
ECE/CS 250
Computer Architecture

Summer 2023

Pipelining

Tyler Bletsch

Duke University

Includes material adapted from Dan Sorin (Duke) and Amir Roth (Penn).

2

This Unit: Pipelining

• Basic Pipelining

• Pipeline control

• Data Hazards

• Software interlocks and
scheduling

• Hardware interlocks and
stalling

• Bypassing

• Control Hazards

• Fast and delayed branches

• Branch prediction

• Multi-cycle operations

• Exceptions

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

3

Readings

• P+H

• Chapter 4: Section 4.5-end of Chapter 4

4

Pipelining

• Important performance technique

• Improves insn throughput (rather than insn latency)

• Laundry / SubWay analogy

• Basic idea: divide instruction’s “work” into stages

• When insn advances from stage 1 to 2

• Allow next insn to enter stage 1

• Etc.

• Key idea: each instruction does same amount of work as
before

+ But insns enter and leave at a much faster rate

5

5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not re-latched after ALU stage (why not?)

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

6

Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback

• Latches (pipeline registers) named by stages they separate

• PC, F/D, D/X, X/M, M/W

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

F D X M W

a

d

7

Aside: Not All Pipelines Have 5 Stages

• H&P textbook uses well-known 5-stage pipe != all pipes have
5 stages

• Some examples

• OpenRISC 1200: 4 stages

• Sun UltraSPARC T1/T2 (Niagara/Niagara2): 6/8 stages

• AMD Athlon: 10 stages

• Pentium 4: 20 stages

• ICQ: why does Pentium 4 have so many stages?

• ICQ: how can you possibly break “work” to do single insn into
that many stages?

• Moral of the story: in ECE/CS 250, we focus on H&P 5-stage
pipe, but don’t forget that this is just one example

8

Pipeline Example: Cycle 1

• 3 instructions

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

add $3,$2,$1

a

d

9

Pipeline Example: Cycle 2

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $4,0($5) add $3,$2,$1

a

d

10

Pipeline Example: Cycle 3

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

a

d

11

Pipeline Example: Cycle 4

• 3 instructions

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

a

d

12

Pipeline Example: Cycle 5

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add

a

d

13

Pipeline Example: Cycle 6

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

sw $6,4(7) lw

a

d

14

Pipeline Example: Cycle 7

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

sw

a

d

15

Pipeline Diagram

• Pipeline diagram: shorthand for what we just saw

• Across: cycles

• Down: insns

• Convention: X means lw $4,0($5) finishes execute stage and
writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($5) F D X M W

sw $6,4($7) F D X M W

16

What About Pipelined Control?

• Should it be like single-cycle control?

• But individual insn signals must be staged

• How many different control units do we need?

• One for each insn in pipeline?

• Solution: use simple single-cycle control, but pipeline it

• Single controller

• Key idea: pass control signals with instruction through pipeline

17

Pipelined Control

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

CTRL

xC

mC

wC

mC

wC

wC

a

d

18

Pipeline Performance Calculation

• Single-cycle

• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

• Pipelined

• Clock period = 12ns (why not 10ns?)

• CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

• Performance = 12ns/insn

CPI = “Cycles Per Instruction”:
Important performance metric!

19

Why Does Every Insn Take 5 Cycles?

• Why not let add skip M and go straight to W?

• It wouldn’t help: peak fetch still only 1 insn per cycle

• Structural hazards: not enough resources per stage for 2 insns

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

add $3,$2,$1 lw $4,0($5)

a

d

20

Pipeline Hazards

• Hazard: condition leads to incorrect execution if not fixed

• “Fixing” typically increases CPI

• Three kinds of hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• E.g., structural hazard on RegFile write port

• Fix by proper ISA/pipeline design: 3 rules to follow

• Each insn uses every structure exactly once

• For at most one cycle

• Always at same stage relative to F

• Data hazards (next)

• Control hazards (a little later)

21

Data Hazards

• Let’s forget about branches and control for a while

• The sequence of 3 insns we saw earlier executed fine…

• But it wasn’t a real program

• Real programs have data dependences

• They pass values via registers and memory

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($5)sw $6,0($7)

Data

Mem

O

D

IR

M/W

a

d

22

Data Hazards

• Would this “program” execute correctly on this pipeline?

