
ECE/CS 250
Computer Architecture

Summer 2023

Intel x86-64

Tyler Bletsch

Duke University

2

Basic differences

MIPS Intel x86

Word size Originally: 32-bit (MIPS I in 1985)
Now: 64-bit (MIPS64 in 1999)

Originally: 16-bit (8086 in 1978)
Later: 32-bit (80386 in 1985)
Now: 64-bit (Pentium 4’s in 2005)

Design RISC CISC

ALU ops Register = Register ⦻ Register

(3 operand)

Register ⦻= <Reg|Memory>

(2 operand)

Registers 32 8 (32-bit) or 16 (64-bit)

Instruction size 32-bit fixed Variable: up to 15 *bytes*!

Branching Condition in register (e.g. “slt”) Condition codes set implicitly

Endian Either (typically big) Little

Variants and
extensions

Just 32- vs. 64-bit, plus some
graphics extensions in the 90s

A bajillion (x87, IA-32, MMX, 3DNow!,
SSE, SSE2, PAE, x86-64, SSE3, SSE4,
SSE5, AVX, AES, FMA)

Market share Small but persistent (embedded) 80% server, similar for consumer
(defection to ARM for mobile is recent)

3

64-bit x86 primer

• Registers:

• General: rax rbx rcx rdx rdi rsi r8 r9 .. r15

• Stack: rsp rbp

• Instruction pointer: rip

• Complex instruction set

• Instructions are variable-sized & unaligned

• Hardware-supported call stack

• call / ret

• Parameters in registers {rdi, rsi, rdx,
rcx, r8, r9}, return value in rax

• Little-endian

• These slides use Intel-style assembly language (destination first)

• GNU tools like gcc and objdump use AT&T syntax (destination last)

mov rax, 5

mov [rbx], 6

add rax, rdi

push rax

pop rsi

call 0x12345678

ret

jmp 0x87654321

jmp rax

call rax

mov 5, %rax

mov 6, [%rbx]

add %rdi, %rax

push %rax

pop %rsi

call 0x12345678

ret

jmp 0x87654321

jmp %rax

call %rax

Intel syntax AT&T syntax

4

Intel x86 instruction format

From Igor Kholodov’s CIS-77 course materials,

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

5

Map of x86 instruction opcodes by first byte

Figure from Fraunhofer FKIE

6

Intel x86 general-purpose registers
(64-bit, simplified)

Old-timey names

from the 16-bit era

They didn’t bother

giving dumb names

when they added

more registers during

the move to 64-bit.

7

Intel x86 registers
(64-bit, complexified)

• Includes general purpose registers, plus a bunch of special
purpose ones (floating point, MMX, etc.)

8

Memory accesses

• Can be anywhere
• No separate “load word” instruction – almost any op can load/store!

• Location can be various expressions (not just “0($1)”):

• [disp + <REG>*n] ex: [0x123 + 2*rax]

• [<REG> + <REG>*n] ex: [rbx + 4*rax]

• [disp + <REG> + <REG>*n] ex: [0x123 + rbx + 8*rax]

• You get “0($1)” by doing [0 + rax*1], which you can write as [rax]

• All this handled in the MOD-R/M and SIB fields of instruction

• Imagine making the control unit for these instructions

9

MIPS/x86 Rosetta Stone

Operation MIPS code Effect on MIPS x86 code Effect on x86

Add registers add $1, $2, $3 $1 = $2 + $3 add rax, rbx $1 += $2

Add immediate addi $1, $2, 50 $1 = $2 + 50 add rax, 50 $1 += 50

Load constant li $1, 50 $1 = 50 mov rax, 50 rax = 50

Move among regs move $1, $2 $1 = $2 mov rax, rbx rax = rbx

Load word lw $1, 4($2) $1 = *(4+$2) mov rax, [4+rbx] rax = *(4+rbx)

Store word sw $1, 4($2) *(4+$2) = $1 mov [4+rbx], rax *(4+rbx) = rax

Shift left sll $1, $2, 3 $1 = $2 << 3 sal rax, 3 rax <<= 3

Bitwise AND and $1, $2, $3 $1 = $2 & $3 and rax, rbx rax &= rbx

No-op nop - nop -

Conditional move
movn $1, $2, $3 if ($3) { $1=$2 } test rcx

cmovnz rax, rbx

(Set condition flags based on ecx)
if (last_alu_op_is_nonzero) { rax=rbx }

Compare slt $1, $2, $3 $1 = $2<$3 ? 1 : 0 cmp rax, rbx (Set condition flags based on rax-rbx)

