

97 Things Every Software

Architect Should Know

- The Book
http://97-things.near-time.net/wiki/97-things-every-software-architect-should-know-the-book

The following are the original, unedited contributions for the book 97 Things Every Software

Architect Should Know, which is available at O'Reilly Media , Amazon.com and your local

book stores.

This work is licensed under a Creative Commons Attribution 3

http://97-things.near-time.net/wiki/97-things-every-software-architect-should-know-the-book
http://oreilly.com/catalog/9780596522698/index.html#top
http://www.amazon.com/Things-Every-Software-Architect-Should/dp/059652269X/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1235560838&sr=8-1
http://creativecommons.org/licenses/by/3.0/us/

Revision History

Ver. Date Author Comment

1.0
2009.11.05 Manohar S

Compiled from links on http://97-things.near-

time.net/wiki/97-things-every-software-architect-should-

know-the-book

http://97-things.near-time.net/wiki/97-things-every-software-architect-should-know-the-book
http://97-things.near-time.net/wiki/97-things-every-software-architect-should-know-the-book
http://97-things.near-time.net/wiki/97-things-every-software-architect-should-know-the-book

 Contents

97 Things Every Software Architect Should Know - The Book 1
Revision History .. 2
1. Don't put your resume ahead of the requirements .. 5
2. Simplify essential complexity; diminish accidental complexity 6
3. Chances are your biggest problem isn't technical ... 7
4. Communication is King; Clarity and Leadership its humble servants 9
5. Architecting is about balancing .. 10

Balance stakeholders' interests with technical requirements 10
6. Seek the value in requested capabilities ... 11
7. Stand Up! ... 12
8. Skyscrapers aren't scalable ... 13
9. You're negotiating more often than you think. .. 15
10. Quantify .. 17
11. One line of working code is worth 500 of specification 18
12. There is no one-size-fits-all solution .. 19
13. It's never too early to think about performance .. 20
14. Application architecture determines application performance 21
15. Commit-and-run is a crime. .. 22
16. There Can be More than One ... 23
17. Business Drives .. 24
18. Simplicity before generality, use before reuse ... 25
19. Architects must be hands on ... 26
20. Continuously Integrate .. 28
21. Avoid Scheduling Failures ... 29
22. Architectural Tradeoffs .. 30
23. Database as a Fortress ... 31
24. Use uncertainty as a driver ... 32
25. Scope is the enemy of success ... 33
26. Reuse is about people and education, not just architecture 34
27. There is no 'I' in architecture ... 36
28. Get the 1000ft view .. 38
29. Try before choosing .. 39
30. Understand The Business Domain .. 40
31. Programming is an act of design ... 41
32. Time changes everything .. 42
33. Give developers autonomy .. 43
34. Value stewardship over showmanship .. 44
35. Warning, problems in mirror may be larger than they appear 45
36. The title of software architect has only lower-case 'a's; deal with it 46
37. Software architecture has ethical consequences ... 47
38. Everything will ultimately fail .. 48
39. Context is King .. 49
40. It's all about performance ... 51
41. Engineer in the white spaces ... 52
42. Talk the Talk .. 54
43. Heterogeneity Wins .. 56
44. Dwarves, Elves, Wizards, and Kings ... 58
45. Learn from Architects of Buildings .. 59
46. Fight repetition ... 61
47. Welcome to the Real World ... 62
48. Don't Control, but Observe .. 63
49. Janus the Architect .. 65

50. Architects focus is on the boundaries and interfaces .. 67
51. Challenge assumptions - especially your own ... 68
52. Record your rationale .. 70
53. Empower developers ... 72
54. It is all about the data ... 73
55. Control the data, not just the code ... 75
56. Don't Stretch The Architecture Metaphors ... 76
57. Focus on Application Support and Maintenance ... 77
58. Prepare to pick two .. 78
59. Prefer principles, axioms and analogies to opinion and taste 79
60. Start with a Walking Skeleton .. 80
61. Share your knowledge and experiences .. 81
62. Make sure the simple stuff is simple .. 82
63. If you design it, you should be able to code it. ... 83
64. The ROI variable .. 84
65. Your system is legacy, design for it. .. 85
66. If there is only one solution, get a second opinion ... 86
67. Understand the impact of change ... 87
68. You have to understand Hardware too ... 89
69. Shortcuts now are paid back with interest later .. 90
70. "Perfect" is the Enemy of "Good Enough" ... 91
71. Avoid "Good Ideas" .. 92
72. Great content creates great systems ... 93
73. The Business Vs. The Angry Architect ... 94
74. Stretch key dimensions to see what breaks .. 95
75. Before anything, an architect is a developer .. 96
76. A rose by any other name will end up as a cabbage ... 97
77. Stable problems get high quality solutions... 98
78. It Takes Diligence ... 99
79. Take responsibility for your decisions .. 100
80. Don’t Be a Problem Solver .. 101
81. Choose your weapons carefully, relinquish them reluctantly 102
82. Your Customer is Not Your Customer ... 103
83. It will never look like that .. 104
84. Choose Frameworks that play well with others ... 105
85. Make a strong business case .. 106
86. Pattern Pathology .. 107
87. Learn a new language .. 108
88. Don't Be Clever .. 110
89. Build Systems to be Zuhanden ... 111
90. Find and retain passionate problem solvers ... 112
91. Software doesn’t really exist ... 113
92. Pay down your technical debt .. 114
93. You can't future-proof solutions ... 115

Today's solution is tomorrows problem ... 115
94. The User Acceptance Problem ... 116
95. The Importance of Consommé ... 117
96. For the end-user, the interface is the system ... 118
97. Great software is not built, it is grown ... 119

1. Don't put your resume ahead of the

requirements

As engineers we sometimes recommend technologies, methodologies and approaches for solving

problems because deep down we want to have these on our resume and not because they are the

best solution for the problem. Such decisions very rarely result in happy outcomes.

The best thing for your career is a long string of happy customers eager to recommend you

because you did the right thing by them and for the project. This goodwill will serve you orders

of magnitude better than the latest shiny object in the latest shiny language or the latest shiny

paradigm. While it is important, even critical, to stay abreast of the latest trends and technologies

this should never happen at the cost of the customer. It‘s important to remember that you have a

fiduciary duty. As an architect you have been entrusted with the well-being of your organization

and its expected that you will avoid all conflicts of interest and give the organization your

undivided loyalty. If the project isn't cutting edge or challenging enough for your current career

needs then find one that is.

If you can't do that and you are forced to be in such a project, then you and everyone else will be

happier using the right technology for the customer rather than for your resume. It‘s often

difficult to resist utilizing a solution that is new and cool, even when it‘s inappropriate for the

current situation.

With the right solution, the project will have a happier team, a happier customer and overall far

less stress. This will often give you time to go deeper into the existing older technology or to

learn the new stuff on your own time. Or to go take that painting class you always wanted to do.

Your family will love you for it, too - they'll notice the difference when you get home.

Overall always put the customer's long-term needs ahead of your own short term needs and you

won't go wrong.

By Nitin Borwankar

http://97-things.near-time.net/wiki/Nitin%20Borwankar

2. Simplify essential complexity;

diminish accidental complexity

Essential complexity represents the difficulty inherent in any problem. For example,

coordinating a nation‘s air traffic is an inherently complex problem. Every plane‘s exact position

(including altitude), speed, direction and destination must be tracked in real time to prevent mid

air and runway collisions. The flight schedules of aircraft must be managed to avoid airport

congestion in a continuously changing environment – a sever change in weather throws the entire

schedule out of whack.

Conversely, accidental complexity grows from the things we feel we must build to mitigate

essential complexity. The antiquated air traffic control system used today is an example of

accidental complexity. It was designed to address the essential complexity of controlling the

traffic of thousands of airplanes, but the solution itself introduces it‘s own complexity. In fact,

the air traffic control system used today is so complex that updating it has proven to be difficult

if not impossible. In much of the world air traffic is guided by technology that is more than 30

years old.

Many frameworks and vendor "solutions" are the symptoms of the accidental complexity

disease. Frameworks that solve specific problems are useful. Over-engineered frameworks add

more complexity than they relieve.

Developers are drawn to complexity like moths to flame, frequently with the same result. Puzzle

solving is fun, and developers are problem solvers. Who doesn't like the rush of solving some

incredibly complex problem? In large-scale software, though, removing accidental complexity

while retaining the solution to the essential complexity is challenging.

How do you do this? Prefer frameworks derived from working code rather than ones cast down

from ivory towers. Look at the percentage of code you have in a solution that directly addresses

the business problem vs. code that merely services the boundary between the application and the

users. Cast a wary eye on vendor driven solutions. They may not be inherently bad, but vendors

often push accidental complexity. Make sure that the solution fits the problem.

It‘s the duty of the architect to solve the problems inherent in essential complexity without

introducing accidental complexity.

By Neal Ford

http://97-things.near-time.net/wiki/neal-ford

3. Chances are your biggest problem

isn't technical

Right now someone's running a failing project to build a payroll system. Probably more than one

someone.

Why? Was it because they chose Ruby over Java, or Python over Smalltalk? Or because they

decided to use Postgres rather than Oracle? Or did they choose Windows when they should have

chosen Linux? We've all seen the technology take the fall for failed projects. But what are the

chances that the problem was really so difficult to solve that Java wasn't up the the task?

Most projects are built by people, and those people are the foundation for success and failure. So,

it pays to think about what it takes to help make those people successful.

Equally, there's a good chance that there's someone who you think is "just not doing it right" and

is undermining the project. In these cases, the technology you need to solve your problem is very

old and well established indeed, in fact it's possibly the most important technical innovation in

the history of humanity. What you need is a conversation.

Mere familiarity with the conversation as a technology isn't enough. Learning to treat people

with respect, and learning give them the benefit of the doubt, is one of the core skills that turn a

smart architect into one an effective architect.

There's lots more to it than this, but a couple small tips can significantly increase your

conversational effectiveness:

1) Approach these events as conversations -- not as confrontations.

If you assume the best about people and treat this as a way to ask questions you definitely learn

more, and you are less likely to put people on the defensive.

 2) Approach these conversations only after you've got your attitude right.

If you're angry, frustrated, annoyed, or otherwise flustered its very likely that the other person

will interpret you non-verbals as indicating that you're on the attack.

 3) Use these as opportunities to set mutually agreed upon goals.

Instead of telling a developer that they need to be quiet in meetings because they never let

anybody speak, ask if they can help you increase other people's participation. Explain that some

people are more introverted and need longer silences before they jump into a conversation, and

ask if they will help you out by waiting 5 seconds before jumping in.

 If you start with a shared purpose, treat people "problems" as an opportunity to learn, and

manage your own emotions, you'll not only become more effective, you'll also discover that you

learn something every time.

 By Mark Ramm

http://97-things.near-time.net/wiki/Mark%20Ramm

4. Communication is King; Clarity and

Leadership its humble servants

All too often software architects sit in their ivory towers, dictating specifications, technology

decisions, and technology direction to the developers below. More often than not this leads to

dissension in the ranks, quickly followed by a revolt by the masses, finally resulting in a software

product that doesn't even come close to resembling the original requirements. Every software

architect should know how to communicate the goals and objectives of a software project. The

key to effective communication is clarity and leadership.

Clarity describes how you communicate. No one on your team is going to read a 100 page

architecture decisions document. Being clear and concise in the way you communicate your

ideas is vital to the success of any software project. Keep things as simple as possible at the start

of a project, and by all means do not start writing lengthy Word documents. Use tools like Visio

to create simple diagrams to convey your thoughts. Keep them simple, for they will almost

certainly be changing frequently. Another effective means of communication is informal

whiteboard meetings. Nothing gets your ideas across better than bringing in a group of

developers (or other architects) into a room and whiteboarding your ideas. Also, be sure to

always have a digital camera with you at all times. Nothing is more frustrating than being pushed

out of a meeting room with all of your ideas stuck on a white board. Snap a picture, download it,

and share it via a wiki to the rest of the team. So throw away the lengthy Word documents and

focus more on getting your ideas across, and afterwards worry about recording the details of your

architectural decisions.

One thing most software architects fail to realize is that a software architect is also a leader. As a

leader, you must gain the respect of your co-workers to work effectively in a healthy and

effective environment. Keeping developers in the dark about the big picture or why decisions

were made is a clear recipe for disaster. Having the developer on your side creates a

collaborative environment whereby decisions you make as an architect are validated. In turn, you

get buy-in from developers by keeping them involved in the architecture process. Work with

developers, not against them. Keep in mind that all team members (e.g. QA team, Business

Analysis, and Project Managers as well as developers) require clear communication and

leadership. Employing clarity and effective leadership will improve communication and create a

strong and healthy work environment.

If ―Communication is King‖ then clarity and leadership are its humble servants.

By Mark Richards

http://97-things.near-time.net/wiki/mark-richards

5. Architecting is about balancing

Balance stakeholders' interests with technical requirements

When we think of architecting software, we tend to think first of classical technical activities,

like modularizing systems, defining interfaces, allocating responsibility, applying patterns, and

optimizing performance. Architects also need to consider security, usability, supportability,

release management, and deployment options, among others things. But these technical and

procedural issues must be balanced with the needs of stakeholders and their interests. Taking a

―stakeholders and interests‖ approach in requirements analysis is an excellent way to ensure

completeness of requirements specifications for the software being developed.

Analyzing the stakeholders, and their interests, in the process by which an organization develops

software, and in the organization itself, reveals the ultimate set of priorities bearing on a software

architect. Software architecting is about balancing this set of priorities, over the short and long

term, in a way that is appropriate to the context at hand.

Consider, for example, the engineering department of a software-as-a-service business. The

business likely has certain priorities, such as meeting contractual obligations, generating revenue,

ensuring customer referenceability, containing costs, and creating valuable technology assets.

These business priorities may translate to departmental priorities like ensuring the functionality

and correctness, and ―quality attributes‖ (i.e. ―-ilities‖) of the software being developed, as well

as ensuring the productivity of the development team, ensuring the sustainability and auditability

of development operations, and the adaptability and longevity of the software products.

It is the architect‘s job to not only create functional, quality software for users, but also to do so

while balancing the other departmental priorities, with the cost containment interests of the

business‘s CEO, with the ease-of-administration interests of the operations staff, with the ease-

of-learning and ease-of-maintenance interests of future programming staff, and with best

practices of the software architect‘s profession.

The architect may choose to consciously tilt the balance in favor of one priority in the short term,

but had better maintain a proper balance over the long term in order to truly do the job well. And

the balance that is struck needs to be appropriate to the context at hand, considering factors such

as the expected lifespan of the software, the criticality of the software to the business, and the

technological and financial culture of the organization.

In summary, software architecting is about more than just the classical technical activities; it is

about balancing technical requirements with the business requirements of stakeholders in the

project.

By Randy Stafford

http://97-things.near-time.net/wiki/randy-stafford

6. Seek the value in requested

capabilities

Often customers and end-users state what they think is a viable solution to a problem as a

requirement. The classical story on this was told by Harry Hillaker, the lead designer of the F-16

Falcon. His team was requested to design a Mach 2 - 2.5 aircraft, which was then, and probably

still is, a non-trivial task – especially when the objective is to create "cheap" lightweight aircraft.