• Which insns would execute with correct inputs?

• add is writing its result into $3 in current cycle

– lw read $3 2 cycles ago → got wrong value

– addi read $3 1 cycle ago → got wrong value

• sw is reading $3 this cycle → OK (regfile timing: write first half)

add $3,$2,$1lw $4,0($3)sw $3,0($7) addi $6,$3,1

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

M/W

a

d

23

Memory Data Hazards

• What about data hazards through memory? No
• lw following sw to same address in next cycle, gets right value

• Why? DMem read/write take place in same stage

• Data hazards through registers? Yes (previous slide)

• Occur because register write is 3 stages after register read

• Can only read a register value 3 cycles after writing it

sw $5,0($1)lw $4,0($1)

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

M/W

a

d

24

Fixing Register Data Hazards

• Can only read register value 3 cycles after writing it

• One way to enforce this: make sure programs can’t do it

• Compiler puts two independent insns between write/read insn pair

• If they aren’t there already

• Independent means: “do not interfere with register in question”

• Do not write it: otherwise meaning of program changes

• Do not read it: otherwise create new data hazard

• Code scheduling: compiler moves around existing insns to do this

• If none can be found, must use NOPs

• This is called software interlocks

• MIPS: Microprocessor w/out Interlocking Pipeline Stages

25

Software Interlock Example

sub $3,$2,$1

lw $4,0($3)

sw $7,0($3)

add $6,$2,$8

addi $3,$5,4

• Can any of last 3 insns be scheduled between first two?

• sw $7,0($3)? No, creates hazard with sub $3,$2,$1

• add $6,$2,$8? OK

• addi $3,$5,4? YES...-ish. Technically. (but it hurts to think about)

• Would work, since lw wouldn’t get its $3 from it due to delay

• Makes code REALLY hard to follow – each instruction’s effects “happen” at
different delays (memory writes “immediate”, register writes delayed, etc.)

• Let’s not do this, and just add a nops where needed

• Still need one more insn, use nop
sub $3,$2,$1

add $6,$2,$8

nop

lw $4,0($3)

sw $7,0($3)

addi $3,$5,4

26

Software Interlock Performance

• Software interlocks
• 20% of insns require insertion of 1 nop

• 5% of insns require insertion of 2 nops

• CPI is still 1 technically

• But now there are more insns

• #insns = 1 + 0.20*1 + 0.05*2 = 1.3

– 30% more insns (30% slowdown) due to data hazards

27

Hardware Interlocks

• Problem with software interlocks? Not compatible

• Where does 3 in “read register 3 cycles after writing” come from?

• From structure (depth) of pipeline

• What if next MIPS version uses a 7 stage pipeline?

• Programs compiled assuming 5 stage pipeline will break

• A better (more compatible) way: hardware interlocks

• Processor detects data hazards and fixes them

• Two aspects to this

• Detecting hazards

• Fixing hazards

28

Detecting Data Hazards

• Compare F/D insn input register names with output register
names of older insns in pipeline

Hazard =

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

hazard

Data

Mem

O

D

IR

M/W

a

d

29

Fixing Data Hazards

• Prevent F/D insn from reading (advancing) this cycle
• Write nop into D/X.IR (effectively, insert nop in hardware)

• Also clear the datapath control signals

• Disable F/D latch and PC write enables (why?)

• Re-evaluate situation next cycle

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

hazard

nop

Data

Mem

O

D

IR

M/W

a

d

30

Hardware Interlock Example: cycle 1

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

hazard

nop

Data

Mem

O

D

IR

M/W

a

d

31

Hardware Interlock Example: cycle 2

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

hazard

nop

Data

Mem

O

D

IR

M/W

a

d

32

Hardware Interlock Example: cycle 3

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||

(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 0

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

hazard

nop

Data

Mem

O

D

IR

M/W

a

d

33

Pipeline Control Terminology

• Hardware interlock maneuver is called stall or bubble

• Mechanism is called stall logic

• Part of more general pipeline control mechanism

• Controls advancement of insns through pipeline

• Distinguished from pipelined datapath control

• Controls datapath at each stage

• Pipeline control controls advancement of datapath control

34

Pipeline Diagram with Data Hazards

• Data hazard stall indicated with d*

• Stall propagates to younger insns

• This is not OK (why?)

