• Previously:
 • Computer is machine that does what we tell it to do
• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Representing High Level Things in Binary

• Computers represent everything in binary
• Instructions are specified in binary
• Instructions must be able to describe
 • Operation types (add, subtract, shift, etc.)
 • Data objects (integers, decimals, characters, etc.)
 • Memory locations
• Example:

  ```
  int x, y;       // Where are x and y? How to represent an int?
  bool decision; // How do we represent a bool? Where is it?
  y = x + 7;     // How do we specify “add”? How to represent 7?
  decision=(y>18); // Etc.
  ```
Representing Operation Types

• How do we tell computer to add? Shift? Read from memory? Etc.
• Arbitrarily! 😊
• Each Instruction Set Architecture (ISA) has its own binary encodings for each operation type
• E.g., in MIPS:
 • Integer add is: 00000 010000
 • Read from memory (load) is: 010011
 • Etc.
Representing Data Types

- Same as before: binary!

- **Data and interpretation are separate:**
 - The same 32 bits might mean one thing if interpreted as an integer, but another thing if interpreted as a floating point number
Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
- 4 bits is a nibble
- 8 bits is a byte
- 16 bits is a half-word (for MIPS32)
- 32 bits is a word (for MIPS32)
- 64 bits is a double-word (for MIPS32)
- 128 bits is a quad-word (for MIPS32)

Integers (char, short, int, long):
“2’s Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
- Single Precision (32-bit representation)
- Double Precision (64-bit representation)
- Extended (Quad) Precision (128-bit representation)

Character (char):
- ASCII 7-bit code

What is a **word**?
The standard unit of manipulation for a particular system. E.g.:
- **MIPS32:** 32 bits
- Original Nintendo: 8 bit
- Super Nintendo: 16 bit
- Intel x86 (classic): 32 bit
- Nintendo 64: 64 bit
- Intel x86_64 (modern): 64 bit

All pink arrows are true for a MIPS32 and Intel x86
Basic Binary

• Advice: memorize the following
 • $2^0 = 1$
 • $2^1 = 2$
 • $2^2 = 4$
 • $2^3 = 8$
 • $2^4 = 16$
 • $2^5 = 32$
 • $2^6 = 64$
 • $2^7 = 128$
 • $2^8 = 256$
 • $2^9 = 512$
 • $2^{10} = 1024$
Bits vs things

• If you have N bits, you can represent 2^N things.

• If you have T things, you need $\log_2 T$ bits to pick one.

You will have to answer questions of this form roughly a thousand times in this course – note it now!

Exercises:

• I have 8 bits, how many integers can I represent?
 • $2^8 = 256$

• I need to represent 32 cache sets. How many bits do I need?
 • $\log_2 32 = 5$

• I have 4GB of RAM. How many bits do I need to pick one byte of it?
 • $\log_2 4G = \ldots$?
Binary metric system

- The binary metric system:
 - $2^{10} = 1024$.
 - This is *basically* 1000, so we can have an alternative form of metric units based on base 2.
 - 2^{10} bytes = 1024 bytes = 1kB.
 - Sometimes written as 1kiB (pronounced “kibibyte” where the ‘bi’ means ‘binary’) (but nobody says “kibibyte” out loud because it sounds stupid)
 - 2^{20} bytes = 1MB, 2^{30} bytes = 1GB, 2^{40} bytes = 1TB, etc.
 - Easy rule to convert between exponent and binary metric number:

$$2^{XY} \text{ bytes} = 2^Y \cdot 2^{X0} \text{ bytes} = 2^Y \text{ <X_prefix> B}$$

- $2^{13} \text{ bytes} = 2^3 \text{ kB} = 8 \text{ kB}$
- $2^{39} \text{ bytes} = 2^9 \text{ GB} = 512 \text{ GB}$
- $2^{05} \text{ bytes} = 2^5 \text{ B} = 32 \text{ B}$

This matters a lot later on

From last slide:
$$\log_2 4G = 32$$
What does it mean to say base 10 or base 2?