Remember that the force required to overcome drag quadruples when doubling the speed, and

what impact that have on aircraft weight.

When the design team asked the air force why they needed Mach 2 - 2.5, the answer was to be

able to escape from combat. With the real need on the table the design team was able to address

the root problem and provide a working solution. Their solution was an agile aircraft with a high

thrust-to-weight ratio, providing acceleration and maneuverability, not maximum speed.

This lesson should be brought into software development as well. By asking for the value to be

provided by a requested feature or requirement architects are able address the real problem, and

hopefully provide a better and cheaper solution compared to addressing the solution suggested

by the client. The focus on value also simplifies prioritization. The most valuable requirements

become the driving requirements.

So, how to proceed then? In many ways the required approach is found in the agile manifesto:

"Collaboration over contract". Practically speaking this implies arranging workshops and

meetings where the architects focus are on customer needs, helping the customers to answer the

"why" question. Be aware that answering the "why" question can be difficult because we very

often talk about tacit knowledge. Discussions on how to provide a technical solution should be

avoided in these workshops, because they move the discussions away from the customer‘s

domain and into the domain of software development.

By Einar Landre

http://97-things.near-time.net/wiki/einar-landre

7. Stand Up!

As architects, many of us have grown from highly technical positions where our success was

derived mainly from our ability to talk to machines. However, in the role of architect much of

our communication is now done with our fellow human beings. Whether it's talking to

developers about the benefits of employing a specific pattern, or explaining to management the

cost-benefit tradeoffs of buying middleware, communication is core to our success.

Although it's difficult to measure an architect's impact on a project, if developers consistently

ignore their guidance and management doesn't buy-in to their recommendations, the "rightness"

of their guidance will do little to advance their career. Experienced architects understand that

they need to "sell" their ideas and need to communicate effectively in order to do that.

Many books have been written on the topic of inter-personal communication, but I wanted to call

out one simple, practical, easy-to-employ tip that will drastically increase the effectiveness of

your communication, and, consequently, your success as an architect. If you‘re in any situation

where you‘re talking to more than one person about your guidance, stand up. Whether it‘s a

formal design review, or an informal discussion over some diagrams, it doesn‘t matter. Stand up,

especially if everyone else is sitting down.

Standing up automatically communicates authority and self-confidence. You command the room.

People will interrupt you less. All that is going to make a big difference to whether or not your

recommendations will be adopted.

You‘ll also notice that once you stand, you‘ll start making more use of your hands and other

body language. When speaking to groups of 10 or more people, standing up will also help you

can make eye contact with everybody. Eye contact, body language, and other visual elements

account for a large portion of communication. Standing up also tends to change your tone of

voice, volume, pitch, and speed: projecting your voice to larger rooms; slowing down to make

more important points. These vocal elements contribute substantially to the effectiveness of

communication.

The easiest way to more than double your effectiveness when communicating ideas is quite

simply to stand up.

By Udi Dahan

http://97-things.near-time.net/wiki/udi-dahan

8. Skyscrapers aren't scalable

We often hear software engineering compared to building skyscrapers, dams, or roads. It's true in

some important aspects.

The hardest part of civil engineering isn't designing a building that will stand up once it is

finished, but figuring out the construction process. The construction process has to go from a

bare site to a finished building. In the interim, every worker must be able to apply his trade, and

the unfinished structure has to stand up the whole time. We can take a lesson from that when it

comes to deploying large integrated systems. ("Integrated" includes virtually every enterprise

and web application!) Traditional "big bang" deployments are like stacking up a pile of beams

and girders, throwing them into the air, and expecting them to stick together in the shape of a

building.

Instead, we should plan to deploy one component at a time. Whether this is a replacement or a

greenfield project, this has two large benefits.

First, when we deploy software, we are exposing ourselves to the accumulated technical risk

embodied in the code. By deploying one component at a time, we spread technical risk out over a

longer period of time. Every component has its own chance to fail in production, letting us

harden each one independently.

The second large benefit is that it forces us to create well-defined interfaces between

components. Deploying a single component of a new system often means reverse-integrating it

with the old system. Therefore, by the time deployment is complete, each component has worked

with two different systems: the original and the replacement. Nothing is reusable until it has been

reused, so piecewise deployment automatically means greater reusability. In practice, it also

leads to better coherence and looser coupling.

Conversely, there are some important ways that civil engineering analogies mislead us. In

particular, the concreteness of the real world pushes us toward a waterfall process. After all,

nobody starts building a skyscraper without knowing where it's going or how tall it should be.

Adding additional floors to an existing building is costly, disruptive and risky, so we strive to

avoid it. Once designed, the skyscraper isn't supposed to change its location or height.

Skyscrapers aren't scalable.

We cannot easily add lanes to roads, but we've learned how to easily add features to software.

This isn't a defect of our software processes, but a virtue of the medium in which we work. It's

OK to release an application that only does a few things, as long as users value those things

enough to pay for them. In fact, the earlier you release your application, the greater the net

present value of the whole thing will be.

"Early release" may appear to compete with "incremental deployment", but they can actually

work together quite well. Early release of individual components means that each one can iterate

independently. In fact, it will force you to work out thorny issues like continuous availability

during deployments and protocol versioning.

It's rare to find a technique that simultaneously provides higher commercial value and better

architectural qualities, but early deployment of individual components offers both.

By Michael Nygard

http://97-things.near-time.net/wiki/michael-nygard

9. You're negotiating more often than

you think.

We've all been hit with budgetecture. That's when sound technology choices go out the window

in favor of cost-cutting. The conversation goes something like this.

"Do we really need X?" asks the project sponsor.

For "X", you can substitute nearly anything that's vitally necessary to make the system run:

software licenses, redundant servers, offsite backups, or power supplies. It's always asked with a

sort of paternalistic tone, as though the grown-up has caught us blowing all our pocket money on

comic books and bubble gum, whilst the serious adults are trying to get on with buying more

buckets to carry their profits around in.

The correct way to answer this is "Yes. We do." That's almost never the response.

After all, we're trained as engineers, and engineering is all about making trade-offs. We know

good and well that you don't really need extravagances like power supplies, so long as there's a

sufficient supply of hamster wheels and cheap interns in the data center. So instead of saying,

"Yes. We do," we say something like, "Well, you could do without a second server, provided

you're willing to accept downtime for routine maintenance and whenever a parity bit flips,

causing a crash, but if we get error-checking parity memory then we get around that, so we just

have to worry about the operating system crashing, which it does about every three-point-nine

days, so we'll have to do nightly restart. The interns can do that whenever they get a break from

the power-generating hamster wheels."

All of which might be completely true, but is utterly the wrong thing to say. The sponsor stopped

listening right after the word "well."

The problem is that you see your part as an engineering role, while your sponsor clearly

understands he's engaged in a negotiation. We're looking for a collaborative solution-finding

exercise; they're looking for a win-lose tactical maneuver. And in a negotiation, the last thing

you want to do is make concessions on the first demand. In fact, the right response to the "do we

really need" question is something like this:

"Without a second server, the whole system will come crashing down at least three times daily,

particularly when it's under heaviest load or when you are doing a demo for the Board of

Directors. In fact, we really need four servers so we can take one HA pair down independently at

any time while still maintaining 100% of our capacity, even in case one of the remaining pair

crashes unexpectedly."

Of course, we both know you don't really need the third and fourth servers. This is a counter-

negotiating gambit to get the sponsor to change the subject to something else. You're upping the

ante and showing that you're already running at the bare, dangerous, nearly-irresponsible

minimum tolerable configuration. And besides, if you do actually get the extra servers, you can

certainly use one to make your QA environment match production, and the other will make a

great build box.

By Michael Nygard

http://97-things.near-time.net/wiki/michael-nygard

10. Quantify

"Fast" is not a requirement. Neither is "responsive". Nor "extensible". The worst reason why not

is that you have no objective way to tell if they're met. But still users want them. The architect's

role is largely to help the system have these qualities. And to balance the inevitable conflicts and

inconsistencies between them. Without objective criteria architects are at the mercy of capricious

users ("no, I won't accept it, still not fast enough") and of obsessive programmers ("no, I won't

release it, still not fast enough").

As with all requirements we seek to write down these desires. Too often then the vague

adjectives come out: "flexible", "maintainable" and the rest. It turns out that in every case (yes

even "usable", with effort) these phenomena can be quantified and thresholds set. If this is not

done then there is no basis for acceptance of the system by its users, valuable guidance is stolen

from its builders as they work, and the vision is blurred for those architecting it.

Some simple questions to ask: How many? In what period? How often? How soon? Increasing or

decreasing? At what rate? If these questions cannot be answered then the need is not understood.

The answers should be in the business case for the system and if they are not, then some hard

thinking needs to be done. If you work as an architect and the business hasn't (or won't) tell you

these numbers ask yourself why not. Then go get them. The next time someone tells you that a

system needs to be "scalable" ask them where new users are going to come from and why. Ask

how many and by when? Reject "Lots" and "soon" as answers.

Uncertain quantitative criteria must be given as a range: the least , the nominal, and the most. If

this range cannot be given, then the required behavior is not understood. As an architecture

unfolds it can be checked against these criteria to see if it is (still) in tolerance. As the

performance against some criteria drifts over time, valuable feedback is obtained. Finding these

ranges and checking against them is a time-consuming and expensive business. If no one cares

enough about the system being "performant" (neither a requirement nor a word) to pay for

performance trials, then more than likely performance doesn't matter. You are then free to focus

your architectural efforts on aspects of the system that are worth paying for.

"Must respond to user input in no more than 1500 milliseconds. Under normal load (defined

as...) the average response time must be between 750 and 1250 milliseconds. Response times less

than 500 milliseconds can't be distinguished by the user, so we won't pay to go below that." Now

that's a requirement.

By Keith Braithwaite

http://97-things.near-time.net/wiki/keith-braithwaite

11. One line of working code is worth 500

of specification

Design is a beautiful thing. A systematic, detailed presentation and review of a problem space

and solution reveals errors and opportunities for improvement, sometimes in a startlingly

dramatic way. The specifications are important because they provide the pattern for building.

Taking the time to think through the architecture is important, both on a macro level with an eye

for interactions between components and on a micro level with an eye for behavior within a

component.

Unfortunately it's far too easy to get wrapped up in the process of design, enthralled by

architecture in abstract. The fact is that specifications alone have no value. The ultimate goal of a

software project is a production system. A software architect must always keep an eye on this

goal, and remember that design is merely a means to an end, not an end in itself. An architect for

a skyscraper who ignored the laws of physics to make the building more beautiful would soon

regret it. Losing sight of the goal of working code spells serious trouble for any project.

Value the team members who work on implementing your vision. Listen to them. When they

have problems with the design, there's a good chance they're right and the design is wrong, or at

least unclear. It's your job, in these cases, to modify the design to meet real-world constraints by

working with your team members to determine what works and what does not. No design is

perfect from the start; all designs need to be modified as they are implemented.

If you're also a developer on the project, value the time you spend writing code, and don't believe

anyone who tells you it's a distraction from your work as architect. Your vision of both macro

and micro levels will be greatly enhanced by the time you spend in the belly of the beast bringing

it to life.

By Allison Randal

12. There is no one-size-fits-all solution

Architects must continuously develop and exercise ―contextual sense‖ – because there is no one-

size-fits-all solution to problems which may be widely diverse.

The incisive phrase ―contextual sense‖ was coined, and its meaning insightfully described, by

Eberhardt Rechtin in his 1991 book Systems Architecting: Creating & Building Complex

Systems:

[The central ideas of the ‗heuristic approach‘ to architecting complex systems] come from asking

skilled architects what they do when confronted with highly complex problems. The skilled

architect and designer would most likely answer, ‗Just use common sense.‘ … [A] better

expression than ‗common sense‘ is contextual sense – a knowledge of what is reasonable within

a given context. Practicing architects through education, experience, and examples accumulate a

considerable body of contextual sense by the time they‘re entrusted with solving a system-level

problem – typically 10 years.‖ [Rechtin SysArch] (emphasis in the original)

A big problem in the software industry, in my opinion, is that people are often responsible for

solving problems requiring more contextual sense than they‘ve accumulated. Perhaps this is

because the software industry is barely two generations old and growing explosively; perhaps it

will be a sign of maturity in the software industry when this problem no longer exists.

I encounter examples of this problem frequently in my consulting engagements. Typical

examples include failures to apply Domain-Driven Design [Evans DDD] when appropriate,

straying from a pragmatic outlook and over-designing a software solution for the essential need

at hand, and making irrelevant or unreasonable suggestions during performance optimization

crises.

The most important knowledge of software patterns is the knowledge of when to apply them and

when not to apply them, and the same is true of different root cause hypotheses and associated

corrective actions during problem analysis. In both activities – system architecting and problem

analysis – it is axiomatic that there is no one-size-fits-all solution; architects must develop and

exercise contextual sense in formulating and troubleshooting their architectures.

By Randy Stafford

http://97-things.near-time.net/wiki/randy-stafford

13. It's never too early to think about

performance

13. It‘s never too early to think about performance

Business users specify their needs primarily through functional requirements. The non-

functional aspects of the systems, like performance, resiliency, up-time, support needs, and the

like, are the purview of the architect. However, often the preliminary testing of non-functional

requirements is left until very late in the development cycle, and is sometimes delegated

completely to the operations team. This is a mistake that is made far too often.

The reasons are varied. There is presumably no sense in making something fast and resilient if it

doesn't actually perform the required function. The environments and tests themselves are

complex. Perhaps the early versions of the production system will not be as heavily utilized.

However, if you aren't looking at performance until late in the project cycle, you have lost an

incredible amount of information as to when performance changed. If performance is going to be

an important architectural and design criterion, then performance testing should begin as soon as

possible. If you are using an Agile methodology based on two week iterations, I'd say

performance testing should be included in the process no later than the third iteration.

Why is this so important? The biggest reason is that at the very least you know the kinds of

changes that made performance fall off a cliff. Instead of having to think about the entire

architecture when you encounter performance problems, you can focus on the most recent

changes. Doing performance testing early and often provides you with a narrow range of changes

on which to focus. In early testing, you may not even try to diagnose performance, but you do

have a baseline of performance figures to work from. This trend data provides vital information

in diagnosing the source of performance issues and resolving them.

This approach also allows for the architectural and design choices to be validated against the

actual performance requirements. Particularly for systems with stringent requirements, early

validation is crucial to delivering the system in a timely fashion.

Technical testing is also notoriously difficult to get going. Setting up appropriate environments,

generating the proper data sets, and defining the necessary test cases all take a lot of time. By

addressing performance testing early you can establish your test environment incrementally

avoiding much more expensive efforts once after you discover performance issues.

By Rebecca Parsons

http://97-things.near-time.net/wiki/rebecca-parsons

14. Application architecture determines

application performance

Application architecture determines application performance. That might seem rather obvious,

but real-word experience shows that its not. For example, software architects frequently believe

that simply switching from one brand of software infrastructure to another will be sufficient to

solve an application‘s performance challenges. Such beliefs may be based on a vendor‘s

benchmark trumpeting, say, 25% better performance than the closest competition‘s. But, taken in

context, if the vendor‘s product performs an operation in three milliseconds while the

competition‘s product takes four milliseconds, the 25% or one-millisecond advantage matters

little in the midst of a highly inefficient architecture at the root of an application‘s performance

characteristics.