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F d* d* D X M W

sw $6,4($7) F D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F d* d* D X M W

sw $6,4($7) F D X M W

35

Hardware Interlock Performance

• Hardware interlocks: same as software interlocks
• 20% of insns require 1 cycle stall (i.e., insertion of 1 nop)

• 5% of insns require 2 cycle stall (i.e., insertion of 2 nops)

• CPI = 1 + 0.20*1 + 0.05*2 = 1.3

• So, either CPI stays at 1 and #insns increases 30% (software)

• Or, #insns stays at 1 (relative) and CPI increases 30% (hardware)

• Same difference

• Anyway, we can do better

36

Observe

• This situation seems broken
• lw $4,0($3) has already read $3 from regfile

• add $3,$2,$1 hasn’t yet written $3 to regfile

• But fundamentally, everything is still OK
• lw $4,0($3) hasn’t actually used $3 yet

• add $3,$2,$1 has already computed $3

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data

Mem

O

D

IR

M/W

a

d

37

Bypassing

• Bypassing

• Reading a value from an intermediate (marchitectural) source

• Not waiting until it is available from primary source (RegFile)

• Here, we are bypassing the register file

• Also called forwarding

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data

Mem

O

D

IR

M/W

a

d

38

WX Bypassing

• What about this combination?

• Add another bypass path and MUX input

• First one was an MX bypass

• This one is a WX bypass

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data

Mem

O

D

IR

M/W

a

d

39

ALUinB Bypassing

• Can also bypass to ALU input B

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1add $4,$2,$3

Data

Mem

O

D

IR

M/W

a

d

40

WM Bypassing?

• Does WM bypassing make sense?

• Not to the address input (why not?)

• Address input requires the ALU to compute;
value is not ready anywhere in the CPU

• But to the store data input, yes

Register

File

S

X

s1 s2 d

Data

Mem

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)sw $3,0($4)

a

d

41

Bypass Logic

• Each MUX has its own, here it is for MUX ALUinA

(D/X.IR.RS1 == X/M.IR.RD) → mux select = 0

(D/X.IR.RS1 == M/W.IR.RD) → mux select = 1

Else → mux select = 2

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

M/W

bypass

a

d

42

Bypass and Stall Logic

• Two separate things

• Stall logic controls pipeline registers

• Bypass logic controls muxes

• But complementary

• For a given data hazard: if can’t bypass, must stall

• Slide #40 shows full bypassing: all bypasses possible

• Is stall logic still necessary?

43

Yes, Load Output to ALU Input

Register

File

S

X

s1 s2 d

Data

Mem

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)

stall

nop

add $4,$2,$3

lw $3,0($2)add $4,$2,$3

Our CPU’s stall condition!

Stall = (D/X.IR.OP==LOAD) && (
(F/D.IR.RS1==D/X.IR.RD) ||
(F/D.IR.RS2==D/X.IR.RD)

)

The above is a little incorrect because stores don’t modify rs2 and so are safe, but that’s too

a

d

44

Pipeline Diagram With Bypassing

• Sometimes you will see it like this

• Denotes that stall logic implemented at X stage, rather than D

• Equivalent, doesn’t matter when you stall as long as you do

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F d* D X M W

sub $9,$10,$11 F D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F D d* X M W

sub $9,$10,$11 F D X M W

45

Pipelining and Multi-Cycle Operations

• What if you wanted to add a multi-cycle operation?

• E.g., 4-cycle multiply

• P/W: separate output latch connects to W stage

• Controlled by pipeline control and multiplier FSM

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

P

IR

X

P/W

Xctrl

a

d

46

A Pipelined Multiplier

• Multiplier itself is often pipelined: what does this mean?