• Integers in regular base 10:
 • 6253 = 6000 + 200 + 50 + 3
 = 6*10^3 + 2*10^2 + 5*10^1 + 3*10^0

• Integers in base 2:
 • 1101 = 1000 + 100 + 00 + 1
 = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0
 = 8 + 4 +1
 = 13

• 1 1 0 1

- Bit 3 8’s place
- Bit 2 4’s place
- Bit 1 2’s place
- Bit 0 1’s place
Decimal to binary using remainders

<table>
<thead>
<tr>
<th>?</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>457 ÷ 2 =</td>
<td>228</td>
<td>1</td>
</tr>
<tr>
<td>228 ÷ 2 =</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>114 ÷ 2 =</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>57 ÷ 2 =</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>28 ÷ 2 =</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14 ÷ 2 =</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>7 ÷ 2 =</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3 ÷ 2 =</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 ÷ 2 =</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

111001001
Decimal to binary using comparison

<table>
<thead>
<tr>
<th>Num</th>
<th>Compare 2^n</th>
<th>\geq ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>201</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The binary representation of the decimal number 457 is **111001001**.
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

Indicates a hex number

One hex digit represents 4 bits. Two hex digits represent a byte (8 bits).
Binary to/from hexadecimal

- 010110110010011_2 -->
- $0101 \ 1011 \ 0010 \ 0011_2$ -->
- $5 \ \ B \ \ 2 \ \ 3_{16}$

1 F 4 16 -->

0001 1111 0100 1011_2 -->

0001111101001011_2

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>
BitOps: Unary

• Bit-wise complement (~)
 • Flips every bit.

\[
\begin{align*}
\sim 0x0d & \quad // \text{ (binary 00001101)} \\
& \approx 0xf2 \quad // \text{ (binary 11110010)}
\end{align*}
\]

Not the same as Logical NOT (!) or sign change (−)

```c
char i, j1, j2, j3;
i = 0x0d; \quad // binary 00001101
j1 = \sim i; \quad // binary 11110010
j2 = \sim i; \quad // binary 11110011
j3 = !i; \quad // binary 00000000
```
BitOps: Two Operands

- Operate **bit-by-bit** on operands to produce a result operand of the same length
- **And (\&):** result 1 if both inputs 1, 0 otherwise
- **Or (|):** result 1 if either input 1, 0 otherwise
- **Xor (^):** result 1 if one input 1, but not both, 0 otherwise

Useful identities (applied per-bit):

- \(X \& 1 = X\) *ANDing with 1 does nothing*
- \(X \& 0 = 0\) *ANDing with 0 gives zero*
- \(X \mid 0 = X\) *ORing with 0 does nothing*
- \(X \mid 1 = 1\) *ORing with 1 gives one*
- \(X ^ 0 = X\) *XORing with 0 does nothing*
- \(X ^ 1 = \sim X\) *XORing with 1 flips the bit*
Two Operands... (cont’d)

- Examples

| 0011 1000 | 0011 1000 | 0011 1000 |
| & | \^ |

- 1101 1110

- 0001 1000

- 1111 1110

- 1110 0110
Shift Operations

• \(x \ll y \) is left (logical) shift of \(x \) by \(y \) positions
 • \(x \) and \(y \) must both be integers
 • \(x \) should be unsigned or positive
 • \(y \) leftmost bits of \(x \) are discarded
 • zero fill \(y \) bits on the right

\[
\begin{array}{c}
01111001 \ll 3 \\
\hline
11001000
\end{array}
\]

these 3 bits are discarded

these 3 bits are zero filled
• \(x \gg y \) is right (logical) shift of \(x \) by \(y \) positions
 • \(y \) rightmost bits of \(x \) are discarded
 • zero fill \(y \) bits on the left
Bitwise Recipes

• Set a certain bit to 1?
 • Make a MASK with a *one* at every position you want to *set*:
 \[
 m = 0x02; \quad // \quad 00000010_2
 \]
 • OR the mask with the input:
 \[
 v = 0x41; \quad // \quad 01000001_2
 v |= m; \quad // \quad 01000011_2
 \]

• Clear a certain bit to 0?
 • Make a MASK with a *zero* at every position you want to *clear*:
 \[
 m = 0xFD; \quad // \quad 11111101_2 \quad (\text{could also write} \ \sim 0x02)
 \]
 • AND the mask with the input:
 \[
 v = 0x27; \quad // \quad 00100111_2
 v &= m; \quad // \quad 00100101_2
 \]