In addition to IT managers and vendor benchmarking teams, other groups of people – vendor

support departments, and authors of application performance management literature –

recommend simply ―tuning‖ the software infrastructure, by fiddling with memory allocations,

connection pool sizes, thread pool sizes, and the like. But if the deployment of an application is

insufficiently architected for the expected load, or if the application‘s functional architecture is

too inefficient in its utilization of computing resources, then no amount of ―tuning‖ will bring

about the desired performance and scalability characteristics. Instead a re-architecting of internal

logic, or deployment strategy, or both, will be required.

In the end, all vendor products and application architectures are constrained by the same

fundamental principles of distributed computing and underlying physics: applications, and the

products they use, run as processes on computers of limited capacity, communicating with each

other via protocol stacks and links of non-zero latency. Therefore people need to appreciate that

application architecture is the primary determinant of application performance and scalability.

Those quality attributes cannot be miraculously improved with some silver-bullet switch of

software brands, or infrastructure ―tuning‖. Instead, improvements in those areas require the hard

work of carefully-considered (re-) architecting.

By Randy Stafford

http://97-things.near-time.net/wiki/randy-stafford

15. Commit-and-run is a crime.

It's late in the afternoon. The team is churning out the last pieces of the new feature set for the

iteration, and you can almost feel the rhythm in the room. John is in a bit of a hurry though. He's

late for a date, but he manages to finish up his code, compile, check-in and off he goes. A few

minutes later, the red light turns on. The build is broken. John didn't have time to run the

automated tests, so he made a commit-and-run and thereby left everybody else hanging. The

situation is now changed and the rhythm is lost. Everybody now knows that if they do an update

against the version control system, they will get the broken code onto their local machine as well,

and since the team has a lot to integrate this afternoon to prepare for the upcoming demo, this is

quite a disruption. John effectively put the team flow to a halt because now no integration can be

done before someone takes the time to revert his changes.

This scenario is way too common. Commit-and-run is a crime because it kills flow. It's one of

the most common ways for a developer to try to save time for himself, that ends up wasting other

peoples time and it is downright disrespectful. Still, it happens everywhere. Why? Usually

because it takes too long time to build the system properly or to run the tests.

This is where you, the architect, come into play. If you've put a lot of effort into creating a

flexible architecture where people can perform, taught the developers agile practices like test-

driven development and set up a continuous integration server, then you also want to nurture a

culture where it's not alright to waste anybody else's time and flow in any way. To be able to get

that, you need to make sure the system among other things has a sound architecture for

automated testing, since it will change the behavior of the developers. If tests run fast, they will

run them more often, which itself is a good thing, but it also means that they won't leave their

colleagues with broken code. If the tests are dependent on external systems or if they need to hit

the database, reengineer them so they can be run locally with mocks or stubs, or at the very least

with an in-memory database, and let the build server run them in the slow way. People should

not have to wait for computers, because if they have to, they will take shortcuts which often

causes problems for others instead.

Invest time in making the system fast to work with. It increases flow, lessens the reasons for

working in silos and in the end makes it possible to develop faster. Mock things, create

simulators, lessen dependencies, divide the system in smaller modules or do whatever you have

to. Just make sure there's no reason to even think about doing a commit-and-run.

By Niclas Nilsson

http://97-things.near-time.net/wiki/niclas-nilsson

16. There Can be More than One

It seems to be a never–ending source of surprise and distress to system builders that one data

model, one message format, one message transport—in fact, exactly one of any major

architectural component, policy or stance—won't serve all parts of the business equally well. Of

course: an enterprise ("enterprise" is red flag #1) big enough to worry about how many different

"Account" tables will impact system building next decade is most likely too big and diverse for

one "Account" table to do the job anyway.

In technical domains we can force uniqueness. Very convenient for us. In business domains the

inconsistent, multi–faceted, fuzzy, messy world intrudes. Worse yet, business doesn't even deal

with "the world", it deals with people's opinions about aspects of situations in parts of the world.

One response is to deem the domain to be technical and apply a unique solution by fiat. But

reality is that which does not go away when one stops believing in it, and the messiness always

returns as the business evolves. Thus are born enterprise data teams, and so forth, who spend all

their (very expensive) time trying to tame existential dread through DTD wrangling. Paying

customers tend to find the level of responsiveness that comes form this somewhat unsatisfactory.

Why not face up to the reality of a messy world and allow multiple, inconsistent, overlapping

representations, services, solutions? As technologists we recoil in horror form this. We imagine

terrifying scenarios: inconsistent updates, maintenance overhead, spaghetti–plates of

dependencies to manage. But let's take a hint from the world of data warehousing. The schemata

data marts are often (relationally) denormalized, mix imported and calculated values arbitrarily,

and present a very different view of the data than the underlying databases. And the sky does not

fall because of the non–functional properties of a mart. The ETL process sits at the boundary of

two very different worlds, typically transaction versus analytical processing. These have very

different rates of update and query, very different throughput, different rates of change of design,

perhaps very different volumes. This is the key: sufficiently different non–functional properties

of a sub–system create a boundary across which managing inconsistent representations is

tractable.

Don't go duplicating representations, or having multiple transports just for the fun of it, but do

always consider the possibility that decomposition of your system by non–functional parameters

may reveal opportunities to allow diverse solutions to your customers' advantage.

By Keith Braithwaite

http://97-things.near-time.net/wiki/keith-braithwaite

17. Business Drives

In the context of business enterprise application development, an Architect must act as a bridge

between the business and technology communities of an organization, representing and

protecting the interests of each party to the other, often mediating between the two, but allowing

the business to drive. The business organization's objectives and operating realities should be the

light in which an Architect leads technology-oriented decision making.

Businesses routinely plan for and articulate a specific, desired Return on Investment (ROI)

before undertaking a software development initiative. The Architect must understand the desired

ROI, and by implication, the limits of the value of the software initiative to the business, so as to

avoid making technology decisions that could cause the opportunity to be out-spent. ROI should

serve as a major piece of objective context in the give-and-take conversations with the business

about the value of a feature versus the cost of delivering that feature, and with the development

team about technical design and implementation. For example, the Architect must be careful to

represent the interests of the business to the development team by not agreeing to choose

technology that has unacceptably costly licensing and support cost implications when the

software is deployed into testing or production.

Part of the challenge of letting the business ―drive‖ is providing enough quality information

about the ongoing software development effort back into the business to support good business

decision making. That‘s where transparency becomes crucial. The Architect, in conjunction with

development management, must create and nurture the means for regular, ongoing information

feedback loops. This can be accomplished by a variety of lean software development techniques,

such as big visible charts, continuous integration, and frequent releases of working software to

the business starting early in the project.

Software development is fundamentally a design activity, in that it involves an ongoing process

of decision making until the developed system goes into production. It is appropriate for

software developers to make many decisions, but usually not to make business decisions.

However, to the extent that the business community fails to fulfill its responsibility to provide

direction, answer questions and make business decisions for the software development team, it is

actually delegating the making of business decisions to software developers. The Architect must

provide the macro-context for this ongoing series of micro-decisions made by developers, by

communicating and protecting the software architecture and business objectives, and seek to

ensure developers do not make business decisions. Technical decision making un-tethered to the

commitments, expectations and realities of the business, as articulated by the business

community on an ongoing basis, amounts to costly speculation and often results in an

unjustifiable expenditure of scarce resource.

The long-term interests of the software development team are best served when business drives.

By Dave Muirhead

http://97-things.near-time.net/wiki/dave-muirhead

18. Simplicity before generality, use

before reuse

A common problem in component frameworks, class libraries, foundation services, and other

infrastructure code is that many are designed to be general purpose without reference to concrete

applications. This leads to a dizzying array of options and possibilities that are often unused,

misused, or just not useful. Most developers work on specific systems: the quest for unbounded

generality rarely serves them well (if at all). The best route to generality is through understanding

known, specific examples and focusing on their essence to find an essential common solution.

Simplicity through experience rather than generality through guesswork.

Favoring simplicity before generality acts as a tiebreaker between otherwise equally viable

design alternatives. When there are two possible solutions, favor the one that is simpler and

based on concrete need rather than the more intricate one that boasts of generality. Of course, it

is entirely possible (and more than a little likely) that the simpler solution will turn out to be the

more general one in practice. And if that doesn't turn out to be the case, it will be easier to

change the simpler solution to what you now know you need than to change the 'general' one that

turns out not to be quite general enough in the right way.

Although well meant, many things that are designed just to be general purpose often end up

satisfying no purpose. Software components should, first and foremost, be designed for use and

to fulfill that use well. Effective generality comes from understanding, and understanding leads

to simplification. Generalization can allow us to reduce a problem to something more essential,

resulting in an approach that embodies regularity across known examples, a regularity that is

crisp, concise, and well grounded. However, too often generalization becomes a work item in

itself, pulling in the opposite direction, adding to the complexity rather than reducing it. The

pursuit of speculative generality often leads to solutions that are not anchored in the reality of

actual development. They are based on assumptions that later turn out to be wrong, offer choices

that later turn out not to be useful, and accumulate baggage that becomes difficult or impossible

to remove, thereby adding to the accidental complexity developers and future architects must

face.

Although many architects value generality, it should not be unconditional. People do not on the

whole pay for (or need) generality: They tend to have a specific situation, and it is a solution to

that specific situation that has value. We can find generality and flexibility in trying to deliver

specific solutions, but if we weigh anchor and forget the specifics too soon, we end up adrift in a

sea of nebulous possibilities, a world of tricky configuration options, overburdened (not just

overloaded) parameter lists, long-winded interfaces, and not-quite right abstractions. In pursuit of

arbitrary flexibility you can often lose valuable properties, accidental or intended, of alternative,

simpler designs.

By Kevlin Henney

http://97-things.near-time.net/wiki/kevlin-henney

19. Architects must be hands on

A good architect should lead by example, he (or she) should be able to fulfill any of the positions

within his team from wiring the network, and configuring the build process to writing the unit

tests and running benchmarks. Without a good understanding of the full range of technology an

architect is little more than a project manager. It is perfectly acceptable for team members to

have more in-depth knowledge in their specific areas but it's difficult to imagine how team

members can have confidence in their architect if the architect doesn't understand the technology.

As has been said elsewhere the architect is the interface between the business and the technology

team, the architect must understand every aspect of the technology to be able to represent the

team to the business without having to constantly refer others. Similarly the architect must

understand the business in order to drive the team toward their goal of serving the business.

An architect is like an airline pilot, he might not look busy all of the time but he uses decades of

experience to constantly monitor the situation, taking immediate action if he sees or hears

something out of the ordinary. The project manager (co-pilot) performs the day-to-day

management tasks leaving the architect free from the hassles of mundane tasks and people

management. Ultimately the architect should have responsibility for the delivery and quality of

the projects to the business, this is difficult to achieve without authority and this is critical the

success of any project.

People learn best by watching others; it's how we learn as children. A good architect should be

able to spot a problem, call the team together and without picking out a victim explain what the

problem is or might be and provide an elegant work-around or solution. It is perfectly respectable

for an architect to ask for help from the team. The team should feel part of the solution but the

architect should chair from discussion and identify the right solution(s).

Architects should be bought into the team at the earliest part of the project; they should not sit in

an ivory tower dictating the way forward but should be on the ground working with the team.

Questions about direction or choices of technology should not be spun off into separate

investigations or new projects but be made pragmatically through hands-on investigation or

using advice from architect peers, all good architects are well connected.

A good architect should be an expert in at least one tool of their trade, e.g. an IDE, remember

they are hands-on. It stands to reason that a software architect should know the IDE, a database

architect should know the ER tool and an information architect an XML modelling tool but a

technical or enterprise architect should be at least effective with all levels of tooling from being

able to monitor network traffic with Wireshark to modelling a complex financial message in

XMLSpy - no level is too low or too high.

An architect usually comes with a good resume and impressive past, he can usually impress the

business and technologists but unless he can demonstrate his ability to be hands-on it's difficult

gain the respect of the team, difficult for the team to learn and almost impossible to deliver what

they were originally employed to do.

By http://commons.oreilly.com/wiki/index.php/User:JtdaviesJohn Davies

http://commons.oreilly.com/wiki/index.php/User:Jtdavies
http://commons.oreilly.com/wiki/index.php/User:Jtdavies
http://commons.oreilly.com/wiki/index.php/User:Jtdavies

20. Continuously Integrate

The build as a "big bang" event in project development is dead. The architect, whether an

application or enterprise architect, should promote and encourage the use of continuous

integration methods and tools for every project.

The term Continuous Integration (CI) was first coined by Martin Fowler in a design pattern. CI

refers to a set practices and tools that ensure automatic builds and testing of an application at

frequent intervals, usually on an integration server specifically configured for these tasks. The

convergence of unit testing practices and tools in conjunction with automated build tools makes

CI a must for any software project today.

Continuous Integration targets a universal characteristic of the software development process –

the integration point between source code and running application. At this integration point the

many pieces of the development effort come together and are tested. You have probably heard

the phrase ―build early and often‖, which was a risk reduction technique to ensure there were no

surprises at this point in development. ―Build early and often‖ has now been replaced by CI

which includes the build but also adds features that improve communication and coordination

within the development team.

The most prominent part of a CI implementation is the build which is usually automated. You

have the ability to do a manual build but they can also be kicked off nightly or can be triggered

by source code changes. Once the build is started the latest version of the source code is pulled

from the repository and the CI tools attempts to build the project then test it. Lastly, notification

is sent out detailing the results of the build process. These notifications can be sent in various

forms including email or instant messages.

Continuous Integration will provide a more stable and directed development effort. As an

architect you will love it but more importantly your organization and your development teams

will be more effective and efficient.

By Dave Bartlett

http://www.martinfowler.com/articles/continuousIntegration.html
http://97-things.near-time.net/wiki/dave-bartlett

21. Avoid Scheduling Failures

Failed projects can happen for a multitude of reasons. One of the most common sources of

failure is altering the project schedule in midstream without proper planning. This kind of failure

is avoidable, but it can require major effort on the part of multiple people. Adjusting the time line

or increasing resources on a project are not normally of concern. Problems start when you are

asked to do more in the same time line or when the schedule is shortened without reducing the

workload.

The idea that schedules can be shortened in order to reduce cost or speed up delivery is a very

common misconception. You‘ll commonly see attempts to require overtime or sacrifice ―less

important scheduled tasks‖ (like unit-testing) as a way to reduce delivery dates or increase

functionality while keeping the delivery dates as is. Avoid this scenario at all costs. Remind

those requesting the changes of the following facts:

1. A rushed design schedule leads to poor design, bad documentation and probable Quality

Assurance or User Acceptance problems.

2. A rushed coding or delivery schedule has a direct relationship to the number of bugs

delivered to the users.

3. A rushed test schedule leads to poorly tested code and has a direct relationship to the

number of testing issues encountered.