Stack push
addi $sp, $sp, -4

sw $5, 0($sp)

SP-=4
*SP = $5

push rcx *SP = rcx ; SP-=4

Jump j label PC = label jmp label PC = label

Function call

jal label $ra = PC+4
PC = label

call label *SP = PC+len
SP -= 4
PC = label

Function return
jr $ra PC = $ra ret PC = *SP

SP+=4

Branch if less than
slt $1, $2, $3

bnez $1, label

if ($2<$3) PC=label cmp rax, rbx

jl label

if (rax<rbx) PC=label

Request syscall syscall Requests kernel syscall Requests kernel

10

Stuff that doesn’t translate…

Task x86 instruction

Branch if last ALU op overflowed jo label

Branch if last ALU op was even jpe label

Swap two registers xchg rax, rbx

Square root fsqrt

Prefetch into cache prefetchnta 64[esi]

Special prefix to do an instruction until the end of string
(Kind of like “while(*p)”)

rep

Load constant pi fldpi st(0)

Push all the registers to the stack at once pushad

Decrement rcx and branch if not zero yet loop label

Add multiple numbers at once (MMX)
(Single Instruction, Multiple Data (SIMD))

addps xmm0, xmm1

Scan a string for a null (among other things)
(Vastly accelerates strlen())

pcmpistri

Encrypt data using the AES algorithm aesenc

11

List of all x86 instructions

AAA CMOVE CVTPS2DQ FCMOVU FNOP GS JNGE MFENCE MULSS PCMPISTRM PMULLD PUNPCKLDQ SETC STOSB

AAD CMOVG CVTPS2PD FCOM FNSAVE HADDPD JNL MINPD MWAIT PEXTRB PMULLW PUNPCKLQDQ SETE STOSD

AAM CMOVGE CVTPS2PI FCOM2 FNSETPM HADDPS JNLE MINPS NEG PEXTRD PMULUDQ PUNPCKLWD SETG STOSW

AAS CMOVL CVTSD2SI FCOMI FNSTCW HINT_NOP JNO MINSD NOP PEXTRQ POP PUSH SETGE STR

ADC CMOVLE CVTSD2SS FCOMIP FNSTENV HLT JNP MINSS NOT PEXTRW POPA PUSHA SETL SUB

ADD CMOVNA CVTSI2SD FCOMP FNSTSW HSUBPD JNS MONITOR OR PHADDD POPAD PUSHAD SETLE SUBPD

ADDPD CMOVNAE CVTSI2SS FCOMP3 FPATAN HSUBPS JNZ MOV ORPD PHADDSW POPCNT PUSHF SETNA SUBPS

ADDPS CMOVNB CVTSS2SD FCOMP5 FPREM ICEBP JO MOVAPD ORPS PHADDW POPF PUSHFD SETNAE SUBSD

ADDSD CMOVNBE CVTSS2SI FCOMPP FPREM1 IDIV JP MOVAPS OUT PHMINPOSUW POPFD PXOR SETNB SUBSS

ADDSS CMOVNC CVTTPD2DQ FCOS FPTAN IMUL JPE MOVBE OUTS PHSUBD POR RCL SETNBE SYSENTER

ADDSUBPD CMOVNE CVTTPD2PI FDECSTP FRNDINT IN JPO MOVD OUTSB PHSUBSW PREFETCHNTA RCPPS SETNC SYSEXIT

ADDSUBPS CMOVNG CVTTPS2DQ FDIV FRSTOR INC JS MOVDDUP OUTSD PHSUBW PREFETCHT0 RCPSS SETNE TEST

ADX CMOVNGE CVTTPS2PI FDIVP FS INS JZ MOVDQ2Q OUTSW PINSRB PREFETCHT1 RCR SETNG UCOMISD

AMX CMOVNL CVTTSD2SI FDIVR FSAVE INSB LAHF MOVDQA PABSB PINSRD PREFETCHT2 RDMSR SETNGE UCOMISS

AND CMOVNLE CVTTSS2SI FDIVRP FSCALE INSD LAR MOVDQU PABSD PINSRQ PSADBW RDPMC SETNL UD

ANDNPD CMOVNO CWD FFREE FSIN INSERTPS LDDQU MOVHLPS PABSW PINSRW PSHUFB RDTSC SETNLE UD2

ANDNPS CMOVNP CWDE FFREEP FSINCOS INSW LDMXCSR MOVHPD PACKSSDW PMADDUBSW PSHUFD RDTSCP SETNO UNPCKHPD

ANDPD CMOVNS DAA FIADD FSQRT INT LDS MOVHPS PACKSSWB PMADDWD PSHUFHW REP SETNP UNPCKHPS

ANDPS CMOVNZ DAS FICOM FST INT1 LEA MOVLHPS PACKUSDW PMAXSB PSHUFLW REPE SETNS UNPCKLPD