• Get a substring of bits (such as bits 2 through 5)?
 Note: bits are numbered right-to-left starting with zero.
 • Shift the bits you want all the way to the right then AND them with an appropriate mask:
 \[
 v = 0x67; \quad // \quad 0110011_2
 v >>= 2; \quad // \quad 00011001_2
 v &= 0x0F; \quad // \quad 00001001_2
 \]
Binary Math : Addition

• Suppose we want to add two numbers:

 00011101
 + 00101011

 00101011

• How do we do this?
Suppose we want to add two numbers:

- 00011101 + 00101011
- 695 + 232

How do we do this?
- Let’s revisit decimal addition
- Think about the process as we do it
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\quad
\begin{array}{c}
695 \\
+ 232 \\
\hline
7
\end{array}
\]

• First add one’s digit 5+2 = 7
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
1227
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
27
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101110
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
927
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
• Last add hundred’s digit 1+6+2 = 9
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

• Back to the binary:

• First add 1’s digit 1+1 = ...?
• Suppose we want to add two numbers:

```
  1
00011101
+ 00101011
______
00101010
```

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
11 \\
00011101 \\
+ 00101011 \\
\hline
00
\end{array}
\]

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)
• Then 2’s digit: 1+0+1 =2 (0 carry a 1)
• You all finish it out....
Suppose we want to add two numbers:

\[
\begin{align*}
111111 & \\
00011101 & = 29 \\
+ 00101011 & = 43 \\
\hline
01001000 & = 72
\end{align*}
\]

Can check our work in decimal
Issues for Binary Representation of Numbers

• How to represent negative numbers?
 • There are many ways to represent numbers in binary
 • Binary representations are encodings → many encodings possible
 • What are the issues that we must address?
 • Issue #1: Complexity of arithmetic operations
 • Issue #2: Negative numbers
 • Issue #3: Maximum representable number
 • Choose representation that makes these issues easy for machine, even if it’s not easy for humans (i.e., ECE/CS 250 students)
 • Why? Machine has to do all the work!
Sign Magnitude

- Use leftmost bit for + (0) or – (1):
- 6-bit example (1 sign bit + 5 magnitude bits):
 - +17 = 010001
 - -17 = 110001
- Pros:
 - Conceptually simple
 - Easy to convert
- Cons:
 - Harder to compute (add, subtract, etc) with
 - Positive and negative 0: 000000 and 100000

NOBODY DOES THIS
1’s Complement Representation for Integers

- Use largest positive binary numbers to represent negative numbers

- To negate a number, invert ("not") each bit:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>

- Cons:
 - Still two 0s (yuck)
 - Still hard to compute with

NOBODY DOES THIS EITHER
2’s Complement Integers

- Use large positives to represent negatives
- \((-x) = 2^n - x\)
- This is 1’s complement + 1
- \((-x) = 2^n - 1 - x + 1\)
- So, just invert bits and add 1

6-bit examples:

\[
010110_2 = 22_{10}; 101010_2 = -22_{10}
\]
\[
1_{10} = 000001_2; -1_{10} = 111111_2
\]
\[
0_{10} = 000000_2; -0_{10} = 000000_2 \rightarrow \text{good!}
\]

EVERYBODY DOES THIS
Another way to think about 2’s complement

- **Regular base 10:**
 - 6253 = 6000 + 200 + 50 + 3
 = 6*10^3 + 2*10^2 + 5*10^1 + 3*10^0

- **Unsigned base 2:**
 - 1101 = 1000 + 100 + 00 + 1
 = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0
 = 8 + 4 + 1
 = 13

- **Signed base 2:**
 - 1101 = -1000 + 100 + 00 + 1
 = 1*-2^3 + 1*2^2 + 0*2^1 + 1*2^0
 = -8 + 4 + 1
 = -3

Alternately, flip the bits and add 1:

- Flip: 0010
- +1: 0011

That’s 3 in binary, so the number is indeed -3

Two’s complement is like making the highest order bit apply a negative value!
Pros and Cons of 2’s Complement

• Advantages:
 • Only one representation for 0 (unlike 1’s comp): \(0 = 000000 \)
 • Addition algorithm is much easier than with sign and magnitude
 • Independent of sign bits