• Product/multiplicand register/ALUs/latches replicated

• Can start different multiply operations in consecutive cycles

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

P

M

IR

D/P0

P

M

IR

P0/P1

P

M

IR

P

M

IR

P1/P2 P2/W

a

d

47

What about Stall Logic?

Stall = (OldStallLogic) ||

(F/D.IR.RS1 == D/P0.IR.RD) || (F/D.IR.RS2 == D/P0.IR.RD) ||

(F/D.IR.RS1 == P0/P1.IR.RD) || (F/D.IR.RS2 == P0/P1.IR.RD) ||

(F/D.IR.RS1 == P1/P2.IR.RD) || (F/D.IR.RS2 == P1/P2.IR.RD)

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

P

M

IR

D/P0

P

M

IR

P0/P1

P

M

IR

P

M

IR

P1/P2 P2/W

a

d

48

Actually, It’s Somewhat Nastier

• What does this do? Hint: think about structural hazards

Stall = (OldStallLogic) ||

(F/D.IR.RD != null && D/P0.IR.RD != null)

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

P

M

IR

D/P0

P

M

IR

P0/P1

P

M

IR

P

M

IR

P1/P2 P2/W

mul

add

sub a

d

49

Pipeline Diagram with Multiplier

• This is the situation that the previous logic tries to avoid

• Two instructions trying to write RegFile in same cycle

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

sub $6,$1,$8 F d* d* d* D X M W

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

sub $6,$1,$8 F D X M W

add $5,$6,$10 F D X M W

50

Honestly, It’s Even Nastier Than That

• And what about this? (“WAR” hazard)

Stall = (OldStallLogic) ||

(F/D.IR.RD == D/P0.IR.RD) ||
(F/D.IR.RD == P0/P1.IR.RD)

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data

Mem

O

D

IR

P

M

IR

D/P0

P

M

IR

P0/P1

P

M

IR

P

M

IR

P1/P2 P2/W

mul

addi a

d

51

More Multiplier Nasties

• This is the situation that the previous slide tries to avoid

• Mis-ordered writes to the same register

• Compiler thinks add gets $4 from addi, actually gets it from mul

• Multi-cycle operations complicate pipeline logic

• They’re not impossible, but they require more complexity

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

addi $4,$1,1 F D X M W

…

…

add $10,$4,$6 F D X M

52

Control Hazards

• Control hazards

• Must fetch post branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell if it’s a branch)

PC
Insn

Mem

Register

File

s1 s2 d

+

4 <<

2

PC

F/D D/X

X/M

PC

A

B

IR

O

B

IR

PC

IR

S

X

53

Branch Recovery

• Branch recovery: what to do when branch is taken

• Flush insns currently in F/D and D/X (they’re wrong)

• Replace with NOPs

+ Haven’t yet written to permanent state (RegFile, DMem)

PC
Insn

Mem

Register

File

s1 s2 d

+

4 <<

2

PC

F/D D/X

X/M

nopnop

PC

A

B

IR

O

B

IR

PC

IR

S

X

54

Control Hazard Pipeline Diagram

• Control hazards indicated with c* (or not at all)

• Penalty for taken branch is 2 cycles

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* c* F D X M W

55

Branch Performance

• Again, measure effect on CPI (clock period is fixed)

• Back of the envelope calculation

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken (why so many taken?)

• CPI if no branches = 1

• CPI with branches = 1 + 0.20*0.75*2 = 1.3

– Branches cause 30% slowdown

• How do we reduce this penalty?

56

Option 1: Fast Branches

• Fast branch: resolves in Decode stage, not Execute

• Test must be comparison to zero or equality, no time for ALU

+ New taken branch penalty is only 1

– Need additional comparison insns (slt) for complex tests

– Must be able to bypass into decode now, too

PC
Insn

Mem

Register

File

s1 s2 d

+

4 <<

2

PC

F/D

D/X X/M

S

X

<>

0

O

B

IR

A

B

IR

PC

IR

S

X

nop

57

Option 2: Delayed Branches

• Delayed branch: don’t flush insn immediately following

• As if branch takes effect one insn later

• ISA modification → compiler accounts for this behavior

• Insert insns independent of branch into branch delay slot(s)

PC
Insn

Mem

Register

File

s1 s2 d

+

4 <<

2

PC

F/D D/X

X/M

nop

O

B

IR

PC

A

B

IR

PC

IR

S

X

58

Improved Branch Performance?