4. All of the above lead to Production issues which are much more expensive to fix.

The end result is an increase in cost as opposed to a reduction in cost. This is normally why the

failures happen.

As an Architect you will one day find yourself in the position of having to act quickly to increase

the likelihood of success. Speak up early. First try to maintain quality by negotiating the

originally planned timeline. If a shortened schedule is necessary then try to move non-critical

functionality to future release(s). Obviously this will take good preparation, negotiating skills

and a knack for influencing people. Prepare by sharpening your skills in those areas today. You

will be glad you did.

By Norman Carnovale

http://97-things.near-time.net/wiki/index.php/Norman_Carnovale

22. Architectural Tradeoffs

Every software architect should know and understand that you can't have it all. It is virtually

impossible to design an architecture that has high performance, high availability, a high level of

security, and a high degree of abstraction all at the same time. There is a true story which

software architects should know, understand, and be able to communicate to clients and

colleagues. It is the story of a ship called the Vasa.

In the 1620's Sweden and Poland were at war. Wanting a quick end to this costly war, the King

of Sweden commissioned the building of a ship called the Vasa. Now, this was no ordinary ship.

The requirements for this ship were unlike any other ship of that time; it was to be over 200 feet

long, carry 64 guns on two gun decks, and have the ability to transport 300 troops safely across

the waters into Poland. Time was of the essence, and money was tight (sound familiar?). The

ship architect had never designed such a ship before. Smaller, single gun deck ships were his

area of expertise. Nevertheless, the ship's architect extrapolated on his prior experience and set

out designing and building the Vasa. The ship was eventually built to specifications, and when

the eventful day came for the launch, the ship proudly sailed into the harbor, fired its gun salute,

and promptly sank to the bottom of the ocean.

The problem with the Vasa was obvious; anyone who has ever seen the deck of a large fighting

ship from the 1600's and 1700's knows that the decks on those ships were crowded and unsafe,

particularly in battle. Building a ship that was both a fighting ship and a transport ship was a

costly mistake. The ship's architect, in an attempt to fulfill all of the kings wishes, created an

unbalanced and unstable ship.

Software architects can learn a lot from this story and apply this unfortunate event to the design

of software architecture. Trying to fulfill each and every requirement (as with the Vasa) creates

an unstable architecture that essentially accomplishes nothing well. A good example of a tradeoff

is the requirement to make a Service-Oriented Architecture (SOA) perform as well as a point-to-

point solution. Doing so usually requires you to bypass the various levels of abstraction created

by an SOA approach, thereby creating an architecture that looks something like what you would

typically order at your local Italian restaurant. There are several tools available to architects to

determine what the tradeoffs should be when designing an architecture. Two popular methods

are the Architecture Tradeoff Analysis Method (ATAM) and the Cost Benefit Analysis Method

(CBAM). You can learm more about ATAM and CBAM by visiting the Software Engineering

Institute (SEI) websites at http://www.sei.cmu.edu/architecture/ata_method.html and

http://www.sei.cmu.edu/architecture/cbam.html respectively.

By Mark Richards

http://www.sei.cmu.edu/architecture/ata_method.html
http://www.sei.cmu.edu/architecture/cbam.html
http://97-things.near-time.net/wiki/mark-richards

23. Database as a Fortress

The database is where all of the data, both input by your employees and data collected from your

customers, resides. User interfaces, business and application logic, and even employees will

come and go, but your data lasts forever. Consequently, enough cannot be said about the

importance of building a solid data model from Day One.

The exuberance over agile techniques have left many thinking that it‘s fine, or even preferable,

to design applications as you go. Gone are the days of writing complex, comprehensive technical

designs up front! The new school says deploy early and often. A line of code in production is

better than ten in your head. It seems almost too good to be true, and where your data is

concerned, it is.

While business rules and user interfaces do evolve rapidly, the structures and relationships within

the data you collect often do not. Therefore, it is critical to have your data model defined right

from the start, both structurally and analytically. Migrating data from one schema to another in

situ is difficult at best, time consuming always, and error prone often. While you can suffer bugs

temporarily at the application layer, bugs in the database can be disastrous. Finding and fixing a

data layer design problem does not restore your data once it has been corrupted.

A solid data model is one that guarantees security of today‘s data, but also extensible for

tomorrow‘s. Guaranteeing security means being impervious to bugs that will – despite your best

efforts – be pervasive in an ever-changing application layer. It means enforcing referential

integrity. It means building in domain constraints wherever they are known. It means choosing

appropriate keys that help you ensure your data‘s referential integrity and constraint satisfaction.

Being extensible for tomorrow means properly normalizing your data so that you can easily add

architectural layers upon your data model later. It means not taking shortcuts.

The database is the final gatekeeper of your precious data. The application layer which is, by

design ephemeral, cannot be its own watchdog. For the database to keep proper guard, the data

model must be designed to reject data that does not belong, and to prevent relationships that do

not make sense. Keys, foreign key relationships, and domain constraints, when described in a

schema, are succinct, easy to understand and verify, and are ultimately self-documenting.

Domain rules encoded the data model are also physical and persistent; a change to application

logic does not wash them away.

To get the most out of a relational database – to make it a true part of the application as opposed

to simply a storehouse for application data – you need to have a solid understanding of what you

are building from the start. As your product evolves, so too will the data layer, but at each phase

of its evolution, it should always maintain its status as Fortress. If you trust it and bestow upon it

the heavy responsibility of trapping bugs from other layers of your application, you will never be

disappointed. (RMH Edited 7/13/2008) By Dan Chak (Edited RMH 5/28/2008)

24. Use uncertainty as a driver

Confronted with two options, most people think that the most important thing to do is to make a

choice between them. In design (software or otherwise), it is not. The presence of two options is

an indicator that you need to consider uncertainty in the design. Use the uncertainty as a driver to

determine where you can defer commitment to details and where you can partition and abstract

to reduce the significance of design decisions. If you hardwire the first thing that comes to mind

you're more likely to be stuck with it, so that incidental decisions become significant and the

softness of the software is reduced.

One of the simplest and most constructive definitions of architecture comes from Grady Booch:

"All architecture is design but not all design is architecture. Architecture represents the

significant design decisions that shape a system, where significant is measured by cost of

change." What follows from this is that an effective architecture is one that generally reduces the

significance of design decisions. An ineffective architecture will amplify significance.

When a design decision can reasonably go one of two ways, an architect needs to take a step

back. Instead of trying to decide between options A and B, the question becomes "How do I

design so that the choice between A and B is less significant?" The most interesting thing is not

actually the choice between A and B, but the fact that there is a choice between A and B (and

that the appropriate choice is not necessarily obvious or stable).

An architect may need to go in circles before becoming dizzy and recognizing the dichotomy.

Standing at whiteboard (energetically) debating options with a colleague? Umming and ahhing in

front of some code, deadlocked over whether to try one implementation or another? When a new

requirement or a clarification of a requirement has cast doubt on the wisdom of a current

implementation, that's uncertainty. Respond by figuring out what separation or encapsulation

would isolate that decision from the code that ultimately depends on it. Without this sensibility

the alternative response is often rambling code that, like a nervous interviewee, babbles away

trying to compensate for uncertainty with a multitude of speculative and general options. Or,

where a response is made with arbitrary but unjustified confidence, a wrong turn is taken at

speed and without looking back.

There is often pressure to make a decision for decision's sake. This is where options thinking can

help. Where there is uncertainty over different paths a system's development might take, make

the decision not to make a decision. Defer the actual decision until a decision can be made more

responsibly, based on actual knowledge, but not so late that it is not possible to take advantage of

the knowledge.

Architecture and process are interwoven, which is a key reason that architects should favor

development lifecycles and architectural approaches that are empirical and elicit feedback, using

uncertainty constructively to divide up both the system and the schedule.

By Kevlin Henney

http://www.booch.com/architecture/blog.jsp?archive=2006-03.html
http://97-things.near-time.net/wiki/kevlin-henney

25. Scope is the enemy of success

Scope refers to a project's size. How much time, effort, and resources? What functionality at

what level of quality? How difficult to deliver? How much risk? What constraints exist? The

answers define a project's scope. Software architects love the challenge of big, complicated

projects. The potential rewards can even tempt people to artificially expand a project‘s scope to

increase its apparent importance. Expanding scope is the enemy of success because the

probability of failure grows faster than expected. Doubling a project‘s scope often increases its

probability of failure by an order of magnitude.

 Why does it work this way? Consider some examples:

 Intuition tells us to double our time or resources to do twice as much work. History[1]

says impacts are not as linear as intuition suggests. For example, a four person team will

expend more than twice the communication effort as a team of two.

 Estimation is far from an exact science. Who hasn‘t seen features that were much harder

to implement than expected?

Of course, some projects aren‘t worth doing without some built-in size and complexity. While a

text editor without the ability to enter text might be easy to build, it wouldn‘t be a text editor. So,

what strategies can help to reduce or manage scope in real-world projects?

 Understand the real needs – The capabilities a project must deliver are a set of

requirements. Requirements define functionality or qualities of functionality. Question

any requirements not explained in terms of measurable value to the customer. If it has no

effect on the company‘s bottom line, why is it a requirement?

 Divide and conquer – Look for opportunities to divide up the work into smaller

independent chunks. It is easier to manage several small independent projects than one

large project with interdependent parts.

 Prioritize – The world of business changes rapidly. Large projects‘ requirements change

many times before they‘re completed. Important requirements usually remain important

as the business changes while others change or even evaporate. Prioritization lets you

deliver the most important requirements first.

 Deliver results as soon as possible – Few people know what they want before they have

it. A famous cartoon shows the evolution of a project to build a child‘s swing based on

what the customer said and what various roles in the project understood. The complicated

result only faintly resembles a swing. The last panel, titled ―What would have worked‖,

shows a simple swing using an old tire. When the customer has something to try, the

solution may be simpler than expected. Building the most important things first gets you

the most important feedback early, when you need it most.

Agile advocates[2] exhort us to build "The simplest thing that could possibly work". Complex

architectures fail far more often than simpler architectures. Reducing project scope often results

in a simpler architecture. Scope reduction is one of the most effective strategies an architect can

apply to improve the odds of success. - By Dave Quick

http://97-things.near-time.net/wiki/dave-quick

26. Reuse is about people and education,

not just architecture

You might adopt the approach that a framework that is well designed, or an architecture that is

carefully considered, and cleverly implemented will lend itself to re-use within your

organization. The truth is that even the most beautiful, elegant and re-usable architecture,

framework or system will only be re-used by people who:

a) know it is there

b) know how to use it

c) are convinced that it is better than doing it themselves

a) Know its there

Within your organization, developers or designers need to know a design, framework, library, or

fragments of code exists and where they can find all the critical information about these elements

(e.g. documentation, versions, and compatibility) in order to reuse them. It is a simple, logical

truth that people won't look for things that they don't believe to exist. You are more likely to

succeed with reusable elements if the information about them is ―pushed‖.

There are any number of methods for pushing information about reusable elements in an

organization. These range from wiki pages with an RSS feed providing update information,

useful in very large teams, to e-mail announcing version updates in the source repository. In a

tiny team, the designer or lead developer can inform his colleagues in personal conversations or

shouting it across the office. Ultimately, whatever your process for communicating about

reusable elements... make sure you have one, don‘t leave it up to chance.

b) Know how to use it

Understanding how to reuse an element depends on skills and training. Of course there are those

people who (to use Donald Knuth‘s terminology) "resonate" with coding and design. We have all

worked with them, the gifted developers and architects whose speed and depth of understanding

is impressive, even scary. But these people are rare. The rest of your team might be made up of

good, solid, intelligent developers and designers. They need to be taught.

Developers and designers might not know of the particular design pattern used in a design, or

fully understand the inheritance model that the framework designer intended them to use. They

need to be given easy access to that information in the form of up-to-date documentation, or even

better, training. A little training goes a long way to ensuring that everyone is on the same page

when it comes to reuse.

c) Are convinced that its better than doing it themselves

People, and particularly developers, tend to prefer to solve problems themselves rather than ask

for help. Asking how something works is a sign of weakness, or even an indication of ignorance.

This has a lot to do with the maturity and personality type of your individual team-members,

―Better than doing it themselves‖ means different things to different people. The ―young guns‖

on your team will always want to write things themselves because it appeases their ego, whereas

your more experienced people are more likely to accept that someone else has given thought to

the problem domain and has something to offer in terms of a solution.

If your team doesn‘t know where to find reusable artifacts or how to reuse them they will default

to the natural, human position: they will build it themselves. And you will pay for it.

(RMH Edited 7/13/2008)

By Jeremy Meyer (Edited RMH 5/28/2008)

http://97-things.near-time.net/wiki/jeremy-meyer

27. There is no 'I' in architecture

I know, there really is an ‗i‘ in architecture. But it‘s not a capital ‗I‘, calling attention to itself,

dominating discussion. The lower-case character fits neatly within the word. Its there only

because it fulfills requirements for proper spelling and pronunciation.

How does that relate to us as software architects? Our egos can be our own worst enemy. Who

hasn‘t experienced architects who:

 Think they understand the requirements better than the customers.

 View developers as resources hired to implement their ideas.

 Get defensive when their ideas are challenged or ignore the ideas of others.

I suspect any experienced architect has fallen into at least one of these traps at some point. I‘ve

fallen into all of them and learned painful lessons from my mistakes.

Why does this happen?

 We‘ve had success – Success and experience build self-confidence and allow us to

become architects. Success leads to bigger projects. There is a fine line between self-

confidence and arrogance. At some point the project is bigger than our personal ability.

Arrogance sneaks in when we cross that line but don‘t know it yet.

 People respect us – Tough design questions provide a critical safety net. Our own

defensiveness, arrogance, or emphasis on our experience can result in missed design

questions.

 We‘re human – Architects pour themselves into each design. Criticism of your creation

feels like criticism of you. Defensiveness is easy. Learning to stop it is hard. Pride in our

accomplishments is easy. Recognizing our limitations without conscious effort is hard.

How do we avoid it?

 Requirements don‘t lie - With correct, complete requirements, any architecture that meets

them is a good one. Work closely with the customer to make sure you both understand

the business value each requirement provides. You don‘t drive the architecture, the

requirements do. You do your best to serve their needs.

 Focus on the team –These are not just resources; they are your design collaborators and

your safety net. People who feel unappreciated usually make a poor safety net. It‘s the

teams‘ architecture, not yours alone. You provide guidance but everyone does the heavy

lifting together. You need their help as much or more than they need yours.

 Check your work – The model is not the architecture. It is only your understanding of

how the architecture should work. Work with your team to identify tests that demonstrate

how the project‘s architecture supports each requirement.

 Watch yourself – Most of us fight our natural tendencies to defend our work, focus on

our selfish interests, and see ourselves as the smartest person in the room. Pressure

pushes these tendencies to the surface. Consider your interactions for a few minutes every

day. Did you give everyone‘s ideas the respect and acknowledgement they deserved? Did

you react negatively to well meaning input? Do you really understand why someone

disagreed with your approach?

Removing the ‗I‘ from architecture doesn‘t guarantee success. It just removes a common source

of failure that‘s entirely your fault.