• Disadvantage:
 • One more negative number than positive
 • Example: 6-bit 2’s complement number
 \[100000_2 = -32_{10}; \text{ but } 32_{10} \text{ could not be represented} \]

All modern computers use 2’s complement for integers
Integer ranges

• If I have an n-bit integer:
 • And it’s **unsigned**, then I can represent \(\{0 \ldots 2^n - 1\} \)
 • And it’s **signed**, then I can represent \(\{-2^{n-1} \ldots 2^{n-1} - 1\} \)

• Result:

<table>
<thead>
<tr>
<th>Size in bits</th>
<th>Size in bytes</th>
<th>Datatype</th>
<th>Unsigned range</th>
<th>Signed range</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>char</td>
<td>0 .. 255</td>
<td>-128 .. 127</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>short</td>
<td>0 .. 65,535</td>
<td>-32,768 .. 32,767</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>int</td>
<td>0 .. 4,294,967,295</td>
<td>-2,147,483,648 .. 2,147,483,647</td>
</tr>
<tr>
<td>64</td>
<td>8</td>
<td>long long</td>
<td>0 .. 18,446,744,073,709,600,000</td>
<td>-9,223,372,036,854,780,000 .. 9,223,372,036,854,780,000</td>
</tr>
</tbody>
</table>

How to get unsigned integers in C? Just say **unsigned**:

```c
int x;             // defaults to signed
unsigned int y;   // explicitly unsigned
```
Most computers today support 32-bit (int) or 64-bit integers
 • Specify 64-bit using gcc C compiler with long long
 • To extend precision, use sign bit extension
 • Integer precision is number of bits used to represent a number

Examples

\[14_{10} = 001110_2 \text{ in 6-bit representation.} \]
\[14_{10} = 000000001110_2 \text{ in 12-bit representation} \]

\[-14_{10} = 110010_2 \text{ in 6-bit representation} \]
\[-14_{10} = 111111110010_2 \text{ in 12-bit representation.} \]
Let’s look at another binary addition:

```
01011101
+ 01101011
_______
01100110
```
Binary Math : Addition

- What about this one:

 \[
 \begin{array}{c}
 11111111 \\
 01011101 \\
 + 01101011 \\
 \hline
 11001000
 \end{array}
 \]

 \[
 \begin{array}{c}
 = 93 \\
 = 107 \\
 = -56
 \end{array}
 \]

- But... that can't be right?
 - What do you expect for the answer?
 - What is it in 8-bit signed 2’s complement?
Integer Overflow

• Answer should be 200
 • Not representable in 8-bit signed representation
 • No right answer
• This is called integer **Overflow**
• Real problem in programs
• How to solve?
Subtraction

- 2’s complement makes subtraction easy:
 - Remember: $A - B = A + (-B)$
 - And: $-B = \sim B + 1$
 - that means flip bits ("not")
 - So we just flip the bits and start with carry-in (CI) = 1
 - Later: No new circuits to subtract (re-use adder hardware!)

\[
\begin{array}{c}
1 \\
0110101 \rightarrow 0110101 \\
- 1010010 + 0101101 \\
\end{array}
\]
What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Speed of light $\approx 3 \times 10^8$
 - $\pi = 3.1415...$
- Fixed number of bits limits range of integers
 - Can’t represent some important numbers
- Humans use Scientific Notation
 - 1.3×10^4
Option 1: Fixed point

- Use normal integers, but \((X \times 2^K)\) instead of \(X\)
 - Example: 32 bit int, but use \(X \times 65536\)
 - \(3.1415926 \times 65536 = 205887\)
 - \(0.5 \times 65536 = 32768\), etc..

- Pros:
 - Addition/subtraction just like integers ("free")

- Cons:
 - Mul/div require renormalizing (divide by 64K)
 - Range limited (no good rep for large + small)

- Can be good in specific situations
Can we do better?

- Think about scientific notation for a second:
- For example:
 \[6.02 \times 10^{23} \]
- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 02 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?
Option 2: Floating Point

- How about:
 \[+/- X.YYYYYY \times 2^{+/-N} \]

- Big numbers: large positive N
- Small numbers (<1): negative N
- Numbers near 0: small N

- This is “floating point”: most common way
Specific format called IEEE single precision:
+/- 1.YYYYY * 2^{(N-127)}

“float” in Java, C, C++,...