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Fast branches

• 25% of branches have complex tests that require extra insn

• CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.25*1(extra insn) = 1.2

• Delayed branches

• 50% of delay slots can be filled with insns, others need nops

• CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.50*1(extra insn) = 1.25

– Bad idea: painful for compiler, gains are minimal

– E.g., delayed branches in SPARC architecture (Sun computers)

– Also MIPS (but not in SPIM by default)

59

Option 3: Dynamic Branch Prediction

• Dynamic branch prediction: guess outcome

• Start fetching from guessed address

• Flush on mis-prediction

PC
Insn

Mem

Register

File
S

X

s1 s2 d

+

4
<<

2

TG

PC

IR

TG

PC

A

B

IR

O

B

IR

PC

F/D D/X

X/M

nopnop

BP !=

Branch mispredicted?

Predict

taken?

Dest
Assumed next PC

Next PC if not a taken branch

Actual

next PC

60

Inside A Branch Predictor

• Two parts

• Target buffer: maps PC to taken target

• Direction predictor: maps PC to taken/not-taken

• What does it mean to “map PC”?

• Use some PC bits as index into an array of data items (like Regfile)

PC

Predicted direction (taken/not taken)

Predicted target (if taken)

61

More About “Mapping PCs”

• If array of data has N entries

• Need log(N) bits to index it

• Which log(N) bits to choose?

• Least significant log(N) after the least significant 2, why?

• LS 2 are always 0 (PCs are aligned on 4 byte boundaries)

• Least significant change most often → gives best distribution

• What if two PCs have same pattern in that subset of bits?

• Called aliasing

• We get a nonsense target (intended for another PC)

• That’s OK, it’s just a guess anyway, we can recover if it’s wrong

PC[lgN+2:2]

PC[31:0]

62

Updating A Branch Predictor

• How do targets and directions get into branch predictor?

• From previous instances of branches

• Predictor “learns” branch behavior as program is running

• Branch X was taken last time, probably will be taken next time

• Branch predictor needs a write port, too (not in my ppt)

• New prediction written only if old prediction is wrong

63

Types of Branch Direction Predictors

• Predict same as last time we saw this same branch PC

• 1 bit of state per predictor entry (take or don’t take)

• For what code will this work well? When will it do poorly?

• Use 2-level saturating counter

• 2 bits of state per predictor entry

• 11, 10 = take, 01, 00 = don’t take

• Why is this usually better?

• And every other possible predictor you could think of!

• ICQ: Think of other ways to predict branch direction

• Dynamic branch prediction is one of most important problems
in computer architecture

64

Branch Prediction Performance

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Dynamic branch prediction

• Assume branches predicted with 75% accuracy

• CPI = 1 + 0.20*(0.25)*2 = 1.1

• Branch (esp. direction) prediction was a hot research topic

• Accuracies now 90-95%

65

Pipelining And Exceptions

• Remember exceptions?

– Pipelining makes them nasty

• 5 instructions in pipeline at once

• Exception happens, how do you know which instruction caused it?

• Exceptions propagate along pipeline in latches

• Two exceptions happen, how do you know which one to take first?

• One belonging to oldest insn

• When handling exception, have to flush younger insns

• Piggy-back on branch mis-prediction machinery to do this

• Just FYI – we’ll solve this problem in ECE 552 (CS 550)

66

Pipeline Performance Summary

• Base CPI is 1, but hazards increase it

• Remember: nothing magical about a 5 stage pipeline

• Pentium4 (first batch) had 20 stage pipeline

• Increasing pipeline depth (#stages)

+ Reduces clock period (that’s why companies do it)

– But increases CPI

• Branch mis-prediction penalty becomes longer

• More stages between fetch and whenever branch computes

• Non-bypassed data hazard stalls become longer

• More stages between register read and write

• At some point, CPI losses offset clock gains, question is when?

