Basics of Logic Design:
Boolean Algebra, Logic Gates, and the ALU
(Combinational Logic)

Tyler Bletsch
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Alvy Lebeck (Duke), and Drew Hilton (Duke)
Reading

- Appendix B (parts 1, 2, 3, 5, 6, 7, 8, 9, 10)
- This material is covered in MUCH greater depth in ECE/CS 350 – please take ECE/CS 350 if you want to learn enough digital design to build your own processor
What We’ve Done, Where We’re Going

Top Down

(Application)
Compiler | Firmware

Operating System

(Circuit Design)

CPU | Memory | I/O system

Digital Design

Software

Interface Between HW and SW

Instruction Set Architecture, Memory, I/O

Hardware

(Almost) Bottom UP to CPU
Computer = Machine That Manipulates Bits

- Everything is in binary (bunches of 0s and 1s)
 - Instructions, numbers, memory locations, etc.
- Computer is a machine that operates on bits
 - Executing instructions → operating on bits

- Computers physically made of transistors
 - Electrically controlled switches
- We can use transistors to build logic
 - E.g., if this bit is a 0 and that bit is a 1, then set some other bit to be a 1
 - E.g., if the first 5 bits of the instruction are 10010 then set this other bit to 1 (to tell the adder to subtract instead of add)
How Many Transistors Are We Talking About?

Pentium III
• Processor Core 9.5 Million Transistors
• Total: 28 Million Transistors

Pentium 4
• Total: 42 Million Transistors

Core2 Duo (two processor cores)
• Total: 290 Million Transistors

Core2 Duo Extreme (4 processor cores, 8MB cache)
• Total: 590 Million Transistors

Core i7 with 6-cores
• Total: 2.27 Billion Transistors

How do they design such a thing? Carefully!
Abstraction!

• Use of **abstraction** (key to design of any large system)
 • Put a few (2-8) transistors into a **logic gate** (or, and, xor, ...)
 • Combine gates into logical functions (add, select,)
 • Combine adders, shifters, etc., together into modules
 Units with well-defined interfaces for large tasks: e.g., decode
 • Combine a dozen of those into a core...
 • Stick 4 cores on a chip...
Boolean Algebra

• First step to logic: Boolean Algebra
 • Manipulation of True / False (1/0)
 • After all: everything is just 1s and 0s

• Given inputs (variables): A, B, C, P, Q...
 • Compute outputs using logical operators, such as:

 • NOT: !A (= \sim A = \overline{A})
 • AND: A&B (= A \cdot B = A*B = AB = A\land B) = A&&B in C/C++
 • OR: A | B (= A+B = A \lor B) = A || B in C/C++
 • XOR: A ^ B (= A \oplus B)
 • NAND, NOR, XNOR, Etc.
Truth Tables

- Can represent as **truth table**: shows outputs for all inputs

<table>
<thead>
<tr>
<th>a</th>
<th>NOT (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>AND (a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>OR (a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>XOR (a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>XNOR (a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>NOR (a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Any Inputs, Any Outputs

- Can have any # of inputs, any # of outputs
- Can have arbitrary functions:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f_1</th>
<th>f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Let’s Write a Truth Table for a Function…

- Example:

 \[(A \& B) \mid !C\]

Start with Empty TT

 Column Per Input

 Column Per Output

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let’s write a Truth Table for a function…

- Example:
 \((A \& B) \mid !C\)

Start with Empty TT

- Column Per Input
- Column Per Output

Fill in Inputs

- Counting in Binary

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Let’s write a Truth Table for a function…

- Example:

 \[(A \& B) \mid !C\]

Start with Empty TT

Column Per Input

Column Per Output

Fill in Inputs

Counting in Binary

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Let’s write a Truth Table for a function…

- Example:

 \((A \& B) \mid !C\)

Start with Empty TT
- Column Per Input
- Column Per Output

Fill in Inputs
- Counting in Binary

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Output</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Let’s write a Truth Table for a function…

- Example:

 \[(A \& B) \mid \neg C\]