Assume first bit is always 1 (saves us a bit)
1 sign bit (+ = 0, 1 = -)
8 bit biased exponent (do N-127)
Implicit 1 before binary point
23-bit mantissa (YYYYY)
Binary fractions

1. YYYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - thousandths
 - ...

So after a binary point you have...
 - Halves
 - Quarters
 - Eighths
 - ...
Floating point example

- Binary fraction example:
 \[101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625\]

- For floating point, needs normalization:
 \[1.01101 \times 2^2\]

- Sign is +, which = 0

- Exponent = 127 + 2 = 129 = 1000 0001

- Mantissa = 1.011 0100 0000 0000 0000 0000

Can use hex to represent those bits in a less annoying way:

\[0x\ 4\ 0\ b\ 4\ 0\ 0\ 0\ 0\ 0\]
Floating Point Representation

Example:
What floating-point number is: 0xC1580000?
What floating-point number is $0xC1580000$?

$1100\ 0001\ 0101\ 1000\ 0000\ 0000\ 0000\ 0000$

$X = \begin{array}{cccccc}
\text{s} & \text{E} & \text{F} \\
1 & 1000 & 0010 & 101 & 1000 & 0000\ 0000\ 0000\ 0000
\end{array}$

Sign = 1 which is negative

Exponent = $(128+2)-127 = 3$

Mantissa = 1.1011

$-1.1011\times2^3 = -1101.1 = -13.5$
Trick question

• How do you represent 0.0?
 • Why is this a trick question?
 • 0.0 = 0.00000
 • But need 1.XXXXX representation?

• Exponent of 0 is denormalized
 • Implicit 0. instead of 1. in mantissa
 • Allows 0000....0000 to be 0
 • Helps with very small numbers near 0

• Results in +/- 0 in FP (but they are “equal”)
Other Weird FP numbers

- Exponent = 1111 1111 also not standard
 - All 0 mantissa: +/- ∞
 - 1/0 = +∞
 - -1/0 = -∞
 - Non zero mantissa: Not a Number (NaN)
 - sqrt(-42) = NaN
Floating Point Representation

- Double Precision Floating point:

 64-bit representation:
 - 1-bit **sign**
 - 11-bit (biased) **exponent**
 - 52-bit **fraction** (with implicit 1).

- “double” in Java, C, C++, ...

```
+-------+-------+-------+
<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bit</td>
<td>52 - bit</td>
</tr>
</tbody>
</table>
+-------+-------+----------+
```
What About Strings?

• Many important things stored as strings...
 • E.g., your name
• How should we store strings?
Standardized ASCII (0-127)

Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html	Chr					
0	0	000	NUL (null)	32	20	040	<#32;	Space	64	40	100	<#64;	@	
1	1	001	SOH (start of heading)	33	21	041	<#33;	!	65	41	101	<#65;	A	
2	2	002	STX (start of text)	34	22	042	<#34;	"	66	42	102	<#66;	B	
3	3	003	ETX (end of text)	35	23	043	<#35;	#	67	43	103	<#67;	C	
4	4	004	EOT (end of transmission)	36	24	044	<#36;	$	68	44	104	<#68;	D	
5	5	005	ENQ (enquiry)	37	25	045	<#37;	%	69	45	105	<#69;	E	
6	6	006	ACK (acknowledge)	38	26	046	<#38;	&	70	46	106	<#70;	F	
7	7	007	BEL (bell)	39	27	047	<#39;	'	71	47	107	<#71;	G	
8	8	010	BS (backspace)	40	28	050	<#40;	(72	48	110	<#72;	H	
9	9	011	TAB (horizontal tab)	41	29	051	<#41;)	73	49	111	<#73;	I	
10	A	012	LF (NL line feed, new line)	42	2A	052	<#42;	*	74	4A	112	<#74;	J	
11	B	013	VT (vertical tab)	43	2B	053	<#43;	+	75	4B	113	<#75;	K	
12	C	014	FF (NP form feed, new page)	44	2C	054	<#44;	,	76	4C	114	<#76;	L	
13	D	015	CR (carriage return)	45	2D	055	<#45;	-	77	4D	115	<#77;	M	
14	E	016	SO (shift out)	46	2E	056	<#46;	.	78	4E	116	<#78;	N	
15	F	017	SI (shift in)	47	2F	057	<#47;	/	79	4F	117	<#79;	O	
16	G	020	DLE (data link escape)	48	30	060	<#48;	0	80	50	120	<#80;	P	
17	H	021	DC1 (device control 1)	49	31	061	<#49;	1	81	51	121	<#81;	Q	
18	I	022	DC2 (device control 2)	50	32	062	<#50;	2	82	52	122	<#82;	R	
19	J	023	DC3 (device control 3)	51	33	063	<#51;	3	83	53	123	<#83;	S	
20	K	024	DC4 (device control 4)	52	34	064	<#52;	4	84	54	124	<#84;	T	
21	L	025	NAK (negative acknowledge)	53	35	065	<#53;	5	85	55	125	<#85;	U	
22	M	026	SYN (synchronous idle)	54	36	066	<#54;	6	86	56	126	<#86;	V	
23	N	027	ETB (end of trans. block)	55	37	067	<#55;	7	87	57	127	<#87;	W	
24	O	030	CAN (cancel)	56	38	070	<#56;	8	88	58	130	<#88;	X	
25	P	031	EM (end of medium)	57	39	071	<#57;	9	89	59	131	<#89;	Y	
26	Q	032	SUB (substitute)	58	3A	072	<#58;	:	90	5A	132	<#90;	Z	
27	R	033	ESC (escape)	59	3B	073	<#59;	;	91	5B	133	<#91;	{	
28	S	034	FS (file separator)	60	3C	074	<#60;	<	92	5C	134	<#92;	\	
29	T	035	GS (group separator)	61	3D	075	<#61;	=	93	5D	135	<#93;		
30	U	036	RS (record separator)	62	3E	076	<#62;	>	94	5E	136	<#94;	^	
31	V	037	US (unit separator)	63	3F	077	<#63;	?	95	5F	137	<#95;	_	

Source: www.LookupTables.com
One Interpretation of 128-255

<table>
<thead>
<tr>
<th>Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Ç</td>
</tr>
<tr>
<td>129</td>
<td>ü</td>
</tr>
<tr>
<td>130</td>
<td>é</td>
</tr>
<tr>
<td>131</td>
<td>à</td>
</tr>
<tr>
<td>132</td>
<td>ä</td>
</tr>
<tr>
<td>133</td>
<td>à</td>
</tr>
<tr>
<td>134</td>
<td>å</td>
</tr>
<tr>
<td>135</td>
<td>ç</td>
</tr>
<tr>
<td>136</td>
<td>è</td>
</tr>
<tr>
<td>137</td>
<td>ê</td>
</tr>
<tr>
<td>138</td>
<td>è</td>
</tr>
<tr>
<td>139</td>
<td>i</td>
</tr>
<tr>
<td>140</td>
<td>î</td>
</tr>
<tr>
<td>141</td>
<td>ì</td>
</tr>
<tr>
<td>142</td>
<td>Ä</td>
</tr>
<tr>
<td>143</td>
<td>Å</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
(This allowed totally sweet ASCII art in the 90s)

Sources:
About those control codes...

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td>NULL (null)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
<td>SOH (start of heading)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>002</td>
<td>STX (start of text)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>003</td>
<td>ETX (end of text)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>004</td>
<td>EOT (end of transmission)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>005</td>
<td>ENQ (enquiry)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>006</td>
<td>ACK (acknowledge)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>007</td>
<td>BEL (bell)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>010</td>
<td>BS (backspace)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>011</td>
<td>TAB (horizontal tab)</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>012</td>
<td>LF (NL line feed, new line)</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>013</td>
<td>VT (vertical tab)</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>014</td>
<td>FF (NP form feed, new page)</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>015</td>
<td>CR (carriage return)</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>016</td>
<td>SO (shift out)</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>017</td>
<td>SI (shift in)</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>020</td>
<td>DLE (data link escape)</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>021</td>
<td>DC1 (device control 1)</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>022</td>
<td>DC2 (device control 2)</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>023</td>
<td>DC3 (device control 3)</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>024</td>
<td>DC4 (device control 4)</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>025</td>
<td>NAK (negative acknowledge)</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>026</td>
<td>SYN (synchronous idle)</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>027</td>
<td>ETB (end of trans. block)</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>030</td>
<td>CAN (cancel)</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>031</td>
<td>EM (end of medium)</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>032</td>
<td>SUB (substitute)</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>033</td>
<td>ESC (escape)</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>034</td>
<td>FS (file separator)</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>035</td>
<td>GS (group separator)</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>036</td>
<td>RS (record separator)</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>037</td>
<td>US (unit separator)</td>
</tr>
</tbody>
</table>