67

Instruction-Level Parallelism (ILP)

• Pipelining: a form of instruction-level parallelism (ILP)

• Parallel execution of insns from a single sequential program

• There are ways to exploit ILP

• We’ll discuss this a bit more at end of semester, and then we’ll really
cover it in great depth in ECE 552 (CS 550)

• We’ll also talk a bit about thread-level parallelism (TLP) and
how it’s exploited by multithreaded and multicore processors

68

Summary

• Principles of pipelining

• Pipelining a datapath and controller

• Performance and pipeline diagrams

• Data hazards

• Software interlocks and code scheduling

• Hardware interlocks and stalling

• Bypassing

• Control hazards

• Branch prediction

Next up: Multicore Processors

	Slide 1: ECE/CS 250 Computer Architecture Summer 2023
	Slide 2: This Unit: Pipelining
	Slide 3: Readings
	Slide 4: Pipelining
	Slide 5: 5 Stage Pipelined Datapath
	Slide 6: Pipeline Terminology
	Slide 7: Aside: Not All Pipelines Have 5 Stages
	Slide 8: Pipeline Example: Cycle 1
	Slide 9: Pipeline Example: Cycle 2
	Slide 10: Pipeline Example: Cycle 3
	Slide 11: Pipeline Example: Cycle 4
	Slide 12: Pipeline Example: Cycle 5
	Slide 13: Pipeline Example: Cycle 6
	Slide 14: Pipeline Example: Cycle 7
	Slide 15: Pipeline Diagram
	Slide 16: What About Pipelined Control?
	Slide 17: Pipelined Control
	Slide 18: Pipeline Performance Calculation
	Slide 19: Why Does Every Insn Take 5 Cycles?
	Slide 20: Pipeline Hazards
	Slide 21: Data Hazards
	Slide 22: Data Hazards
	Slide 23: Memory Data Hazards
	Slide 24: Fixing Register Data Hazards
	Slide 25: Software Interlock Example
	Slide 26: Software Interlock Performance
	Slide 27: Hardware Interlocks
	Slide 28: Detecting Data Hazards
	Slide 29: Fixing Data Hazards
	Slide 30: Hardware Interlock Example: cycle 1
	Slide 31: Hardware Interlock Example: cycle 2
	Slide 32: Hardware Interlock Example: cycle 3
	Slide 33: Pipeline Control Terminology
	Slide 34: Pipeline Diagram with Data Hazards
	Slide 35: Hardware Interlock Performance
	Slide 36: Observe
	Slide 37: Bypassing
	Slide 38: WX Bypassing
	Slide 39: ALUinB Bypassing
	Slide 40: WM Bypassing?
	Slide 41: Bypass Logic
	Slide 42: Bypass and Stall Logic
	Slide 43: Yes, Load Output to ALU Input
	Slide 44: Pipeline Diagram With Bypassing
	Slide 45: Pipelining and Multi-Cycle Operations
	Slide 46: A Pipelined Multiplier
	Slide 47: What about Stall Logic?
	Slide 48: Actually, It’s Somewhat Nastier
	Slide 49: Pipeline Diagram with Multiplier
	Slide 50: Honestly, It’s Even Nastier Than That
	Slide 51: More Multiplier Nasties
	Slide 52: Control Hazards
	Slide 53: Branch Recovery
	Slide 54: Control Hazard Pipeline Diagram
	Slide 55: Branch Performance
	Slide 56: Option 1: Fast Branches
	Slide 57: Option 2: Delayed Branches
	Slide 58: Improved Branch Performance?
	Slide 59: Option 3: Dynamic Branch Prediction
	Slide 60: Inside A Branch Predictor
	Slide 61: More About “Mapping PCs”
	Slide 62: Updating A Branch Predictor
	Slide 63: Types of Branch Direction Predictors
	Slide 64: Branch Prediction Performance
	Slide 65: Pipelining And Exceptions
	Slide 66: Pipeline Performance Summary
	Slide 67: Instruction-Level Parallelism (ILP)
	Slide 68: Summary