ARPL CMOVO DEC FICOMP FSTCW INTO LEAVE MOVLPD PACKUSWB PMAXSD PSHUFW REPNE SETNZ UNPCKLPS

BLENDPD CMOVP DIV FIDIV FSTENV INVD LES MOVLPS PADDB PMAXSW PSIGNB REPNZ SETO VERR

BLENDPS CMOVPE DIVPD FIDIVR FSTP INVEPT LFENCE MOVMSKPD PADDD PMAXUB PSIGND REPZ SETP VERW

BLENDVPD CMOVPO DIVPS FILD FSTP1 INVLPG LFS MOVMSKPS PADDQ PMAXUD PSIGNW RETF SETPE VMCALL

BLENDVPS CMOVS DIVSD FIMUL FSTP8 INVVPID LGDT MOVNTDQ PADDSB PMAXUW PSLLD RETN SETPO VMCLEAR

BOUND CMOVZ DIVSS FINCSTP FSTP9 IRET LGS MOVNTDQA PADDSW PMINSB PSLLDQ ROL SETS VMLAUNCH

BSF CMP DPPD FINIT FSTSW IRETD LIDT MOVNTI PADDUSB PMINSD PSLLQ ROR SETZ VMPTRLD

BSR CMPPD DPPS FIST FSUB JA LLDT MOVNTPD PADDUSW PMINSW PSLLW ROUNDPD SFENCE VMPTRST

BSWAP CMPPS DS FISTP FSUBP JAE LMSW MOVNTPS PADDW PMINUB PSRAD ROUNDPS SGDT VMREAD

BT CMPS EMMS FISTTP FSUBR JB LOCK MOVNTQ PALIGNR PMINUD PSRAW ROUNDSD SHL VMRESUME

BTC CMPSB ENTER FISUB FSUBRP JBE LODS MOVQ PAND PMINUW PSRLD ROUNDSS SHLD VMWRITE

BTR CMPSD ES FISUBR FTST JC LODSB MOVQ2DQ PANDN PMOVMSKB PSRLDQ RSM SHR VMXOFF

BTS CMPSS EXTRACTPS FLD FUCOM JCXZ LODSD MOVS PAUSE PMOVSXBD PSRLQ RSQRTPS SHRD VMXON

CALL CMPSW F2XM1 FLD1 FUCOMI JE LODSW MOVSB PAVGB PMOVSXBQ PSRLW RSQRTSS SHUFPD WAIT

CALLF CMPXCHG FABS FLDCW FUCOMIP JECXZ LOOP MOVSD PAVGW PMOVSXBW PSUBB SAHF SHUFPS WBINVD

CBW CMPXCHG8B FADD FLDENV FUCOMP JG LOOPE MOVSHDUP PBLENDVB PMOVSXDQ PSUBD SAL SIDT WRMSR

CDQ COMISD FADDP FLDL2E FUCOMPP JGE LOOPNE MOVSLDUP PBLENDW PMOVSXWD PSUBQ SALC SLDT XADD

CLC COMISS FBLD FLDL2T FWAIT JL LOOPNZ MOVSS PCMPEQB PMOVSXWQ PSUBSB SAR SMSW XCHG

CLD CPUID FBSTP FLDLG2 FXAM JLE LOOPZ MOVSW PCMPEQD PMOVZXBD PSUBSW SBB SQRTPD XGETBV

CLFLUSH CRC32 FCHS FLDLN2 FXCH JMP LSL MOVSX PCMPEQQ PMOVZXBQ PSUBUSB SCAS SQRTPS XLAT

CLI CS FCLEX FLDPI FXCH4 JMPF LSS MOVUPD PCMPEQW PMOVZXBW PSUBUSW SCASB SQRTSD XLATB

CLTS CVTDQ2PD FCMOVB FLDZ FXCH7 JNA LTR MOVUPS PCMPESTRI PMOVZXDQ PSUBW SCASD SQRTSS XOR

CMC CVTDQ2PS FCMOVBE FMUL FXRSTOR JNAE MASKMOVDQU MOVZX PCMPESTRM PMOVZXWD PTEST SCASW SS XORPD

CMOVA CVTPD2DQ FCMOVE FMULP FXSAVE JNB MASKMOVQ MPSADBW PCMPGTB PMOVZXWQ PUNPCKHBW SETA STC XORPS

CMOVAE CVTPD2PI FCMOVNB FNCLEX FXTRACT JNBE MAXPD MUL PCMPGTD PMULDQ PUNPCKHDQ SETAE STD XRSTOR

CMOVB CVTPD2PS FCMOVNBE FNDISI FYL2X JNC MAXPS MULPD PCMPGTQ PMULHRSW PUNPCKHQDQ SETALC STI XSAVE

CMOVBE CVTPI2PD FCMOVNE FNENI FYL2XP1 JNE MAXSD MULPS PCMPGTW PMULHUW PUNPCKHWD SETB STMXCSR XSETBV

CMOVC CVTPI2PS FCMOVNU FNINIT GETSEC JNG MAXSS MULSD PCMPISTRI PMULHW PUNPCKLBW SETBE STOS

12

Exploring a compiled x86 program

• Introducing hello.c
• cat hello.c

• Compile to assembly language (and down to executable)
• make

• gcc -g -S -o hello.s hello.c

• gcc -g -o hello hello.c

• View assembly language output
• cat hello.s

• Disassemble binary to see compiled instructions
• objdump -d hello

• Analyze hello using IDA Freeware

They’re gonna try to sell you the paid

version of IDA Pro, but the older free