We need to talk about CR and LF...

(Greyed out ones almost never used)
About CR and LF

• History: first computer “displays” were modified typewriters

• CR = “Carriage return” = \r = 0x0D
 • Move typey part to the left → move cursor to left of screen

• LF = “Line feed” = \n = 0x0A
 • Move paper one line down → Move cursor one down

• Windows: “Pretend to be a typewriter”
 • Every time you press enter you get CR+LF (bytes 0D,0A)

• Linux/Mac: “You are not a typewriter”
 • Every time you press enter you get LF (byte 0A)

• This effects ALL TEXT DOCUMENTS!!!
 • Not all apps cope automatically! It will bite you one day for sure!
Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Computer Memory

- Where do we put these numbers?
 - Registers [more on these later]
 - In the processor core
 - Compute directly on them
 - Few of them (~16 or 32 registers, each 32-bit or 64-bit)

- Memory [Our focus now]
 - External to processor core
 - Load/store values to/from registers
 - Very large (multiple GB)
Memory Organization

- Memory: billions of locations...how to get the right one?
 - Each memory location has an address
 - Processor asks to read or write specific address
 - Memory, please load address 0x123400
 - Memory, please write 0xFE into address 0x8765000
 - Kind of like a giant array
 - Array of what?
 - Bytes?
 - 32-bit ints?
 - 64-bit ints?
Memory Organization

- Most systems: byte (8-bit) addressed
 - Memory is “array of bytes”
 - Each address specifies 1 byte
 - Support to load/store 8, 16, 32, 64 bit quantities
 - Byte ordering varies from system to system

- Some systems “word addressed”
 - Memory is “array of words”
 - Smaller operations “faked” in processor
 - Not very common
Word of the Day: Endianess

Byte Order

- **Big Endian**: byte 0 is eight **most** significant bits
 - MIPS, IBM 360/370, Motorola 68k, Sparc, HP PA

- **Little Endian**: byte 0 is eight **least** significant bits
 - Intel 80x86, DEC Vax, DEC Alpha

Memory layout on a little endian system

Program

```c
X = 0x12345678; // X lives at address 0x1000
```

- **Big endian byte 0**: 12
- **Little endian byte 0**: 78

Memory layout on a big endian system:

- 0x1000: 12
- 0x1001: 34
- 0x1002: 56
- 0x1003: 78

Memory layout on a little endian system:

- 0x1000: 78
- 0x1001: 56
- 0x1002: 34
- 0x1003: 12
Memory Layout

- Memory is an array of bytes, but there are conventions as to what goes where in this array.
 - **Text**: instructions (the program to execute)
 - **Data**: global variables
 - **Stack**: local variables and other per-function state; starts at top & grows down
 - **Heap**: dynamically allocated variables; grows up
- What if stack and heap overlap??
int anumber = 3;

int factorial (int x) {
 if (x == 0) {
 return 1;
 }
 else {
 return x * factorial (x - 1);
 }
}

int main (void) {
 int z = factorial (anumber);
 int* p = malloc(sizeof(int)*64);
 printf("%d\n", z);
 return 0;
}