By Dave Quick

http://97-things.near-time.net/wiki/dave-quick

28. Get the 1000ft view

As an architect we want to know how good the software is that we are developing. Its quality has

an obvious external aspect, the software should be of value to its users, but there is also a more

elusive internal aspect to quality, to do with the clarity of the design, the ease with which we can

understand, maintain, and extend the software. When pressed for a definition, this is where we

usually end up saying "I know it when I see it." But how can we see quality?

In an architecture diagram little boxes represent entire systems and lines between them can mean

anything: a dependency, the flow of data, or a shared resource such as a bus. These diagrams are

a 30.000ft view, like a landscape seen from a plane. Typically the only other view available is

the source code, which is comparable to a ground level view. Both views fail to convey much

information about the quality of the software, one is too high level and the other provides so

much information that we cannot see structure. Clearly, what is missing is a view in between, a

1000ft view.

This 1000ft view would provide information at the right level. It aggregates large amounts of

data and multiple metrics, such as method count, class fan out, or cyclomatic complexity. The

actual view very much depends on a specific aspect of quality. It can be a visual representation

of a dependency graph, a bar chart that shows metrics at a class level, or a sophisticated

polymetric view that correlates multiple input values.

Manually creating such views and keeping them in sync with the software is a hopeless

endeavor. We need tools that create these views from the only true source, the source code. For

some views, a design structure matrix for example, commercial tools exists but it is also

surprisingly easy to create specialized views by combining small tools that extract data and

metrics with generic visualization packages. A simple example would be to load the output from

checkstyle, which is essentially a set of metrics on the class and method level, into a spreadsheet

to render charts. The same metrics could also be shown as a tree-map using the InfoViz toolkit.

A great tool to render complex dependency graphs is GraphViz.

Once a suitable view is available software quality becomes a little less subjective. It is possible

to compare the software under development with a handful of similar systems. Comparing

different revisions of the same system will give an indication of trends while comparing views of

different subsystems can highlight outliers. Even with just a single diagram we can rely on our

ability to spot patterns and perceive aesthetics. A well-balanced tree probably represents a

successful class hierarchy, a harmonious set of boxes might show code that is organized into

appropriately sized classes. Most of the time a very simple relationship holds: If it looks good it

probably is good.

(RMH Edited 7/11/2008)

By Erik Doernenburg

http://97-things.near-time.net/wiki/Erik%20Doernenburg

29. Try before choosing

Creating an application requires many decisions to be made. Some might involve choosing a

framework or library while others revolve around the use of specific design patterns. In either

case the responsibility for the decision generally lies with the architect on the team. A

stereotypical architect might gather all the information that can be gathered, then mull over it for

a while, and finally decree the solution from the ivory tower for it to be implemented by the

developers. Not surprisingly there is a better way.

In their work on lean development Mary and Tom Poppendieck describe a technique for making

decisions. They argue that we should delay commitment until the last responsible moment, that is

the moment at which, if the team does not make a decision, it is made for them; when inaction

results in an outcome that is not (easily) reversible. This is prudent because the later a decision is

made the more information is available on which to base the decision. However, in many cases

more information is not the same as enough information, and we also know that the best

decisions are made in hindsight. What does this mean for the good architect?

The architect should constantly be on the look out for decisions that will have to be made soon.

Provided the team has more than a handful of developers and practices collective code ownership

the architect can, when such a decision point approaches, ask several developers to come up with

a solution to the problem and go with it for a while. As the last responsible moment arrives the

team gets together and assesses the benefits and drawbacks of the different soutions. Usually,

now with the benefit of hindsight, the best solution to the problem is apparent to everybody. The

architect does not have to make the decision, he or she merely orchestrates the decision making

process.

This approach works for small decisions as well as for large ones. It can allow a team to figure

out whether or not to use the Hibernate templates provided by the Spring framework but it can

equally answer the question of which JavaScript framework to use. The duration for which the

different approaches evolve is obviously very dependent on the complexity of the decision.

Trying two or even more approaches to the same problem requires more effort than making a

decision upfront and then just implementing one. However, chances are that an upfront decision

leads to a solution that is later recognized to be sub-optimal, leaving the architect with a

dilemma: either the team rolls back the current implementation or they live with the

consequences, both of which result in wasted effort. Even worse, it is entirely possible that

nobody on the team recognizes that the approach chosen is not the best one, because none of the

alternatives were explored. In this case effort is wasted without any chance of addressing the

waste. After all, trying multiple approaches might be the least expensive option.

(RMH Edited 7/10/2008)

By Erik Doernenburg

http://97-things.near-time.net/wiki/Erik%20Doernenburg

30. Understand The Business Domain

Effective software architects understand not only technology but also the business domain of a

problem space. Without business domain knowledge, it is difficult to understand the business

problem, goals, and requirements, and therefore difficult to design an effective architecture to

meet the requirements of the business.

It is the role of the software architect to understand the business problem, business goals, and

business requirements and translate those requirements into a technical architecture solution

capable of meeting those requirements. Knowing the business domain helps an architect decide

which patterns to apply, how to plan for future extensibility, and how to prepare for ongoing

industry trends. For example, some business domains (e.g., Insurance) lend themselves well to a

Service-oriented architecture approach where as other business domains (e.g. Financial Markets)

lend themselves more towards a workflow-based architecture approach. Knowing the domain

helps you decide which architecture pattern may work best to satisfy the specific needs of the

organization.

Knowing the industry trends of a specific domain can also help a software architect in designing

an effective architecture. For example, in the insurance domain, there is an increasing trend

towards "on-demand" auto insurance, where you only pay for auto insurance when you actually

drive your car. This type of insurance is great if you park your car at the airport on Monday

morning, fly off to your work destination, and return Friday to drive back home. Understanding

such industry trends enable you as a software architect to plan for these trends in the architecture,

even if the company you are working with hasn't planned for them yet as part of their business

model.

Understanding the specific goals of the business also helps you design an effective architecture.

For example, do the goals of the particular business you are working for include non-organic

growth through heavy mergers and acquisitions? The answer to this question may influence the

type of architecture you design. If the answer is yes, the architecture might include many layers

of abstraction to facilitate the merging of business components. If the goals of the business

include increased market share through a heavy online presence, then high availability is most

likely going to be a very important attribute. As a software architect, always understand the goals

of the company you are working with, and validate that the architecture can support these goals.

The most successful architects I know are those who have broad hands-on technical knowledge

coupled with a strong knowledge of a particular domain. These software architects are able to

communicate with C-level executives and business users using the domain language that these

folks know and understand. This in turn creates a strong level of confidence that the software

architect knows what he or she is doing. Knowing the business domain allows a software

architect to better understand the problems, issues, goals, data, and processes, which are all key

factors when designing an effective enterprise architecture. - By Mark Richards

http://97-things.near-time.net/wiki/mark-richards

31. Programming is an act of design

Kristen Nygaard, father of object-oriented programming and the Simula programming language,

used to say: Programming is learning. Accepting the fact that programming or more precisely

software development is a processes of discovery and learning and not a process of engineering

and construction are fundamental to bring software practices forward. Applying the concepts of

traditional engineering and construction on software development does not work. The problems

have been documented and commented upon by leading software thinkers for more than 30

years. As an example, In 1987 Fredric Brooks JR stated in the "Report of the Defense Science

Board Task Force on Military Software" that the document driven, specify-then-build approach

lies at the heart of so many software problems.

So where should the software industry go and look for improving their practices? What about the

industries involved in production of sophisticated mass-market products such as cars,

pharmaceutical drugs or semiconductors?

Lets take a look at the car industry. When planning a new model, the first thing is to choose a

concept or archetype. It‘s primarily an architectural positioning mechanism. BMW X6 is an

example of a new concept that combines the properties of a SUV and a Coupe into what BMW

calls a Sports Activity Coupe. The thing is that before you can purchase a new X6, BMW has

invested thousands of hours and millions of dollars in both its vehicle and manufacturing design.

When BMW receives your order, one of their assembly lines will kick in and produce your

customized version of the X6.

So what is the lesson learned from this carmaker scenario? The important lesson is that the

making of a new car involves two processes: The first process is the creative design process,

including establishing the required assembly lines. The second process is the manufacturing of

cars in line with customer specification. In many ways these are the processes we find in the

software industry as well. The challenge is what we put into the terms.

In the article ―What is software design?‖ Jack Reeves suggested that the only artifact of software

engineering that satisfied the criteria for a design document, as such document is understood and

used in classical engineering, is the source code. The manufacturing of the software is automated

and taken care of by the compiler, build and test scripts.

By accepting that carving out source code is an act of design, not an act of construction we are in

a position to adopt useful management practices that are proven to work. Those are the practices

used to manage creative and unpredictable work such as developing a new car, a new medical

drug or a new computer game. We talk about the practices of agile product management and lean

production such as SCRUM. These practices focus on maximizing return-on-investment in terms

of customer value.

For the software industry to capitalize on these practices we must remember: Programming is an

act of design, not an act of construction. (RMH Edited 7/13/2008) By Einar Landre

http://97-things.near-time.net/wiki/einar-landre

32. Time changes everything

One of the things I've been most entertained by as the years have gone by, is observing what

things have lasted and what haven't. So many patterns, frameworks, paradigm changes, and

algorithms, all argued for with passion by smart people, thinking of the long term, balancing all

the known issues, have not warranted more than a yawn over the long haul. Why? What is

history trying to tell us?

Pick a worthy challenge

This one is tricky for a software architect. Challenges or problems are given to us, so we don't

have the luxury of choosing, right? It's not that simple. First of all we often make the mistake of

believing that we can't influence what we are asked to do. Usually we can, but it gets us out of

our comfort zone in the technology space. There are dragons there when we don't choose to do

the right things. Time passes, we have worked diligently and hard solving the requested

challenge, and in the end it doesn't matter: we didn't do what was really needed and our work is

wasted. Over time, a good solution to the right challenge will probably outlast all others.

Simple rules

We say it to ourselves: keep it simple stupid. We say it but we don't do it. We don't do it because

we don't have to. We are smart and we can handle some complexity and easily justify it because

it adds agility to our design, because it is more elegant to our aesthetic sensibilities, because we

believe we can anticipate the future. Then time passes, you walk away from the project for a year

or more. When you come back look at it, you almost always wonder why you did what you did.

If you had to do it all over again, you would probably do it differently. Time does this to us. It

makes us look silly. It is good to realize this early and get over yourself, and really try to learn

what simple means in the lens that only time can grind.

Be happy with that old stuff

Architects love to search for the ―one true way‖, the methodology, or school of thought that

provides the predictability we crave and the clear answers that always seem just out of reach.

The problem is that whatever guiding light you have in one year will probably not match the

guiding light you have in a couple of years, much less a decade later. As you look back, you will

always be looking at designs that don't match your current expectations. Learn to embrace that

old stuff, and resist the temptation to think you should go back and ―fix‖ it. Was the solution an

appropriate one for the problem? Did it solve the needs of the problem? Keep these as your

measure, you will be a lot happier.

By Philip Nelson

http://97-things.near-time.net/wiki/philip-nelson

33. Give developers autonomy

Most architects begin their career as developers. An architect has new responsibilities and greater

authority in determining how a system is built. You may find it difficult to let go of what you did

as a developer in your new role as an architect. Worse, you may feel it's important for you to

exercise a lot of control over how developers do their work to implement the design. It will be

very important to your success and your team's success to give all of your teammates enough

autonomy to exercise their own creativity and abilities.

As a developer you rarely get the time to sit back and really look at how the whole system fits

together. As an architect, this is your main focus. While developers are furiously building

classes, methods, tests, user interfaces and databases, you should be making sure that all those

pieces work well together. Listen for points of pain and try to improve them. Are people are

having trouble writing tests? Improve the interfaces and limit dependencies. Do you understand

where you actually need abstraction and where you don't? Work for domain clarity. Do you

know what order to build things in? Build your project plan. Are developers consistently making

common mistakes using an API you designed? Make the design more obvious. Do people really

understand the design? Communicate and make it clear. Do you really understand where you

need to scale and where you don't? Work with your customer and learn their business model.

If you' re doing a great job of being an architect, you really shouldn't have enough time to

interfere with developers. You do need to watch closely enough to see that the design is being

implemented as intended. You do not need to be standing over people's shoulders to accomplish

that goal. It's reasonable to make suggestions when you see people struggling, but it's even better

if you create the environment where they come and ask you for suggestions. If you are good, you

will deftly walk the fine line between guaranteeing a successful architecture and limiting the

creative and intellectual life of your developers and teammates.

By Philip Nelson

http://97-things.near-time.net/wiki/philip-nelson

34. Value stewardship over showmanship

When an architect enters a project, there is an understandable desire to prove one's worth. Being

assigned the role of software architect typically indicates implicit trust on the part of the

company in architect's technical leadership, and it only follows that the architect would desire to

make good on that expectation as soon as possible. Unfortunately, there are those who labor

under the misapprehension that proving one's worth consists of showmanship; bedazzling if not

baffling the team with one's technical brilliance.

Showmanship, the act of appealing to your audience, is important in marketing, but it's counter

productive to leading a software development project. Architects must win the respect of their

team by providing solid leadership and by truly understanding the technical and business domain

in which they are expected to operate.

Stewardship, taking responsibility and care of another‘s property, is the appropriate role of an

architect. An architect must act in the best interests of their customer and not pander to the needs

of their own ego.

Software architecture is about serving the needs of one's customers, typically through direction

from those with domain expertise that surpasses one's own. Pursuing successful software

development will lead one to create solutions of compromise, balancing the cost and complexity

of implementation against the time and effort available to a project. That time and effort are the

resources of the company, which the software architect must steward without self-serving

undercurrents. Unduly complex systems that sport the latest hot framework or technology

buzzword seldom do so without some sacrifice at the company's expense. Much like an

investment broker, the architect is being allowed to play with their client's money, based on the

premise that their activity will yield an acceptable return on investment.

Value stewardship over showmanship; never forget that you are playing with other peoples'

money.

By Barry Hawkins

http://97-things.near-time.net/wiki/barry-hawkins

35. Warning, problems in mirror may be

larger than they appear

I’ve worked on hundreds of software projects. Every one had issues that caused more problems than the
team expected. Often, a small part of the team identified the issue early on and the majority dismissed or
ignored it because they didn’t understand how important it really was until it was too late.

The forces at work include:

 Issues that seemed trivial early in the project become critical after it is too late to fix them. While
the boiling frog experiment may be folk-lore, it’s a useful analogy for what happens in many
projects.

 Individuals often face resistance when the rest of the team does not share their experience or
knowledge. Overcoming this resistance requires unusual courage, confidence and
persuasiveness. It rarely happens, even with highly paid, experienced consultants specifically
hired to help avoid such problems.

 Most software developers are optimists. Painful experience teaches us to temper our optimism,
but without specific experience we tend toward optimism. Natural pessimists on development
teams are often unpopular, even if they are consistently right. Few people will risk this
reputation and take a stand against the majority without a very solid case. Most of us have had
the "This makes me uncomfortable, but I can't explain why" feeling, but sharing it rarely wins any
arguments.

 Every team member has a different view of what is more or less important. Their concerns are
often focused on their personal responsibilities, not the project’s goals.

