* d* D X M W

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

sub $6,$1,$8 F D X M W

add $5,$6,$10 F D X M W
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Honestly, It’s Even Nastier Than That

• And what about this?  (“WAR” hazard)

Stall = (OldStallLogic) || 

(F/D.IR.RD == D/P0.IR.RD) || 
(F/D.IR.RD == P0/P1.IR.RD) 
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More Multiplier Nasties

• This is the situation that the previous slide tries to avoid

• Mis-ordered writes to the same register

• Compiler thinks add gets $4 from addi, actually gets it from mul

• Multi-cycle operations complicate pipeline logic

• They’re not impossible, but they require more complexity

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

addi $4,$1,1 F D X M W

…

…

add $10,$4,$6 F D X M
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Control Hazards

• Control hazards

• Must fetch post branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell if it’s a branch)
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Branch Recovery 

• Branch recovery: what to do when branch is taken

• Flush insns currently in F/D and D/X (they’re wrong)

• Replace with NOPs

+ Haven’t yet written to permanent state (RegFile, DMem)
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Control Hazard Pipeline Diagram

• Control hazards indicated with c* (or not at all)

• Penalty for taken branch is 2 cycles

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* c* F D X M W
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Branch Performance

• Again, measure effect on CPI (clock period is fixed)

• Back of the envelope calculation

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken (why so many taken?)

• CPI if no branches = 1

• CPI with branches = 1 + 0.20*0.75*2 = 1.3

– Branches cause 30% slowdown

• How do we reduce this penalty?
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Option 1: Fast Branches

• Fast branch: resolves in Decode stage, not Execute

• Test must be comparison to zero or equality, no time for ALU

+ New taken branch penalty is only 1

– Need additional comparison insns (slt) for complex tests

– Must be able to bypass into decode now, too
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Option 2: Delayed Branches

• Delayed branch: don’t flush insn immediately following

• As if branch takes effect one insn later

• ISA modification → compiler accounts for this behavior

• Insert insns independent of branch into branch delay slot(s)
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Improved Branch Performance?

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Fast branches

• 25% of branches have complex tests that require extra insn

• CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.25*1(extra insn) = 1.2

• Delayed branches

• 50% of delay slots can be filled with insns, others need nops

• CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.50*1(extra insn) = 1.25

– Bad idea: painful for compiler, gains are minimal

– E.g., delayed branches in SPARC architecture (Sun computers)

– Also MIPS (but not in SPIM by default)
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Option 3: Dynamic Branch Prediction

• Dynamic branch prediction: guess outcome

• Start fetching from guessed address

• Flush on mis-prediction
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Inside A Branch Predictor

• Two parts

• Target buffer: maps PC to taken target

• Direction predictor: maps PC to taken/not-taken

• What does it mean to “map PC”?

• Use some PC bits as index into an array of data items (like Regfile)

PC

Predicted direction (taken/not taken)

Predicted target (if taken)
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More About “Mapping PCs”

• If array of data has N entries

• Need log(N) bits to index it

• Which log(N) bits to choose?

• Least significant log(N) after the least significant 2, why?

• LS 2 are always 0 (PCs are aligned on 4 byte boundaries)

• Least significant change most often → gives best distribution 

• What if two PCs have same pattern in that subset of bits?

• Called aliasing

• We get a nonsense target (intended for another PC)

• That’s OK, it’s just a guess anyway, we can recover if it’s wrong

PC[lgN+2:2]

PC[31:0]
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Updating A Branch Predictor

• How do targets and directions get into branch predictor?

• From previous instances of branches

• Predictor “learns” branch behavior as program is running

• Branch X was taken last time, probably will be taken next time

• Branch predictor needs a write port, too (not in my ppt)

• New prediction written only if old prediction is wrong
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Types of Branch Direction Predictors

• Predict same as last time we saw this same branch PC

• 1 bit of state per predictor entry (take or don’t take)

• For what code will this work well?  When will it do poorly?

• Use 2-level saturating counter

• 2 bits of state per predictor entry

• 11, 10 = take, 01, 00 = don’t take

• Why is this usually better?

• And every other possible predictor you could think of!

• ICQ: Think of other ways to predict branch direction

• Dynamic branch prediction is one of most important problems 
in computer architecture
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Branch Prediction Performance

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Dynamic branch prediction

• Assume branches predicted with 75% accuracy

• CPI = 1 + 0.20*(0.25)*2 = 1.1

• Branch (esp. direction) prediction was a hot research topic

• Accuracies now 90-95%
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Pipelining And Exceptions

• Remember exceptions?

– Pipelining makes them nasty

• 5 instructions in pipeline at once

• Exception happens, how do you know which instruction caused it?

• Exceptions propagate along pipeline in latches

• Two exceptions happen, how do you know which one to take first?

• One belonging to oldest insn

• When handling exception, have to flush younger insns

• Piggy-back on branch mis-prediction machinery to do this

• Just FYI – we’ll solve this problem in ECE 552 (CS 550)
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Pipeline Performance Summary

• Base CPI is 1, but hazards increase it

• Remember: nothing magical about a 5 stage pipeline

• Pentium4 (first batch) had 20 stage pipeline

• Increasing pipeline depth (#stages) 

+ Reduces clock period (that’s why companies do it)

– But increases CPI

• Branch mis-prediction penalty becomes longer

• More stages between fetch and whenever branch computes

• Non-bypassed data hazard stalls become longer

• More stages between register read and write

• At some point, CPI losses offset clock gains, question is when?
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Instruction-Level Parallelism (ILP)

• Pipelining: a form of instruction-level parallelism (ILP)

• Parallel execution of insns from a single sequential program

• There are ways to exploit ILP

• We’ll discuss this a bit more at end of semester, and then we’ll really 
cover it in great depth in ECE 552 (CS 550)

• We’ll also talk a bit about thread-level parallelism (TLP) and 
how it’s exploited by multithreaded and multicore processors
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Summary

• Principles of pipelining

• Pipelining a datapath and controller

• Performance and pipeline diagrams

• Data hazards

• Software interlocks and code scheduling

• Hardware interlocks and stalling

• Bypassing

• Control hazards

• Branch prediction

Next up: Multicore Processors
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