// p is a local on stack, *p is in heap
Summary: From C to Binary

- Everything must be represented in binary!
- Pointer is memory location that contains address of another memory location
- Computer memory is linear array of bytes
 - **Integers:**
 - unsigned \{0..2^{n-1}\} vs signed \{-2^{n-1} .. 2^{n-1}-1\} (“2’s complement”)
 - char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)
 - **Floats:** IEEE representation,
 - float (32-bit: 1 sign, 8 exponent, 23 mantissa)
 - double (64-bit: 1 sign, 11 exponent, 52 mantissa)
 - **Strings:** char array, ASCII representation
- Memory layout
 - **Stack** for local, **static** for globals, **heap** for malloc’d stuff (must free!)
The following slides re-state a lot of what we’ve covered but in a different way. We’ll likely skip it for time, but you can use the slides as an additional reference.
Let’s do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a = " + a + " b = " + b);
 }
}

• What does this print? Why?
Let’s do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

• What does this print? Why?

```
Stack

<table>
<thead>
<tr>
<th>main</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>42</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>swap</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>42</td>
</tr>
<tr>
<td>y</td>
<td>100</td>
</tr>
<tr>
<td>temp</td>
<td>???</td>
</tr>
<tr>
<td>RA</td>
<td>c0</td>
</tr>
</tbody>
</table>
```
Let’s do a little Java…

public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
Let's do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

- What does this print? Why?
public class Example {

 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }

 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

- What does this print? Why?
Let’s do a little Java…

public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java…

public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
References and Pointers (review)

- Java has references:
 - Any variable of object type is a reference
 - Point at objects (which are all in the heap)
 - Under the hood: is the memory address of the object
 - Cannot explicitly manipulate them (e.g., add 4)

- Some languages (C, C++, assembly) have explicit pointers:
 - Hold the memory address of something
 - Can explicitly compute on them
 - Can de-reference the pointer (*ptr) to get thing-pointed-to
 - Can take the address-of (&x) to get something’s address
 - Can do very unsafe things, shoot yourself in the foot
Pointers

• “address of” operator &
 • don’t confuse with bitwise AND operator (&&)

Given
 int x; int* p; // p points to an int
 p = &x;

Then
 *p = 2; and x = 2; produce the same result
 Note: p is a pointer, *p is an int

• What happens for p = 2?;

On 32-bit machine, p is 32-bits

```
x  0x26cf0
...
```
```
p  0x26d00 0x26cbf0
```
Back to Arrays

- Java:
  ```java
  int [] x = new int [nElems];
  ```

- C:
  ```c
  int data[42]; //if size is known constant
  int* data = (int*)malloc (nElems * sizeof(int));
  ```
 - `malloc` takes number of bytes
 - `sizeof` tells how many bytes something takes
• *x* is a pointer, what is *x*+33?

• A pointer, but where?
 • what does calculation depend on?

• Result of adding an int to a pointer depends on size of object pointed to
 • One reason why we tell compiler what type of pointer we have, even though all pointers are really the same thing (and same size)

```c
int* a = malloc(100*sizeof(int));

a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is 0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)

double* d = malloc(200*sizeof(double));

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is 0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)
```
• address one past the end of an array is ok for pointer comparison only

• what’s at *(begin+44)?

• what does begin++ mean?

• how are pointers compared using < and using == ?

• what is value of end - begin?

```cpp
char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{
    *begin = ‘z’;
    begin++;
}
```
int* a = new int[100];

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble
#include <stdio.h>

main()
{
 int* a = (int*)malloc (100 * sizeof(int));
 int* p = a;
 int k;

 for (k = 0; k < 100; k++)
 {
 *p = k;
 p++;
 }
 printf("entry 3 = %d\n", a[3])
}
• `malloc()` and `free()`
• Library routines that handle memory management for heap (allocation / deallocation)
• Java has garbage collection (reclaim memory of unreferenced objects)
• C must use `free`, else memory leak
A string is an array of characters with ‘\0’ at the end.
Each element is one byte, ASCII code.
‘\0’ is null (ASCII code 0)
strlen() again

- **strlen()** returns the number of characters in a string
 - same as number elements in char array?

```c
int strlen(char * s)
// pre: '\0' terminated
// post: returns # chars
{
    int count=0;
    while (*s++)
        count++;
    return count;
}
```
Vector Class vs. Arrays

- Vector Class
 - insulates programmers
 - array bounds checking
 - automagically growing/shrinking when more items are added/deleted

- How are Vectors implemented?
 - Arrays, re-allocated as needed

- Arrays can be more efficient