version available here works just fine.

https://hex-rays.com/ida-free/#download

13

CAN WE USE THIS TO CRACK
COMPILED SOFTWARE????

14

DRAMATIC PAUSE

Please fill out the course survey

https://duke.evaluationkit.com/

15

Binary modification

• Introducing supercalc
• ./supercalc

• ./supercalc 2 3

• ./supercalc 2 10

• Disassemble binary
• objdump -d supercalc

• Analyze supercalc using IDA Pro

• Find the demo check code in IDA

• Identify sections of executable
• ./objdump -h supercalc

• Find the code we care about in the binary file via hex editor

• Flatten all the check code into NOPs

• Disassemble, analyze, and test hacked binary

Diving into code injection and reuse attacks
(not on exam)

Some slides originally by Anthony Wood, University of Virginia, for CS 851/551

(http://www.cs.virginia.edu/crab/injection.ppt)

Adapted by Tyler Bletsch, Duke University

17

What is a Buffer Overflow?

• Intent

• Arbitrary code execution

• Spawn a remote shell or infect with worm/virus

• Denial of service

• Steps

• Inject attack code into buffer

• Redirect control flow to attack code

• Execute attack code

18

Attack Possibilities

• Targets

• Stack, heap, static area

• Parameter modification (non-pointer data)

• E.g., change parameters for existing call to exec()

• Injected code vs. existing code

• Absolute vs. relative address dependencies

• Related Attacks

• Integer overflows, double-frees

• Format-string attacks

19

Typical Address Space

0x00000000

0x08048000code

static data

bss

heap

shared library

stack

kernel space

0x42000000

0xC0000000

0xFFFFFFFF

From Dawn Song’s RISE: http://research.microsoft.com/projects/SWSecInstitute/slides/Song.ppt

argument 2

argument 1

RA

frame pointer

locals

buffer

Attack code

Address of

Attack code

20

Examples

• (In)famous: Morris worm (1988)

• gets() in fingerd

• Code Red (2001)

• MS IIS .ida vulnerability

• Blaster (2003)

• MS DCOM RPC vulnerability

• Mplayer URL heap allocation (2004)

% mplayer http://`perl –e ‘print “\””x1024;’`

21

Demo

cool.c

#include <stdlib.h>

#include <stdio.h>

int main() {

char name[1024];

printf("What is your name? ");

scanf("%s",name);

printf("%s is cool.\n", name);

return 0;

}

22

Demo – normal execution

23

Demo – exploit

24

Attack code

and filler

Local vars,

Frame

pointer

Return

address

How to write attacks

• Use NASM, an assembler:

• Great for machine code and specifying data fields

%define buffer_size 1024

%define buffer_ptr 0xbffff2e4

%define extra 20

<<< MACHINE CODE GOES HERE >>>

; Pad out to rest of buffer size

times buffer_size-($-$$) db 'x'

; Overwrite frame pointer (multiple times to be safe)

times extra/4 dd buffer_ptr + buffer_size + extra + 4

; Overwrite return address of main function!

dd buffer_location

1024

20

4

attack.asm

25

Attack code trickery

• Where to put strings? No data area!