Start with Empty TT

 Column Per Input

 Column Per Output

Fill in Inputs

 Counting in Binary

Compute Output

 \[(0 \& 0) \mid \neg 0 = 0 \mid 1 = 1\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Let's write a Truth Table for a function…

- Example:
 \((A \& B) \mid !C\)

Start with Empty TT
 - Column Per Input
 - Column Per Output

Fill in Inputs
 - Counting in Binary

Compute Output
 \((0 \& 0) \mid !1 = 0 \mid 0 = 0\)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Output</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Let’s write a Truth Table for a function…

• Example:

 \[(A \& B) \mid !C\]

Start with Empty TT
 Column Per Input
 Column Per Output

Fill in Inputs
 Counting in Binary

Compute Output
 \[(0 \& 1) \mid !0 = 0 \mid 1 = 1\]
Let’s write a Truth Table for a function…

- Example:

 \((A \& B) \mid \neg C\)

Start with Empty TT
- Column Per Input
- Column Per Output

Fill in Inputs
- Counting in Binary

Compute Output

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logisim example: `basic_logic.circ: example1`
Suppose I turn it around...

- Given a Truth Table, find the formula?

Hmmm..

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Suppose I turn it around…

- Given a Truth Table, find the formula?

Hmmm …

Could write down every “true” case

Then OR together:

\[

\begin{align*}
\neg A \land \neg B \land \neg C \land \\
\neg A \land \neg B \land C \land \\
\neg A \land B \land \neg C \land \\
A \land B \land \neg C \land \\
A \land B \land C
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Suppose I turn it around...

- Given a Truth Table, find the formula?

Hmmm..

Could write down every “true” case
Then OR together:

\[
\begin{align*}
(!A \& \!B \& \!C) \; & | \\
(!A \& \!B \& C) \; & | \\
(!A \& B \& \!C) \; & | \\
(A \& B \& \!C) \; & | \\
(A \& B \& C) \; & |
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Suppose I turn it around...

- Given a Truth Table, find the formula?

Hmmm..
Could write down every “true” case
Then OR together:

\[\neg A \land \neg B \land \neg C \lor \neg A \land \neg B \land C \lor \neg A \land B \land \neg C \lor A \land B \land \neg C \lor A \land B \land C \]
Suppose I turn it around…

- This approach: “sum of products”
 - Works every time
 - Result is right...
 - But really ugly

\[(\neg A \land \neg B \land \neg C) \lor \neg A \land B \land \neg C \lor \neg A \land B \land C \lor A \land B \land \neg C \lor A \land B \land C\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Suppose I turn it around...

- This approach: “sum of products”
 - Works every time
 - Result is right...
 - But really ugly

\[(\neg A \land \neg B \land \neg C) \lor (\neg A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (A \land B \land \neg C) \lor (A \land B \land C)\]

Could just be \((A \land B)\) here?
Suppose I turn it around…

• This approach: “sum of products”
 • Works every time
 • Result is right...
 • But really ugly

(\neg A \land \neg B \land \neg C) \lor
(\neg A \land \neg B \land C) \lor
(\neg A \land B \land \neg C) \lor
(A \land B)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Suppose I turn it around…

- This approach: “sum of products”
 - Works every time
 - Result is right...
 - But really ugly

\[(\neg A \land \neg B \land \neg C) \lor (\neg A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (A \land B)\]

Could just be \((\neg A \land \neg B)\) here
Suppose I turn it around…

- This approach: “sum of products”
 - Works every time
 - Result is right...
 - But really ugly

\[(!A \& !B) \mid (!A \& B \& !C) \mid (A\&B) \]

Could just be (!A \& !B) here
Suppose I turn it around…

- This approach: “sum of products”
 - Works every time
 - Result is right...
 - But really ugly

\[
(!A \& !B) \mid (!A \& B \& !C) \mid (A \& B)
\]

Looks nicer…
Can we do better?
Just did some of these by intuition. but

- Somewhat intuitive approach to simplifying
- This is **math**, so there are formal rules
 - Just like “regular” algebra
Boolean Function Simplification