 We all have blind spots; short-comings that are difficult for us to recognize or to accept.
Some possible strategies to counter-act these forces could include:

 Establish an organized approach to managing risks. One simple approach is to track risks the
same way you track bugs. Any one can identify a risk and each risk is tracked until it is no longer
a risk. Risks are prioritized and reviewed when their status changes or when there is new
information. This helps remove emotion from the discussion and makes it easier to remember to
re-evaluate them periodically.

 When going against the majority, look for ways to help the rest of the team understand more
easily. Encourage any team you’re on to recognize the value in dissenting opinions and look for
neutral ways to discuss them.

 "Bad smells" are worth recognizing. If the facts aren't there yet, look for the simplest tests that
would provide the facts.

 Constantly test your understanding against the team and the customer. Tools such as a
prioritized list of user stories can help but are no substitute for regular communications with the
customer and an open mind.

 Blind spots are, by definition, hard to recognize. People you trust to tell you the hard truth when
you need it are a precious resource.

by Dave Quick

http://en.wikipedia.org/wiki/Boiling_frog
http://97-things.near-time.net/dave-quick

36. The title of software architect has only

lower-case 'a's; deal with it

A disappointing trend has been in bloom for some time now within software development; the

attempt to professionalize the practice of software architecture as one on par with the classical

school of Architecture. This seems to stem from some need for further legitimization of one's

accomplishment beyond acknowledgment among one's peers and employer. By comparison,

Architecture itself was not professionalized until the late 19th century, at least a few millennia

after the practice had been around. It would be no great stretch to say that some software

architects seem a bit eager by comparison.

Software architecture is a craft, and it certainly takes practice and discipline to achieve success in

the field. That said, software development is still a relatively nascent endeavor. We don't even

know enough about this practice to adequately professionalize it. Despite its youth, software

development's product has become a highly valued tool, and as such, the accomplished

individuals (as well as those who wish to be seen as accomplished) have enjoyed levels of

compensation on par with the leading professional fields, including medicine, accounting, and

law.

Practitioners of software development enjoy considerable compensation for work that is highly

creative and exploratory. The fruits of our labors have been used to accomplish many significant

milestones, some that benefit all of mankind. The barriers to entry are largely one's own merit

and opportunity; the fully-professionalized fields undergo programs of study and internship that

dwarf our own. Dwell on that for a moment and ponder how much cause we have to be content,

and just how brash it is to insist that software architect be considered a title that sits as peer to

Lawyer, Doctor, and Architect.

The title of software architect has only lower-case 'a's; deal with it.

By Barry Hawkins

http://97-things.near-time.net/wiki/barry-hawkins

37. Software architecture has ethical

consequences

The ethical dimension in software is obvious when we are talking about civil rights, identity

theft, or malicious software. But they arise in less exotic circumstances. If programs are

successful, they affect the lives of thousands or millions of people. That impact can be positive

or negative. The program can make their lives better or worse--even if just in minute proportions.

Every time I make a decision about how a program behaves, I am really deciding what my users

can and cannot do, in ways more inflexible than law. There is no appeals court for required fields

or mandatory workflow.

Another way to think about it is in terms of multipliers. Think back to the last major Internet

worm, or when a big geek movie came out. No doubt, you heard or read a story about how much

productivity this thing would cost the country. You can always find some analyst with an

estimate of outrageous damages, blamed on anything that takes people away from their desks.

The real moral of this story isn't about innumeracy in the press, or self-aggrandizing accountants.

It's about multipliers, and the effect they can have.

Suppose you have a decision to make about a particular feature. You can do it the easy way in

about a day, or the hard way in about a week. Which way should you do it? Suppose that the

easy way makes four new fields required, whereas doing it the hard way makes the program

smart enough to handle incomplete data. Which way should you do it?

Required fields seem innocuous, but they are always an imposition of your will on users. They

force users to gather more information before starting their jobs. This often means they have to

keep their data on Post-It notes until they've got everything together at the same time, resulting in

lost data, delays, and general frustration.

As an analogy, suppose I'm putting a sign up on my building. Is it OK to mount the sign just six

feet up on the wall, forcing pedestrians to duck or go around it? It's easier for me to hang the sign

if I don't need a ladder and scaffold, and the sign wouldn't even block the sidewalk. I get to save

an hour installing the sign, at the expense of taking two seconds away from every pedestrian

passing my store. Over the long run, all of those two second diversions are going to add up to

many, many times more than the hour that I saved.

It's not ethical to worsen the lives of others, even a small bit, just to make things easy for

yourself. Successful software affects millions of people. Every decision you make imposes your

will on your users. Always be mindful of the impact your decisions have on those people. You

should be willing to bear large burdens to ease theirs.

By Michael Nygard

http://97-things.near-time.net/wiki/michael-nygard

38. Everything will ultimately fail

Hardware is fallible, so we add redundancy. This allows us to survive individual hardware

failures, but increases the likelihood of having at least one failure present at any given time.

Software is fallible. Our applications are made of software, so they're vulnerable to failures. We

add monitoring to tell us when the applications fail, but that monitoring is made of more

software, so it too is fallible.

Humans make mistakes; we are fallible also. So, we automate actions, diagnostics, and

processes. Automation removes the chance for an error of comission, but increases the chance of

an error of omission. No automated system can respond to the same range of situations that a

human can.

Therefore, we add monitoring to the automation. More software, more opportunities for failures.

Networks are built out of hardware, software, and very long wires. Therefore, networks are

fallible. Even when they work, they are unpredictable because the state space of a large network

is, for all practical purposes, infinite. Individual components may act deterministically, but still

produce essentially chaotic behavior.

Every safety mechanism we employ to mitigate one kind of failure adds new failure modes. We

add clustering software to move applications from a failed server to a healthy one, but now we

risk "split-brain syndrome" if the cluster's network acts up.

It's worth remembering that the Three Mile Island accident was largely caused by a pressure

relief value---a safety mechanism meant to prevent certain types of overpressure failures.

So, faced with the certainty of failure in our systems, what can we do about it?

Accept that, no matter what, your system will have a variety of failure modes. Deny that

inevitability, and you lose your power to control and contain them. Once you accept that failures

will happen, you have the ability to design your system's reaction to specific failures. Just as auto

engineers create crumple zones---areas designed to protect passengers by failing first---you can

create safe failure modes that contain the damage and protect the rest of the system.

If you do not design your failure modes, then you will get whatever unpredictable---and usually

dangerous---ones happen to emerge.

By Michael Nygard

http://97-things.near-time.net/wiki/michael-nygard

39. Context is King

I feel there is a certain irony in trying to impart something about architectural ideals, when the

very premise I wish to begin with is that effectively there are no ideals. If this is indeed the case,

then surely there is nothing to write, I am a contradiction and by doing this I run the risk of the

universe imploding or something like that.

But alas, ceci n'est pas une pipe.

One of the most valuable lessons that I have learned as a software architect is that context is

king, and simplicity its humble servant. What this means in practical terms is that context is the

only force that trumps simplicity when making architectural decisions.

When I say context, I refer not only to high-level, immediate forces such as key business drivers,

but also to elements in the periphery, such as emerging technologies and thought leadership on

diverse topics. Indeed, good architects keep track of several fast-moving targets.

What constitutes good architecture? It is the product of decisions made within a context usually

tainted with multiple competing priorities. Those competing priorities mean that sometimes the

most important decisions are not about what you put in, but rather what you omit. The currency

of good architecture is simply astute decision-making (while the products are all only about

communicating your intent).

Historically, there have been some fascinating examples of the influence that context can have

on architecture. A favorite example involves the database selected to support an ambitious new

software system for a modern battlefield tank [1]. (Deciding what database to use is not usually

architecturally significant; this example merely serves to illustrate a point).

When it came time to choose the database, the team assessed many. They found that while the

tank was moving quickly over undulating terrain while tracking a target, the majority of the

databases were capable of supporting this maximal throughput required of the navigation and

targeting systems. But they were taken by surprise when they discovered that firing the main gun

on the tank caused such a strong electromagnetic pulse that it totally crashed the on-board

systems and of course the database along with it! On a modern battlefield, a tank without its

software running is quite literally in the dark. In this context, recovery time was the

overwhelming factor in the choice of database, and no database did that better at the time than

InterBase [2], and that is why it was chosen for the M1 Abrams tank.

So, while newsgroups rage with the flames of technology debates of X vs Y, it is idle

amusement. The reason these debates rage is often not because of huge disparities in their

technical merits, but rather because there are more subtle differences between them, and what

features individuals value more than others when there is no guiding context to act as a trump

card.

Your team should be free of ideals, reflect on context in the first instance, and reach for the

simplest solutions from there.

By Edward Garson

This work is licensed under a Creative Commons Attribution 3

Footnotes

[1] - A tank, despite its extremely dubious purpose, is still an engineering marvel.

[2] - Interestingly, InterBase had an architecture that caused disk-writes to leave the database in

an always-consistent state. This is one reason that contributes to its ability to recover from hard

failures so quickly.

http://97-things.near-time.net/wiki/edward-garson
http://creativecommons.org/licenses/by/3.0/us/

40. It's all about performance

Imagine a personal vehicle that is roomy, comfortable, fuel efficient, inexpensive to produce, and

98% recyclable. You want one? Sure. Everyone does. Just one problem: Its top speed is 6

miles/hour (10 km/hour). Still want one? This small example demonstrates that performance is

just as important as any other criterion.

The reason many designers put performance at the bottom of their lists might be that computers

are so much faster at computation than their human counterparts, that they assume that the speed

of the system will be acceptable. And if today's systems aren't fast enough, Moore's Law will

take care of everything. But hardware speed is only part of the system.

Performance is sometimes thought of as a simple measurement of the time it takes for a system

to respond to user input. But system designers must consider many aspects of performance,

including performance of the analysts and programmers who implement the design; performance

of the human interactions of the system; and performance of the non-interactive components.

Performance of the people building the system is often called productivity, and it is important

because it directly affects the cost and schedule of the project. A team that delivers a project late

and over budget has a lot of 'splainin' to do. Using tools and pre-built components can

dramatically affect how quickly the system can be built and start returning value.

Performance of the human interactions is critical to acceptance of the system. Many factors of

system design contribute to this aspect of performance, response time being perhaps the most

obvious. But response time is not the only factor. Just as important are intuitiveness of the

interface and number of gestures required to achieve a goal, both of which directly affect

performance.

More than response time per se, a good system specification will measure task time, defined as

the time required to complete a domain-specific task, including all human interactions with the

system. In addition to system response time, this measurement includes operator think time and

operator data entry time, which are not under the control of the system. But including these times

gives motivation to the proper design of the human interface. Proper attention to the way

information is presented and the number of gestures required to complete the task will result in

better human operational performance.

Performance of the non-interactive components is equally important to the success of the system.

For example, a "nightly" batch run that takes more than 24 hours to complete will result in an

unusable system. Performance of the disaster recovery component is also a critical consideration.

In case of total destruction of one part of the system, how quickly can operational status be

restored, in order to allow normal business to resume?

When considering the implementation and operation of a successful system, architects and

designers should always pay careful attention to performance. (RMH Edited 7/2/2008) By Craig

L Russell

http://97-things.near-time.net/wiki/craig-l-russell
http://97-things.near-time.net/wiki/craig-l-russell
http://97-things.near-time.net/wiki/craig-l-russell

41. Engineer in the white spaces

A system consists of interdependent programs. We call the arrangement of these programs and

their relationships "architecture". When we diagram these systems, we often represent individual

programs or servers as simplistic little rectangles, connected by arrows.

One little arrow might mean, "Synchronous request/reply using SOAP-XML over HTTP." That's

quite a lot of information for one glyph to carry. There's not usually enough room to write all

that, so we label the arrow with either "XML over HTTP"---from an internal perspective---or

"SKU Lookup"---for the external perspective.

That arrow bridging programs looks like a direct contact, but it isn't. The white space between

the boxes is filled with hardware and software components. This substrate may contain:

 * Network interface cards

 * Network switches

 * Firewalls

 * IDS and IPS

 * Message queues or brokers

 * XML transformation engines

 * FTP servers

 * "Landing zone" tables

 * Metro-area SoNET rings

 * MPLS gateways

 * Trunk lines

 * Oceans

 * Cable-finding fishing trawlers

There will always be four or five computers between program A and B, running their software

for packet switching, traffic analysis, routing, threat analysis, and so on. As the architect bridging

between those programs, you must consider this substrate.

I saw one arrow labeled "Fulfillment". One server was inside my client's company, the other

server was in a different one. That arrow, critical to customer satisfaction, unpacked to a chain of

events that resembled a game of "Mousetrap" more than a single interface. Messages went to

message brokers that dumped to files, which were picked up by a periodic FTP job, and so on.

That one "interface" had more than twenty steps.

It's essential to understand that static and dynamic loads that arrow must carry. Instead of just

"SOAP-XML over HTTP", that one little arrow should also say, "Expect one query per HTTP

request and send back one response per HTTP reply. Expect up to 100 requests per second, and

deliver responses in less than 250 milliseconds 99.999% of the time."

There's more we need to know about that arrow.

 * What if the caller hits it too often? Should the receiver drop requests

on the floor, refuse politely, or make the best effort possible?

 * What should the caller do when replies take more than 250 milliseconds?

Should it retry the call? Should it wait until later, or assume the receiver

has failed and move on without that function?

 * What happens when the caller sends a request with version 1.0 of the

protocol and gets back a reply in version 1.1? What if it gets back some HTML

instead of XML? Or an MP3 file instead of XML?

 * What happens when one end of the interface disappears for a while?

Answering these questions is the essence of engineering the white spaces.

By Michael Nygard

http://97-things.near-time.net/wiki/michael-nygard

42. Talk the Talk

As with any profession, jargon is used so that individuals within that profession can effectively

communicate with one another. Lawyers talk to one another about habeas corpus, voir dire, and

venire; Carpenters talk to one another about butt joints, lap joints, and flux; Software Architects

talk to one another about ROA, Two Step View, and Layer Supertype. Wait, what was that?

It is imperative that software architects, regardless of the platform they are working in, have an

effective means of communication between one another. One of those means of communication

is through architecture and design patterns. To be an effective software architect you must

understand the basic architecture and design patterns, recognize when those patterns are being

used, know when to apply the patterns, and be able to communicate to other architects and

developers using them.

Architecture and design patterns can be classified into four basic categories: Enterprise

Architecture Patterns, Application Architecture Patterns, Integration Patterns, and Design

Patterns. These categories are generally based on the level of scope within the overall

architecture. Enterprise architecture patterns deal with the high-level architecture, whereas

design patterns deal with how individual components within the architecture are structured and

behave.

Enterprise Architecture Patterns define the framework for the high-level architecture. Some of

the more common architecture patterns include Event Driven Architecture (EDA), Service

Oriented Architecture (SOA), Resource Oriented Architecture (ROA), and Pipeline Architecture.

Application Architecture Patterns specify how applications or subsystems within the scope of a

larger enterprise architecture should be designed. Some common pattern catalogs in this category

include the well-known J2EE design patterns (e.g., Session Façade and Transfer Object) and the

application architecture patterns described in Martin Fowler‘s book ―Patterns of Enterprise

Application Architecture‖.