• You often can't use certain bytes

• Overflowing a string copy? No nulls!

• Overflowing a scanf %s? No whitespace!

• Answer: use code!

• Example: make "ebx" point to string "hi folks":
push "olks" ; 0x736b6c6f="olks"

mov ebx, -"hi f" ; 0x99df9698

neg ebx ; 0x66206968="hi f"

push ebx

mov ebx, esp

Note: this example was made on x86 32-bit,
hence the 32-bit registers and constants.

26

Preventing Buffer Overflows

• Strategies

• Detect and remove vulnerabilities (best)

• Prevent code injection

• Detect code injection

• Prevent code execution

• Stages of intervention

• Analyzing and compiling code

• Linking objects into executable

• Loading executable into memory

• Running executable

27

Preventing Buffer Overflows

• Research projects

• Splint - Check array bounds and pointers

• RAD – check RA against copy

• PointGuard – encrypt pointers

• Liang et al. – Randomize system call numbers

• RISE – Randomize instruction set

• Generally available techniques

• Stackguard – put canary before RA

• Libsafe – replace vulnerable library functions

• Binary diversity – change code to slow worm propagation

• Generally deployed techniques

• NX bit & W^X protection

• Address Space Layout Randomization (ASLR)

28

W^X and ASLR

• W^X

• Make code read-only and executable

• Make data read-write and non-executable

• ASLR: Randomize memory region locations

• Stack: subtract large value

• Heap: allocate large block

• DLLs: link with dummy lib

• Code/static data: convert to shared lib, or re-link
at different address

• Makes absolute address-dependent attacks
harder

code

static data

bss

heap

shared library

stack

kernel space

29

Doesn't that solve everything?

• PaX: Linux implementation of ASLR & W^X

• Actual title slide from a PaX talk in 2003:

?

30

Negating ASLR

• ASLR is a probabilistic approach, merely increases attacker’s
expected work

• Each failed attempt results in crash; at restart, randomization is
different

• Counters:

• Information leakage

• Program reveals a pointer? Game over.

• Derandomization attack [1]

• Just keep trying!

• 32-bit ASLR defeated in 216 seconds

[1] Shacham et al. On the Effectiveness of Address-Space Randomization. CCS 2004.

31

Negating W^X

• Question: do we need malicious code to have malicious
behavior?

argument 2

argument 1

RA

frame pointer

locals

buffer

Attack code

(launch a shell)

Address of

attack code

argument 2

argument 1

RA

frame pointer

locals

buffer

Padding

Address of system()

"/bin/sh"

Code injection Code reuse (!)

No.

"Return-into-libc" attack

32

Return-into-libc

• Return-into-libc attack

• Execute entire libc functions

• Can chain using “esp lifters”

• Attacker may:

• Use system/exec to run a shell

• Use mprotect/mmap to disable W^X

• Anything else you can do with libc

• Straight-line code only?

• Shown to be false by us, but that's another talk...

33

Arbitrary behavior with W^X?

• Question: do we need malicious code to have
arbitrary malicious behavior?

• Return-oriented programming (ROP)

• Chain together gadgets: tiny snippets of code
ending in ret

• Achieves Turing completeness

• Demonstrated on x86, SPARC, ARM, z80, ...
• Including on a deployed voting machine,

which has a non-modifiable ROM

No.

34

Return-oriented programming (ROP)

• Normal software:

• Return-oriented program:

Figures taken from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

35

Some common ROP operations

• Loading constants

• Arithmetic

• Control flow

•Memory

add rax, rbx ; ret

stack

pointer

pop rax ; ret

stack

pointer

0x55555555

pop rsp ; ret

stack

pointer

mov rbx, [rax] ; ret

stack pointer

0x8070abcd
(address)

pop rax ; ret

...