- Boolean expressions can be simplified by using the following rules (bitwise logical):

 - $A \& A = A$
 - $A \& 0 = 0$
 - $A \& 1 = A$
 - $A \& \neg A = 0$
 - $\neg \neg A = A$
 - $A \& (B \| C) = (A \& B) \| (A \& C)$
 - $A \| (A \& B) = A$

- & and | are both commutative and associative

A and $\neg A$ are subsumed.
DeMorgan’s Laws

• Two (less obvious) Laws of Boolean Algebra:
 • Let’s push negations inside, flipping & and |

\[
\neg (A \& B) = \neg A \mid \neg B
\]

\[
\neg (A \mid B) = \neg A \& \neg B
\]

• You should try this at home – build truth tables for both the left and right sides and see that they’re the same
Summary of all Boolean axioms

<table>
<thead>
<tr>
<th>Name</th>
<th>AND form</th>
<th>OR form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity law</td>
<td>1 & A = A</td>
<td>0</td>
</tr>
<tr>
<td>Null law</td>
<td>0 & A = 0</td>
<td>1</td>
</tr>
<tr>
<td>Idempotent law</td>
<td>A & A = A</td>
<td>A</td>
</tr>
<tr>
<td>Inverse law</td>
<td>A & !A = 0</td>
<td>A</td>
</tr>
<tr>
<td>Commutative law</td>
<td>A & B = B & A</td>
<td>A</td>
</tr>
<tr>
<td>Associative law</td>
<td>(A&B) & C = A & (B&C)</td>
<td>(A</td>
</tr>
<tr>
<td>Distributive law</td>
<td>A</td>
<td>(B&C) = (A</td>
</tr>
<tr>
<td>Absorption law</td>
<td>A & (A</td>
<td>B) = A</td>
</tr>
<tr>
<td>De Morgan’s law</td>
<td>!(A&B) = !A</td>
<td>!B</td>
</tr>
<tr>
<td>Double negation law</td>
<td>!!A = A</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from http://studytronics.weebly.com/boolean-algebra.html
Simplification Example:

\[
\neg (\neg A \lor \neg (A \land (B \lor C)))
\]

DeMorgan’s

\[
\neg \neg A \land \neg \neg (A \land (B \lor C))
\]

Double Negation Elimination

\[
A \land (A \land (B \lor C))
\]

Associativity of \&

\[
(A \land A) \land (B \lor C)
\]

\[
A \land A = A
\]

\[
A \land (B \lor C)
\]
You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

\((\neg A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (A \land \neg B \land C) \lor (A \land B \land C)\)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
You try this:

Simplify:

\[(\neg A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \]

Regroup (associative/commutative):

\[((\neg A \land \neg C) \land \neg B) \lor ((\neg A \land \neg C) \land B) \]

Un-distribute (factor):

\[(\neg A \land \neg C) \land (\neg B \lor B) \]

OR identities:

\[(\neg A \land \neg C) \land \text{true} = (\neg A \land \neg C) \]
You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

\[\overline{A} \land \overline{C} \lor (A \land \overline{B} \land C) \lor (A \land B \land C) \]

Result of simplifying

You can simplify this part in the same way…

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
You try this:

Come up with a formula for this Truth Table

Simplify as much as possible

Sum of Products:

$$(!A \land !C) \lor (A \land C)$$
Applying the Theory

- Lots of good theory
- Can reason about complex Boolean expressions
- But why is this useful?
Boolean Gates

- **Gates** are electronic devices that implement simple Boolean functions (building blocks of hardware)

- **AND** (\(a, b\))
 - Symbol: \(\cdot\)
- **OR** (\(a, b\))
 - Symbol: \(\lor\)
- **NAND** (\(a, b\))
 - Symbol: \(\neg\)
- **NOR** (\(a, b\))
 - Symbol: \(\lor\neg\)
- **XOR** (\(a, b\))
 - Symbol: \(\oplus\)
- **XNOR** (\(a, b\))
 - Symbol: \(\oplus\neg\)
- **NOT** (\(a\))
 - Symbol: \(\neg\)
Guide to Remembering your Gates

