Practice question 1

1) [10 points]
(a) Add the following base-10 numbers using 6-bit 2s complement math: -3, -4. Show your work!

To get -3 in binary, start with 3 and negate (flip all bits and add one):

000011
111100 < bits flipped
111101 < added one
^ this is -3

Same to get -4 in binary:

000100
111011 < bits flipped
111100 < added one
^ this is -4 in binary

Now we add:

1111 < carries
111101
+ 111100

111001 < sum

Check our work -- let's convert the sum to decimal. first we negate it to make it positive:

111001
000110 < bits flipped
000111 < added one
^ this is the negation of our sum

111 in binary is 7 in decimal
this makes sense, as -3 + -4 = -7
Practice question 2

2) Assume that $2 = 2000$ and $3 = 12$. Assume that memory holds the values at the addresses shown on the left. “lw” = load word, and “sw” = store word.

(a) If the computer executes sw $3, 4($2), then what is the value of 3 after this instruction?

12

(the store doesn't change the register, it changes the memory)

(b) If, after the instruction in part (a), the computer executes lw $3, 0($2), what is the value of 3 after this instruction?

130

(c) What single instruction could you use to write the value in 5 into address 2008?

sw $5, 8($2)

or as a joke answer: sw $5, 1878($3)

(d) What single instruction could you use to read the word of memory at address 1996 and put the result in 8?

lw $8, -4($2)
3) [10] The IEEE 754 floating point standard specifies that 32-bit floating point numbers have one sign bit, an 8-bit exponent (with a bias of 127), and a 23-bit significand (with an implicit “1”). Represent the number -11.75 in this format.

Sign bit: 1 (negative)
Fractional representation: -11 3/4
Binary representation: -1011.11
Binary representation, normalized: -1.01111 * 2^3
Mantissa with the first one removed: 01111
Exponent with bias added: 3+127 = 130
Biased exponent in binary: 1000010

1 1000010 0111100000000000000000000
Practice question 4

4) [10] The following questions are based on the following code snippet.

(a) What is *(array+7)? Please give its datatype and its value.

Same as array[7]
Type: int
Value: 49

(b) On a MIPS machine, how big (how many bytes) is the variable array?

The variable array, like all pointers on a system with 32-bit words, is 32-bits long, which is 4 bytes long.

(c) On a MIPS machine, how big (how many bytes) is array[2]?

It’s the size of an integer, which on MIPS, is 32-bits, or 4 bytes.

(c) What is the datatype of fun?

int**
(A pointer to a pointer to an int. Size is still 4 bytes, since it’s a pointer)

```c
int* array = (int*) malloc(42*sizeof(int));
int** fun = &array;
for (int i=0; i<42; i++){
    array[i] = i*i;
}
free (array);
```
Practice question 5

5) [25] Convert the following C code for the function foo() into MIPS code. **Use appropriate MIPS conventions for procedure calls**, including the passing of arguments and return values, as well as the saving/restoring of registers. Assume that there are 2 argument registers ($a0-$a1), 2 return value registers ($v0-$v1), 3 general-purpose callee-saved registers ($s0-$s2), and 3 general-purpose caller-saved registers ($t0-$t2). Assume $ra is callee-saved. The C code is obviously somewhat silly and unoptimized, but YOU MAY NOT OPTIMIZE IT -- you must simply translate it as is.

1: int foo (int num){
2: int temp = 0; //temp **MUST** be held in $t0
3: if (num <0) {
4: temp = num + 2;
5: }else{
6: temp = num - 2;
7: }
8: int sumA = bar(temp); //sumA **MUST** be held in $s0
9: int sumB = sumA + temp + num;//sumB **MUST** be held in $s1
10: return (sumB + 2);
11:}