Figures adapted from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

36

Bringing it all together

• Shellcode

• Zeroes part of
memory

• Sets registers

• Does execve syscall

Figure taken from "The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)" by Shacham

37

Defenses against ROP

• ROP attacks rely on the stack in a unique way

• Researchers built defenses based on this:

• ROPdefender[1] and others: maintain a shadow stack

• DROP[2] and DynIMA[3]: detect high frequency rets

• Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?

• No: code-reuse attacks need not be limited to
the stack and ret!
• See “Jump-oriented programming: a new

class of code-reuse attack” by Bletsch et al.
(covered in this deck if you’re curious)

38

BACKUP SLIDES
(not on exam)

Jump-oriented Programming

40

Defenses against ROP

• ROP attacks rely on the stack in a unique way

• Researchers built defenses based on this:

• ROPdefender[1] and others: maintain a shadow stack

• DROP[2] and DynIMA[3]: detect high frequency rets

• Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?

• No: code-reuse attacks need not be limited
to the stack and ret!

• My research follows...

41

Jump-oriented programming (JOP)

• Instead of ret, use indirect jumps, e.g., jmp eax

• How to maintain control flow?

(insns) ; jmp eax (insns) ; jmp ebx (insns) ; jmp ecx ?

Gadget Gadget Gadget

(choose next gadget) ; jmp eax (insns) ; jmp ebx

(insns) ; jmp ebx

(insns) ; jmp ebx

Gadget

Gadget

Gadget

Dispatcher gadget

42

The dispatcher in depth

• Dispatcher gadget implements:
pc = f(pc)
goto *pc

• f can be anything that evolves pc predictably

• Arithmetic: f(pc) = pc+4

• Memory based: f(pc) = *(pc+4)

43

Availability of indirect jumps (1)

• Can use jmp or call (don't care about the stack)

• When would we expect to see indirect jumps?

• Function pointers, some switch/case blocks, ...?

• That's not many...

Frequency of control flow

transfers instructions in glibc

44

Availability of indirect jumps (2)

• However: x86 instructions are unaligned

• We can find unintended code by jumping into the
middle of a regular instruction!

• Very common, since
they start with 0xFF, e.g.

-1 = 0xFFFFFFFF

-1000000 = 0xFFF0BDC0

add ebx, 0x10ff2a

call [eax]

81 c3 2a ff 10 00

45

Finding gadgets

• Cannot use traditional disassembly,

• Instead, as in ROP, scan & walk backwards

• We find 31,136 potential gadgets in libc!

• Apply heuristics to find certain kinds of gadget

• Pick one that meets these requirements:

• Internal integrity:

• Gadget must not destroy its own jump target.

• Composability:

• Gadgets must not destroy subsequent gadgets' jump targets.

46

Finding dispatcher gadgets

• Dispatcher heuristic:

• The gadget must act upon its own jump target register

• Opcode can't be useless, e.g.: inc, xchg, xor, etc.

• Opcodes that overwrite the register (e.g. mov) instead of
modifying it (e.g. add) must be self-referential

• lea edx, [eax+ebx] isn't going to advance anything

• lea edx, [edx+esi] could work

• Find a dispatcher that uses uncommon registers
add ebp, edi

jmp [ebp-0x39]

• Functional gadgets found with similar heuristics

pc = f(pc)

goto *pc

47

Developing a practical attack

• Built on Debian Linux 5.0.4 32-bit x86

• Relies solely on the included libc

• Availability of gadgets (31,136 total): PLENTY

• Dispatcher: 35 candidates

• Load constant: 60 pop gadgets

• Math/logic: 221 add, 129 sub, 112 or, 1191 xor, etc.

• Memory: 150 mov loaders, 33 mov storers (and more)

• Conditional branch: 333 short adc/sbb gadgets

• Syscall: multiple gadget sequences

48

The vulnerable program

• Vulnerabilities

• String overflow

• Other buffer overflow

• String format bug

• Targets

– Return address

– Function pointer

– C++ Vtable

– Setjmp buffer

•Used for non-local gotos

•Sets several registers,

including esp and eip

49

The exploit code (high level)

• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 10 gadgets which will:

• Write null bytes into the attack buffer where needed

• Prepare and execute an execve syscall

• Get a shell without exploiting a single ret:

50

The full exploit (1)
C

o
n

s
ta

n
ts

Im
m

e
d

ia
te

 v
a

lu
e

s
 o

n
 th

e
 s

ta
c
k

51

The full exploit (2)
D

a
ta

D
is

p
a

tc
h

 ta
b

le
O

ve
rflo

w

52

Discussion

• Can we automate building of JOP attacks?