- This one looks like it just points its input where to go
 - It just produces its input as its output
 - Called a buffer

- A circle always means negate (invert)
Guide to Remembering your Gates

AND \((a, b)\)

- Straight like an A

OR \((a, b)\)

- Curved, like an O

XOR \((a, b)\)

- XOR looks like OR (curved line), but has two lines (like an X does)

NAND \((a, b)\)

- Circle means NOT

NOR \((a, b)\)

XNOR \((a, b)\)

- (XNOR is 1-bit “equals” by the way)

NOT \((a)\)
Brief Interlude: Building An Inverter

$\text{NOT}(a)$

$V_{dd} = \text{power} = 1$

P-type: switch is “on” if input is 0

N-type: switch is “on” if input is 1

ground = 0
Boolean Functions, Gates and Circuits

- **Circuits** are made from a network of gates.

\[(\neg A \land \neg C) \lor (A \land C)\]
A few more words about gates

- Gates have inputs and outputs
 - If you try to hook up two outputs, bad things happen (your processor catches fire)

```
 a
 b
```

```
 c
 d
```

- If you don’t hook up an input, it behaves kind of randomly (also not good, but not set-your-chip-on-fire bad)
Introducing the Multiplexer ("mux")
Introducing the Multiplexer ("mux")

Selector (S)

Input A

1

Input B

0

Output

1

"A"
Introducing the Multiplexer ("mux")

Selector (S)

Input A

Input B

Output

“B”

”mux”

0

1
Introducing the Multiplexer ("mux")

Selector (S)

Input A

Input B

Output

"B"
Let’s Make a Useful Circuit

• Pick between 2 inputs (called 2-to-1 MUX)
 • Short for multiplexor

• What might we do first?
 • Make a truth table?
 • S is selector:
 • S=0, pick A
 • S=1, pick B

• Next: sum-of-products
 \[(!A \land B \land S) \lor \]
 \[(A \land \neg B \land \neg S) \lor \]
 \[(A \land B \land \neg S) \lor \]
 \[(A \land B \land S) \]

• Simplify
 \[(A \land \neg S) \lor (B \land S) \]
Circuit Example: 2x1 MUX

Draw it in gates:

\[
MUX(A, B, S) = (A \land \neg S) \lor (B \land S)
\]

So common, we give it its own symbol:

Logisim example
basic_logic.circ : mux 2x1
Example 4x1 MUX

The / 2 on the wire means “2 bits”
Arithmetic and Logical Operations in ISA

- What operations are there?
- How do we implement them?
 - Consider a 1-bit Adder
Designing a 1-bit adder

• What boolean function describes the low bit?
 • XOR

• What boolean function describes the high bit?
 • AND

\[
\begin{array}{c c c}
0 + 0 &= 00 \\
0 + 1 &= 01 \\
1 + 0 &= 01 \\
1 + 1 &= 10 \\
\end{array}
\]
Designing a 1-bit adder

- Remember how we did binary addition:
 - Add the **two bits**
 - Do we have a **carry-in** for this bit?
 - Do we have to **carry-out** to the next bit?

```
01101100
+ 00101100
-----
10011001
```
Designing a 1-bit adder

- So we’ll need to add three bits (including carry-in)
- Two-bit output is the *carry-out* and the *sum*

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>C_in</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>01</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

Turn into expression, simplify, circuit-ify, yadda yadda yadda…
A 1-bit Full Adder

\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{Cin} \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>C_{in}</th>
<th>Sum</th>
<th>C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logisim example
basic_logic.circ - full-adder
Example: 4-bit adder

```
Example: 4-bit adder

4-bit adder

Full Adder

Full Adder

Full Adder

Full Adder

C_{out}

S3

S2

S1

S0

a3 b3

a2 b2

a1 b1

a0 b0

Logisim example
basic_logic.circ : 4bit-adder
```
Subtraction