12: int bar (int arg){

<table>
<thead>
<tr>
<th>line(s) of C</th>
<th>instruction(s)</th>
<th>what code MUST do (if not obvious from C code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td># need 20 bytes for s0, s1, t0, t1, ra # why t1 even though its not needed in the problem? # because i need to backup a0 before the call addiu $sp, $sp, -20 sw $s0, 0($sp) sw $s1, 4($sp) sw $ra, 8($sp)</td>
<td>create stack frame large enough for callee-saved and callee-saved registers; save callee-saved registers (ONLY necessary ones)</td>
</tr>
<tr>
<td>2</td>
<td>li $t0, $t0, 0 # alternately, i could do "move $t0, $0"</td>
<td></td>
</tr>
<tr>
<td>3-7</td>
<td>bgez $a0, else # invert the compare to get to the else #then addi $t0, $a0, 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>} end_if # bypass the else else: addi $t0, $a0, -2 end_if:</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>move $t1, $a0 # backup num move $a0, $t0 sw $t0, 12($sp) sw $t1, 16($sp) jal bar</td>
<td>save caller-saved registers (ONLY necessary ones); call bar() with appropriate arguments</td>
</tr>
<tr>
<td></td>
<td>after line 8 lw $t0, 12($sp) lw $t1, 16($sp) mov $s0, $v0</td>
<td>restore caller-saved registers; get value returned from bar() and put it in appropriate place</td>
</tr>
<tr>
<td>9</td>
<td>add $s1, $s0, $t0 # sumA+temp add $s1, $s1, $t1 # += num</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>addi $v0, $s1, 2 lw $s0, 0($sp) lw $s1, 4($sp) lw $ra, 8($sp) addiu $sp, $sp, 20 jr $ra</td>
<td>pass return value back to whoever called foo(); restore callee-saved registers; destroy stack frame; return to caller</td>
</tr>
</tbody>
</table>
Practice question 6

1) [10 points] Write the truth table for the output of the following boolean expression that has three inputs (a, b, c): output = abc + \overline{ac} + b\overline{c}

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Practice question 7

2) [10 points] Convert the following truth table into a boolean expression in product-of-sums format. Note that there are three inputs (a,b,c) and one output. Do NOT simplify or optimize in any way.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\((!a \& !b \& !c) \mid (!a \& b \& c) \mid (a \& !b \& c) \mid (a \& b \& !c) \mid (a \& b \& c)\)
Practice question 8

Simplify this expression; axioms are provided ->

\[(!A & B & C) | (A & B & !C) | (A & B & C)\]

Factor (A&B)

\[(!A & B & C) | ((A & B) & (!C | C))\]

Inverse law

\[(!A & B & C) | ((A & B) & \text{true})\]

Identity law

\[(!A & B & C) | (A & B)\]

Factor B

\[B \& ((!A & C) | A)\]

Distribute A

\[B \& ((!A | C) & (C | A))\]

Inverse law

\[B \& (\text{true} & (C | A))\]

Identity law

\[B \& (C | A)\]
Practice question 9: Sketch a circuit representation of the expression \((A \mid B)^{(A \& \neg C)}\)

![Circuit Diagram]

Practice question 10: Consider the circuit below. Assuming the two flip flop start with a value of zero, what will the state of the flip flops be for the clock cycles shown? The initial state is done for you.

<table>
<thead>
<tr>
<th>Clock cycle</th>
<th>FF1</th>
<th>FF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Same exercise, but with a different starting condition:

<table>
<thead>
<tr>
<th>Clock cycle</th>
<th>FF1</th>
<th>FF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Practice question 11: The circuit below shows two tri-state buffers.

![Circuit Diagram](image)

(a) How could you make D1’s value appear on output R?
 Set S1 to 1 and S2 to 0.

(b) How could you make D2’s value appear on output R?
 Set S1 to 0 and S2 to 1.

(c) How could you make the output R be in the high-impedance (“Z”) state?
 Set both S1 and S2 to 0.

(d) How could you cause a short circuit?
 Set D1 to 1 and D2 to 0, then turn on both S1 and S2.

Practice question 12: Draw a finite state machine that will output a 1 if and only if a sequence of characters of the following form is received: exactly one ‘D’, zero or more ‘O’s, and exactly one ‘G’. (If you happen to know regular expression notation, this is the expression /DO*G/.) Examples of matching inputs include: “DG”, “DOG”, “DOOOG”. Your machine can be of the Mealy or Moore variety. It doesn’t matter what your machine does after it outputs 1.