• Must solve problem of complex interdependencies between gadget
requirements

• Is this attack applicable to non-x86 platforms?

• What defense measures can be developed which counter
this attack?

A: Yes

53

The MIPS architecture

• MIPS: very different from x86

• Fixed size, aligned instructions

• No unintended code!

• Position-independent code via indirect jumps

• Delay slots

• Instruction after a jump will always be executed

• We can deploy JOP on MIPS!
• Use intended indirect jumps

• Functionality bolstered by the effects of delay slots

• Supports hypothesis that JOP is a general threat

54

MIPS exploit code (high level overview)

• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 6 gadgets which will:

• Insert a null-containing value into the attack buffer

• Prepare and execute an execve syscall

• Get a shell without exploiting a single jr ra:

Click for full

exploit code

55

MIPS full exploit code (1)

56

MIPS full exploit code (2)

57

References

[1] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to
defend against return-oriented programming attacks. Technical Report
HGI-TR-2010-001, Horst Gortz Institute for IT Security, March 2010.

[2] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting
return-oriented programming malicious code. In 5th ACM ICISS, 2009

[3] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity Measurement
and Attestation: Towards Defense against Return-oriented Programming
Attacks. In 4th ACM STC, 2009.

[4] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-
oriented rootkits with return-less kernels. In 5th ACM SIGOPS EuroSys
Conference, Apr. 2010.

[5] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-
libc without Function Calls (on the x86). In 14th ACM CCS, 2007.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M.
Winandy. Return-Oriented Programming Without Returns. In 17th ACM
CCS, October 2010.

	Slide 1: ECE/CS 250 Computer Architecture Summer 2023
	Slide 2: Basic differences
	Slide 3: 64-bit x86 primer
	Slide 4: Intel x86 instruction format
	Slide 5: Map of x86 instruction opcodes by first byte
	Slide 6: Intel x86 general-purpose registers (64-bit, simplified)
	Slide 7: Intel x86 registers (64-bit, complexified)
	Slide 8: Memory accesses
	Slide 9: MIPS/x86 Rosetta Stone
	Slide 10: Stuff that doesn’t translate…
	Slide 11: List of all x86 instructions
	Slide 12: Exploring a compiled x86 program
	Slide 13: Can we use this to crack compiled software????
	Slide 14: DRAMATIC PAUSE
	Slide 15: Binary modification
	Slide 16: Diving into code injection and reuse attacks (not on exam)
	Slide 17: What is a Buffer Overflow?
	Slide 18: Attack Possibilities
	Slide 19: Typical Address Space
	Slide 20: Examples
	Slide 21: Demo
	Slide 22: Demo – normal execution
	Slide 23: Demo – exploit
	Slide 24: How to write attacks
	Slide 25: Attack code trickery
	Slide 26: Preventing Buffer Overflows
	Slide 27: Preventing Buffer Overflows
	Slide 28: W^X and ASLR
	Slide 29: Doesn't that solve everything?
	Slide 30: Negating ASLR
	Slide 31: Negating W^X
	Slide 32: Return-into-libc
	Slide 33: Arbitrary behavior with W^X?
	Slide 34: Return-oriented programming (ROP)
	Slide 35: Some common ROP operations
	Slide 36: Bringing it all together
	Slide 37: Defenses against ROP
	Slide 38: BACKUP SLIDES (not on exam)
	Slide 39: Jump-oriented Programming
	Slide 40: Defenses against ROP
	Slide 41: Jump-oriented programming (JOP)
	Slide 42: The dispatcher in depth
	Slide 43: Availability of indirect jumps (1)
	Slide 44: Availability of indirect jumps (2)
	Slide 45: Finding gadgets
	Slide 46: Finding dispatcher gadgets
	Slide 47: Developing a practical attack
	Slide 48: The vulnerable program
	Slide 49: The exploit code (high level)
	Slide 50: The full exploit (1)
	Slide 51: The full exploit (2)
	Slide 52: Discussion
	Slide 53: The MIPS architecture
	Slide 54: MIPS exploit code (high level overview)
	Slide 55: MIPS full exploit code (1)
	Slide 56: MIPS full exploit code (2)
	Slide 57: References