Integration Patterns are important for designing and communicating concepts surrounding the

sharing of information and functionality between components, applications, and subsystems.

Some examples of Integration Patterns include file sharing, remote procedure calls, and

numerous messaging patterns. You can find these patterns at

http://www.enterpriseintegrationpatterns.com/eaipatterns.html.

Knowing the basic design patterns as described by the Gang of Four book ―Design Patterns:

Elements of Reusable Object-Oriented Software‖ is a must for any software architect. Although

these patterns may appear to be too low-level for a software architect, they are part of a standard

vocabulary that makes for effective communication between architects and developers.

http://www.enterpriseintegrationpatterns.com/eaipatterns.html

It is also important to be aware of and understand the various anti-patterns as well. Anti-patterns,

a term coined by Andrew Koenig, are repeatable processes that produce ineffective results. Some

of the more well-known anti-patterns include Analysis Paralysis, Design By Committee,

Mushroom Management, and Death March. Knowing these patterns will help you avoid the

many pitfalls you will most likely experience. You can find a list of the common anti-patterns at

http://en.wikipedia.org/wiki/Anti-patterns.

Software architects need the ability to effectively communicate with one another in a clear,

concise, and effective way. The patterns are there; it is up to us as software architects to learn

and understand these patterns so we can ―walk the walk and talk the talk‖.

By Mark Richards

http://en.wikipedia.org/wiki/Anti-patterns
http://97-things.near-time.net/wiki/mark-richards

43. Heterogeneity Wins

The natural evolution of computer technology has brought about important changes with respect

to the tools that architects can use to build software systems. These changes have brought about a

resurgence of interest in polyglot programming, which refers to the use of more than one core

language in the provision of a software system.

Polyglot programming is not a new concept: one prominent example from the past is front-end

Visual Basic clients supported by COM objects authored in C++ on the back-end. Fundamentally

speaking, this architecture leveraged what those languages were good at in their heyday.

So what changes took place to fuel this renewed interest in polyglot programming?

The change is that technical standards together with ever-increasing bandwidth and computing

resources conspired to make text-based protocols viable: gone are the days of arcane binary

protocols as a pre-requisite to efficient distributed systems. Text-based remote interoperability

largely began with XML/SOAP-based web services and continues to evolve with RESTful

architectural styles and other supporting (but no less important) protocols such as Atom and

XMPP.

This new breed of technologies creates far broader opportunities for heterogeneous development

than ever before, simply because the payloadis formatted text, which is universally generated and

consumed. Heterogeneous development affords using the right tool for the job, and text-based

interop has blown the doors off what was previously possible.

Architects can now combine specific, powerful tools that move the yardstick from previously

being able to employ the right language to now being able to employ the right paradigm.

Programming languages support different paradigms, in that some are object-oriented, while

others are functional or excel at concurrent programming. Some of these paradigms are a perfect

match for particular problems or domains, while others are a poor fit. Today, however, it is

possible to 'mash-up' some rather unconventional and seemingly dissonant tools into elegant

solutions rather more easily than in the past.

The effects of this change has begun, and manifests itself as a combinatorial increase in the

architectural topology of modern software systems. This is not just a reflection of their inherent

diversity, but a testament to new possibilities.

While choice is not always a good thing, it is 'less worse' than the alternative in the context of

modern software architecture. As an industry, we are faced with very serious problems[1] and we

need all the interoperability we can get, particularly as the incumbent platforms are not well

equipped to resolve them[2].

Your job as architect has become even more challenging, because technology silos are crumbling

in the face of new possibilities: embrace this, think outside the stack, and leverage the new

diversity: heterogeneity wins.

[1] - The impending multicore era may well prove to be the most significant problem yet faced

by the software development community.

[2] - The Free Lunch is Over - Herb Sutter, http://www.gotw.ca/publications/concurrency-

ddj.htm

By Edward Garson

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://97-things.near-time.net/wiki/edward-garson

44. Dwarves, Elves, Wizards, and Kings

In Cryptonomicon, Randy Waterhouse explains his classification system for the different types

of people he meets. Dwarves are hard workers, steadily producing beautiful artifacts in the dark

loneliness of their caves. They exert tremendous forces moving mountains and shaping earth,

and are renowned for their craftsmanship. Elves are elegant, cultured, and spend their days

creating new and beautiful magical things. They are so gifted they don't even realize that other

races view these things as otherworldly almost. The wizards are immensely powerful beings

almost completely unlike all others, but unlike the Elves, they do know about magic, and its

power and nature, and wield it with supreme effect. But there is a fourth type of character that

Waterhouse alludes to but does not mention specifically. The Kings are the visionaries who

know what must be done with all of these different characters.

An Architect is a King of sorts. The Architect must be familiar with all of these characters, and

ensure that the architecture has roles for all of these characters. An architecture designed only for

one will only attract that one character to the project, and even with the best dwarves, or elves, or

wizards, the team will be severely limited in its reach if it can only approach problems in one

way.

A good king will lead all types through a quest, and help them work together to complete it.

Without the quest, there is no vision for the team, and it ultimately becomes a partisan mess.

Without all characters, the team can only solve one class of problem, and is stopped at the first

barrier impassable to that solution.

The architect creates the quest with all the characters in mind. The architecture then becomes a

guide for finding tasks for the different characters to perform while learning about each other.

When a project encounters difficulty, the team will already know how to approach solving it

because the architecture gave them the opportunities to grow into a team.

By: Evan Cofsky

http://97-things.near-time.net/wiki/Evan%20Cofsky

45. Learn from Architects of Buildings

“Architecture is a social act and the material theater of human activity.”—Spiro Kostof

How many software architects see their role as exclusively, or primarily technical? Is it not rather

that they are the conciliators, go–betweens and arbiters of the warring factions among the stake-

holders? How many approach their work in a purely intellectual spirit, without giving proper

weight to the human factors of their job?

“A great architect is not made by way of a brain nearly so much as he is made by way of a

cultivated, enriched heart.”—Frank Lloyd Wright

What more strongly marks out the architects in your organization: raw intellectual horsepower

and vast capacity to recall technical minutia, or taste, refinement and generosity of spirit? Under

which tendency would you prefer to work?

“A doctor can bury his mistakes but an architect can only advise his client to plant vines.”—ibid

Is the "maintenance" of "legacy" systems anything more than pruning those vines? Would you,

as an architect, have the intestinal fortitude to scrap a piece of work that had failed? Or would

you cover it up? Wright also said that the architect's best friend was the sledgehammer. What

have you demolished recently?

“Architects believe that not only do they sit at the right hand of God, but that if God ever gets up,

they take the chair”—Karen Moyer

For "God" read "customer".

“In architecture as in all other operative arts, the end must direct the operation. The end is to

build well. Well building has three conditions: Commodity, Firmness and Delight.”—Henry

Watton

When was the last time you saw a piece of software who's architecture gave you any delight? Do

you aim to give delight with your work?

"No person who is not a great sculptor or painter can be an architect. If he is not a sculptor or

painter, he can only be a builder"—John Ruskin

Does artistry play its proper part in your architecture? Is the assemblage of components to make

systems informed by a painterly concern for shape and texture, with a sculptural sense of balance

and implied motion, of the importance of negative space?

And finally, no gloss is required on this comment, a sure remedy for the software architect's most

damaging syndrome.

"It seems a fantastic paradox, but it is nevertheless a most important truth, that no architecture

can be truly noble which is not imperfect."—ibid

By Keith Braithwaite

http://97-things.near-time.net/wiki/keith-braithwaite

46. Fight repetition

Are your developers performing recurring tasks that needs little thinking? Can you find recurring

patterns in the code? Can you spot code that's been written copy-paste-modify style? If that's the

case, your team is moving slower than they should and oddly enough - you may be the cause.

 Before explaining why, let's agree on a couple of truths about software development:

1) Duplication is evil.

2) Repetitive work slows down development.

 As an architect, you set the tone. You've got the best overall grasp of the system and you

probably wrote a trend-setting, end-to-end, vertical slice of the system that serves as an example

for the team - an example that has been copied many times by now. Whenever a developer

copies anything - be it a few lines of code, an XML-file, or a class - that's a clear indication that

something could be made simpler or even completely abstracted away. Most often, it's not the

domain logic that is copied; it's the infrastructure code that just has to be there to make it work.

For that reason, it's crucial that you can envision the effects your examples have. Any code and

configuration in your examples will be the base for tens, hundreds, or maybe thousands other

slices of the system, which means you have to make sure that your code is clean, intention

revealing, and contains nothing except what can't be abstracted away - the domain problem itself.

As an architect, you need to be highly sensitive to any kind of repetitive patterns, since anything

you write will (ironically) be repeated.

 But that doesn't happen in your system, right? Take a look at that configuration file. What needs

to be different if applied on another slice of the system and what will stay the same? Look at a

typical business layer method. Is there a pattern that shows up in other methods as well,

containing things like transaction handling, logging, authentication or auditing? How about the

data access layer? Any code in there that will be the same except for names of entities and fields?

Look broader. Can you find two or three lines of code that frequently seems to go together and

even though they operate on different objects, it feels like the same thing? These are all examples

of repetition. Repetition in code is something that developers eventually learn to filter out and

ignore when reading the code, once they figured out where the interesting variabilities are found,

but even if the developers get used to it - it slows them down. Code like that is clearly written for

computers execute, not for developers to read.

 Your responsibility is to remove it. To do that, you may need to harvest frameworks, create

better abstractions, perhaps ask the toolsmith to setup an aspect framework or write a few small

code generators, but the repetition won't go away unless someone does something about it.

 That someone is you. (Niclas Nilsson Edited 29/9/2008)

47. Welcome to the Real World

Engineers like precision, especially software engineers who live in the realm of ones and zeros. They are

used to working with binary decisions, one or zero, true or false, yes or no. Everything is clear and

consistent, guaranteed by foreign key constraints, atomic transactions, and check sums.

Unfortunately, the real world is not quite that binary. Customers place orders, just to cancel them a

moment later. Checks bounce, letters are lost, payments delayed, and promises broken. Data entry

errors are bound to happen every so often. Users prefer "shallow" user interfaces, which give them

access to many functions at once without being boxed into a lengthy, one-dimensional "process", which

is easier to program and seems more "logical" to many developers. Instead of the call stack controlling

the program flow, the user is in charge.

Worse yet, widely distributed systems introduce a whole new set of inconsistencies into the game.

Services may not be reachable, change without prior notice, or do not provide transactional guarantees.

When you run applications on thousands of machine, failure is no longer a question of "if", but of

"when". These systems are loosely coupled, asynchronous, concurrent, and do not adhere to traditional

transaction semantics. You should have taken the blue pill!

As computer scientists' brave new world is crumbling, what are we to do? As so often, awareness is a

first important step towards a solution. Say good bye to the good old predictive call-stack architecture,

where you get to define what happens when and in what order. Instead, be ready to respond to events

at any time in any order, regaining your context as needed. Make asynchronous requests concurrently

instead of calling methods one by one. Avoid complete chaos by modeling your application using event-

driven process chains or state models. Reconcile errors through compensation, retry, or tentative

operations.

Sounds scary and more than you bargained for? Luckily, the real world had to deal with the same issues

for a long time: delayed letters, broken promises, messages crossing in transit, payments posted to the

wrong account -- the examples are countless. Accordingly, people had to resend letters, write off bad

orders, or tell you to ignore the payment reminder in case you already sent a payment. So don't just

blame the real world for your headaches, but also use it as a place to look for solutions. After all,

Starbucks does not two-phase commit either [1]. Welcome to the real world.

[1] http://www.eaipatterns.com/ramblings/18_starbucks.html

http://www.eaipatterns.com/ramblings/18_starbucks.html

48. Don't Control, but Observe

Today's systems are distributed and loosely coupled. Building loosely coupled systems is a bit of

a drag, so why do we bother? Because we want our systems to be flexible, so they do not break

apart at the slightest change. This is a critical property in today's environments where we may

only control a small portion of our application, the remainder living in distributed services or

third party packages, controlled by other departments or external vendors.

So it looks like the effort to build a system that is flexible and can evolve over time is a good

idea. But that also means our system will change over time. As in "today's system is not what it

was yesterday." Unfortunately, this makes documenting the system challenging. It's commonly

known that documentation is out of date the moment it is printed, but in a system that changes all

the time, things can only be worse. Moreover, building a system that is flexible generally means

the architecture is more complex and it's more difficult to get the proverbial "big picture." For

example, if all system components communicate with each other over logical, configurable

channels, one better have a look at the channel configuration to have any idea what is going on.

Sending messages into the logical la-la-land is unlikely to trigger a compiler error, but it is sure

to disappoint the user whose action was encapsulated in that message.

Being a control freak architect is so yesteryear, leading to tightly coupled and brittle solutions.

But letting the software run wild is sure to spawn chaos. You have to supplement the lack of

control with other mechanisms to avoid doing an instrument flight without the instruments. But

what kind of instruments do we have? Plenty, actually. Today's programming languages support

reflection, and almost all run-time platforms provide run-time metrics. As your system becomes

more configurable, the current system configuration is another great source of information.

Because so much raw data is difficult to understand, extract a model from it. For example, once

you figure out which components send messages to which logical channels, and which

components listen to these channels, you can create a graph model of the actual communication

between components. You can do this every few minutes or hours, providing an accurate and up-

to-date image of the system as it evolves. Think of it as "Reverse MDA[1]". Instead of a model

driving the architecture, you build a flexible architecture, and extract the model from the actual

system state.

In many cases, it's easy to visualize this model, creating the literal big picture. However, resist

the temptation to plot the 3 by 5 meter billboard of boxes and lines, which contains every class in

your system. That picture may pass as contemporary art, but it's not a useful software model.

Instead, use a 1000 ft view as described by Erik Doernenburg, a level of abstraction that actually

tells you something. On top of that, you can make sure your model passes basic validation rules,

such as the absence of circular dependencies in a dependency graph, or no messages being sent

to a logical channel no one listens to.

Letting go of control is a scary thing, even when it comes to system architecture. But

supplemented by observation, model extraction, and validation, it is probably the way only to

architect for the 21st century.

[1] MDA = Model Driven Architecture

49. Janus the Architect

In the Roman world, Janus was the God of beginnings and endings; doors and passageways.

Janus is usually depicted with two heads facing in different directions, a symbol you may have

seen on coins or from the movies. Janus represents transitions and changes in life from past to

future, young to old, marriage, births and coming of age.

For any architect software or structural, Janus ability to see forward and backward or past to

future is a highly regarded skill. An architect strives to merge realities with vision; past success

with future direction; business and management expectations with development constraints.

Creating these bridges is a major part of being an architect. Often an architect may feel they are

trying to span chasms while bringing a project to completion because of different forces acting

on a project. For example, ease of access vs. security or satisfying present business processes

while designing for management‘s future vision. A good architect must have those two heads

capable of carrying two different ideas or thoughts, different goals or visions to create a product

that will satisfy the various project stakeholders.