• How do we perform integer subtraction?
• What is the hardware?
 • Recall: hardware was why 2’s complement was good idea

• Remember: Subtraction is just addition
 \[X - Y = \]
 \[X + (-Y) = \]
 \[X + (\sim Y + 1) \]
Example: Adder/Subtractor

![Diagram of a 4-bit adder/subtractor using full adders]

- Inputs: $a_3, b_3, a_2, b_2, a_1, b_1, a_0, b_0$
- Outputs: C_{out}
- Intermediate signals: S_3, S_2, S_1, S_0

Logisim example:
basic_logic.circ - 4bit-addsub
Overflow

- We can detect **unsigned overflow** by looking at CO.
- How would we detect **signed overflow**?
 - If adding positive numbers and result “is” negative.
 - If adding negative numbers and result “is” positive.
 - At most significant bit of adder, check if CI != CO.
 - Can check with XOR gate.
Add/Subtract With Overflow Detection

Signed Overflow

Unsigned Overflow

Add/Sub

Logisim example
basic_logic.circ : 4bit-addsub2
ALU Slice

Add/sub

Cin

a

b

Add/sub

Cout

Add/sub

F

Q

<table>
<thead>
<tr>
<th>A</th>
<th>F</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a + b</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a - b</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>NOT b</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>a OR b</td>
</tr>
<tr>
<td>-</td>
<td>3</td>
<td>a AND b</td>
</tr>
</tbody>
</table>

Logisim example
basic_logic.circ : alu-slice
The ALU

Overflow

Is non-zero?

ALU Slice

\[Q_{n-1} \]

\[Q_{n-2} \]

\[b_{n-1} \quad a_{n-1} \]

\[b_{n-2} \quad a_{n-2} \]

ALU Slice

\[Q_1 \]

\[Q_0 \]

\[b_1 \quad a_1 \]

\[b_0 \quad a_0 \]

ALU control

Logisim example

basic_logic.circ - alu
Alternate ALU design

- Previous design did ALU stuff for each bit, then chained them.

- Can also do each word-size operation and mux the resulting words.
Abstraction: The ALU

- General structure
- Two operand inputs
- Control inputs

- We can build circuits for
 - Multiplication
 - Division
 - They are more complex

\[\log_2(\text{num_of_operations_supported}) \]
Another Operations We Might Want: Shift

- Remember the << and >> operations?
 - Shift left/shift right?
 - How would we implement these?
- Suppose you have an 8-bit number $b_7b_6b_5b_4b_3b_2b_1b_0$
- And you can shift it left by a 3-bit number $s_2s_1s_0$

- Option 1: Truth Table?
 - $2^{11} = 2048$ rows? Yuck.

...but you can do it. Truth table gives this expression for output bit 0:
Building a bit shifter

- Simpler problem: A shift-by-one circuit, all controlled by the same 1 bit input (s_0)
Building a bit shifter

- Simpler problem: A shift-by-two circuit, all controlled by the same 1 bit input (s_1)
Building a bit shifter

- Simpler problem: A shift-by-four circuit, all controlled by the same 1 bit input (s_2)

```
    b_7  |  out_7
    s_2  |
    b_6  |  out_6
    s_2  |
    b_5  |  out_5
    s_2  |
    b_4  |  out_4
    s_2  |
    b_3  |  out_3
    s_2  |
    b_2  |  out_2
    s_2  |
    b_1  |  out_1
    s_2  |
    b_0  |  out_0
    s_2  |
```

Literal

0
Now shifted by 3-bit number

- Full problem: stick them all together, controlled by 3-bit value $s_{2:0}$
Now shifted by 3-bit number

- Example: shift by 000
Now shifted by 3-bit number

- Example: shift by 011
Summary

- Boolean Algebra & functions
- Logic gates (AND, OR, NOT, etc)
- Multiplexors
- Adder
- Arithmetic Logic Unit (ALU)
- Bit shifting