You should notice that Janus has two heads not simply two faces. This allows Janus to have the

extra ears and eyes needed for awareness. An excellent IT architect will be a superior listener

and evaluator. Understanding the reason for a capital expenditure is crucial to determining the

goals and vision a management team has for the future of their organization. Being able to

evaluate the technical skills of your staff with the design and technology to be used within the

project will aid in creating the proper training and programming pairs to ensure a successful

project. Knowing what open source solutions to use in combination with common off-the-shelf

software can greatly streamline a project‘s timelines and budgets. An excellent architect will be

aware of many of these disparate pieces of the development process and use them to be

successful in the project lifecycle.

There are managers who demand and expect God like qualities from their architects but that is

not the purpose of this comparison. A good architect is open to new ideas, tools and designs that

progress the project, team or profession; she doesn‘t want to spend most of her time in

management meetings or doing all the coding; he should concede to good ideas and cultivate an

atmosphere for ideas to grow. It is an open mind that will succeed as an architect; a mind that

can balance the many conflicting forces at work on projects. All architects strive to complete

their projects and ensure the success of their development teams. The best architects create

systems that stand the test of time because these systems are able to be maintained and expanded

into the future as the organization grows and technology changes. These architects have listened,

evaluated and refactored their processes, designs and methods to ensure the success of their work

and projects; they have endeavored to ensure their products will withstand the transitions and

changes that are sure to come.

This is the mindset we should strive for as architects. It is simple yet difficult to perform. Like

Janus, a software architect needs to be a keeper of doors and passageways, spanning the old and

the new, incorporating creativity with sound engineering to fulfill todays requirements while

planning to meet tomorrow's expectations.

By Dave Bartlett

http://97-things.near-time.net/wiki/dave-bartlett

50. Architects focus is on the boundaries

and interfaces

Since Lord Nelson destroyed the French and Spanish fleet at Trafalgar in 1805, "divide an

conquer" has been the mantra for dealing with complex and difficult problems. A more familiar

term with the same intent is separation of concern. From separation of concern we get

encapsulation, and from encapsulation we get boundaries and interfaces.

From an architect's point of view, the hard part is to find the natural places to locate boundaries

and define the appropriate interfaces needed to build a working system. This is especially

difficult in large enterprise systems, often characterized by few natural boundaries and inter-

tangled domains. In this situation old wisdom such as: Minimize coupling, maximize cohesion,

and Do not slice through regions where high rates of information exchange are required provide

some guidance, but they say nothing about how to communicate the problems and potential

solutions to stakeholders in a easy way.

Here the concept of bounded-contexts and context mapping, as described by Eric Evans in his

book Domain-Driven Design,comes to the rescue. A bounded context is an area where a model

or concept is uniquely defined, and we represent it as a cloud or bubble with a descriptive name

that define its role and responsibility in the domain at hand. As an example, a shipping system

might include contexts such as: Cargo Operation, Cargo Scheduling and Harbor Movement. In

other domains other names will be appropriate.

With the bounded contexts identified and drawn up on the white-board, it's time to start to draw

the relationships between the contexts. These relationships might address organizational,

functional or technical dependencies. The result from this exercise is a context map, a collection

of bounded-contexts and the interfaces between them.

Such a context map provides architects with a powerful tool that allows them to focus on what

belongs together and what should be kept apart, enabling them to divide and conquer wisely in a

communicative way. The technique can easily be used to document and analyze the as-is

situation, and from there guide re-design toward a better system characterized by low coupling,

high cohesion and well defined interfaces.

By Einar Landre

http://97-things.near-time.net/wiki/einar-landre

51. Challenge assumptions - especially

your own

Wethern's Law of Suspended Judgement states (in a rather tongue-in-cheek fashion) that

"Assumption is the mother of all screw-ups." A more popular take on this would be, "Don't

assume - it makes an 'ass' of 'u' and 'me'." But when you are dealing with assumptions that could

cost thousands, if not millions of dollars, it's not always a laughing matter.

Best practices in software architecture state that you should document the rationale behind each

decision that is made, especially when that decision involves a trade-off (performance versus

maintainability, cost versus time-to-market, and so on). In more formal approaches, it is common

to record along with each decision the context of that decision, including the "factors" that

contributed to the final judgement. Factors may be functional or non-functional requirements, but

they also may just be "facts" (or factoids...) that the decision-makers found important

(technology constraints, available skill sets, the political environment, etc.).

This practice is valuable because by way of listing these factors, it helps highlight assumptions

that the architects may have that are affecting important decisions regarding the software that is

being designed. Very often these assumptions are based on "historical reasons", opinion,

developer lore, FUDs, or even "something I heard in the hallway":

 "Open source is not reliable"

 "Bitmap indexes are more trouble than they're worth"

 "The customer would NEVER accept a page that takes 5 seconds to load"

 "The CIO would reject anything that isn't sold by a major vendor"

It is important to make these assumptions visible and explicit for the sake of posterity and for

future re-evaluation. However, it is even more critical to make sure that any assumptions that

aren't based on relevant empirical evidence (or a confirmation from the people involved, for

political factors) be validated before a decision is finalized. What if customers can wait 5

seconds for critical reports if you provide a counter? In exactly what way is exactly which open

source project unreliable? Have you tested the bitmap indexes on your data, using your

application's transactions and queries?

And don't overlook the word "relevant." Something that was true in an older version of your

software may not be true today. The performance of bitmap indexes in one version of Oracle

may not be the same as in another. An older version of a library may have had security holes that

have already been fixed. Your old reliable software vendor may be on their last legs financially.

The technology landscape changes every day, and so do people. Who knows? Maybe your CIO

has become a closet fan of Linux.

Facts and assumptions are the pillars on which your software will be built. Whatever they are,

make sure the foundations are solid.

by Timothy High

http://97-things.near-time.net/wiki/timothy-high

52. Record your rationale

There is much debate in the software development community about the value of documentation,

especially in regards to the design of the software itself. The disagreements generally cluster

around the perceived value of doing a "big upfront design", and the difficulties of maintaining

design documentation synchronized with an ever-changing code base.

One type of documentation that ages well, doesn't require much effort and almost always pays

off is a record of the rationale behind decisions that are made regarding the software architecture.

As explained in the axiom "Architectural Tradeoffs", the definition of a software architecture is

all about choosing the right tradeoffs between various quality attributes, cost, time, and other

factors. It should be made clear to you, your managers, developers, and other software

stakeholders why one solution was chosen over another and what tradeoffs this entailed (did you

sacrifice horizontal scalability in the name of reducing hardware and licensing costs? Was

security such a concern that it was acceptable to increase the overall response time in exchange

for data encryption?).

The exact format of this documentation can vary according to what is appropriate for your

project, from quick notes in a text document, wiki or blog, to using a more formal template to

record all aspects of each architectural decision. Whatever the form and format, the

documentation should answer the basic questions "What was that decision we made?", and "Why

did we make that decision?". A secondary question that is often asked and should be documented

is "What other solutions were considered, and why were they rejected?" (actually, the question

usually asked is "Why can't we do it MY way?") The documentation should also be searchable

so that you can easily find it whenever it's needed.

This documentation may come in handy in a number of situations:

 As a means of communication to developers regarding important architectural principles

that should be followed

 To get the team "on the same page", or even head off a mutiny, when developers question

the logic behind the architecture (or even to humbly accept criticism if it turns out a

decision doesn't hold up under scrutiny)

 To show to managers and stakeholders exactly why the software is being built the way it

is (such as why an expensive piece of hardware or software is necessary)

 When handing off the project to a new architect (how many times have you inherited a

piece of software and wondered exactly why the designers did it THAT way?)

However, the most important benefits that come from this practice are:

 It forces you to be explicit about your reasoning in order to verify that your foundations

are solid (see the axiom "Challenge assumptions - especially your own")

 It can be used as a starting point to re-evaluate a decision when the conditions that

influenced the final decision have changed

The effort required to create this documentation is equivalent to jotting down a few notes

whenever you have a meeting or discussion on the subject. Whatever the format you choose, this

is one type of documentation that is worth the investment.

by Timothy High

http://97-things.near-time.net/wiki/timothy-high

53. Empower developers

Things are usually easier said than done, and software architects are notoriously good at coming

up with things to say. To keep your words from becoming a lot of hot air (generally the key

ingredient in making vaporware), you need a good team of developers to make it happen. The

role of an architect is usually to impose constraints, but you also have the opportunity to be an

enabler. To the extent your responsibilities allow, you should do everything possible to empower

your developers.

 Make sure developers have the tools they need. Tools shouldn't be imposed on developers, they

should be carefully chosen to make sure they are the right tools for the job at hand. Repetitive

and mindless work should be automated wherever possible. Also, it is well worth the investment

to make sure developers have top-notch machines to work with, adequate network bandwith and

access to software, data and information necessary to carry out their work.

 Make sure they have the skills they need. If training is required, make sure they get it. Invest in

books and promote active discussions about technology. The work life of a developer should be

hands-on and practical, but also should be actively academic. If you have the budget for it, send

your team to technical presentations and conferences. If not, get them involved in technical

mailing lists and look for free events in your city. As much as possible, participate in the

developer selection process as well. Look for developers that are hungry to learn, that have that

little "spark" that says they really dig technology (also make sure they can play ball with the

team...). It's hard to get a big bang out of a team of duds.

 Let developers make their own decisions wherever it won't contradict the overall goal of the

software design. But put constraints where they count, not only to guarantee quality, but also to

further empower developers. Create standards for the sake of consistency, but also to reduce the

number of troublesome, insignificant decisions that aren't part of the essential problem

developers are solving. Create a clear roadmap for where to put their source files, what to call

them, when to create new ones, and so on. This will save them time.

 Lastly, protect developers from nonessential parts of their job. Too much paperwork, and too

many office chores adds overhead and reduces their effectiveness. You (usually) aren't a

manager, but you can have influence on the processes surrounding software development.

Whatever processes are used, make sure it is designed to remove obstacles, not increase them.

by Timothy High

http://97-things.near-time.net/wiki/timothy-high

54. It is all about the data

As software developers we initially understand software as a system of commands, functions and

algorithms. This instruction-oriented view of software aids us in learning how to build software,

but it is this very same perspective that starts to hamper us when we try to build bigger systems.

If you stand back a little, a computer is nothing more than a fancy tool to help you access and

manipulate piles of data. It is the structure of this data that lies at the heart of understanding how

to manage complexity in a huge system. Millions of instructions are intrinsically complicated,

but underneath we can easily get our brains around a smaller set of basic data structures.

For instance, if you want to understand the UNIX operating system, digging through the source

code line-by-line is unlikely to help. If however you read a book outlining the primary internal

data-structures for handling things like processes and the filesystem, you‘ll have a better chance

of understanding how UNIX works underneath. The data is conceptually smaller than the code

and considerably less complicated.

As code is running in a computer, the underlying state of the data is continually changing. In an

abstract sense, we can see any algorithm as just being just a simple transformation from one

version of the data to another. We can see all functionality as just a larger set of well-defined

transformations pushing the data through different revisions.

This data-oriented perspective -- seeing the system, entirely by the structure of its underlying

information -- can reduce even the most complicated system down to a tangible collection of

details. A reduction in complexity that is necessary for understanding how to build and run

complex systems.

Data sits at the core of most problems. Business domain problems creep into the code via the

data. Most key algorithms, for example, are often well understood, it is the structure and

relationships of the data that frequently change. Operational issues like upgrades are also

considerably more difficult if they effect data. This happens because changing code or behavior

is not a big issue, it just needs to be released, but revising data structures can involve a huge

effort in transforming the old version into a newer one.

And of course, many of the base problems in software architecture are really about data. Is the

system collecting the right data at the right time, and who should be able to see or modify it? If

the data exists, what is its quality and how fast is it growing? If not, what is its structure, and

where does it reliably come from? In this light, once the data is in the system the only other

question is whether or not there is already a way to view and/or edit the specific data, or does

that need to be added?

From a design perspective, the critical issue for most systems is to get the right data into the

system at the right time. From there, applying different transformations to the data is a matter of

making it available, executing the functionality and then saving the results. Most systems don't

have to be particularly complex underneath in order for them to work, they just need to build up

bigger and bigger piles of data. Functionality is what we see first, but it's data that forms the core

of every system.

by Paul W. Homer

http://97-things.near-time.net/wiki/paul-w-homer

55. Control the data, not just the code

Source code control and continuous integration are excellent tools for managing the application build and

deployment process. Along with source code, schema and data changes are often a significant part of this

process and thus warrant similar controls. If your build and deployment process includes a list of

elaborate steps required for data updates, beware. These are the lists that always have you crossing your

fingers. They look something like this:

1) Create a list of scripts that need to be run, in order

2) E-mail scripts to special database person

3) Database person copies the scripts to a location where they‘re executed by a cron job

4) Check script execution log and pray that all scripts ran successfully since you‘re not exactly sure what

will happen if you re-run them

6) Run validation scripts and spot-check the data

7) Regression test the application and see what blows up

8) Write scripts to insert missing data and fix blow-ups

9) Repeat

Ok, so that might be a slight exaggeration but it‘s not that far off. Many a project requires this type of

acrobatic workflow for successful database migration. For some reason the data portion of the migration

plan seems to be easily overlooked during architecture planning. As a result it can become a brittle,

manual process that gets bolted on as an afterthought.

This complex web-work creates many opportunities for process breakdown. To make matters worse,

bugs caused by schema and data changes don‘t always get caught by unit tests as part of the nightly build

report. They like to rear their ugly head in a loud, boisterous manner immediately after a build has been

migrated. Database problems are usually tedious to reverse by hand and their solutions tend to be more

difficult to validate. The value of a completely automated build process that is capable of restoring the

database to a known state will never be more evident than when you‘re using it to fix an extremely visible

issue. If you don‘t have the ability to drop the database and restore it to a state that is compatible with a

specific build of the application you are susceptible to the same type of problems you‘d have if you

couldn‘t back out a code change quickly.

Database changes shouldn‘t create a ripple in your build‘s time-space continuum. You need to be able to

build the entire application, including the database, as one unit. Make data and schema management a

seamless part of your automated build and testing process early on and include an undo button; it will pay

large dividends. At best it will save hours of painful, high-stress problem solving after a late night

blunder. At worst it will give your team the ability to confidently charge forward with refactoring of the

data access layer. by Chad LaVigne

http://97-things.near-time.net/wiki/chad-lavigne

56. Don't Stretch The Architecture

Metaphors

Architects like to deal with metaphors. They provide nice concrete handles on subjects that are

often abstract, complex and moving targets. Whether it is communicating with the rest of the

team or talking through the architecture with the end-user it is so tempting to find something

tangible or physical to use as a metaphor for what you are trying to build.

This usually starts well, in that a common language can evolve where people start to feel that

things are moving in the right direction. The metaphor develops and grows over time until it

takes on a life of it's own. People feel good about the metaphor - we're making progress!

What usually happens is that the metaphor for the architecture now becomes dangerous. Here's

how it can turn on it's Architect creators:

 The business domain customer starts to like your metaphor more that your proposed

system, in that the happiest possible interpretation is now taken by all concerned and

where no real constraints are uncovered.

Example: We're building a 'transport system like a ship travelling between a series of docks'.

You think container ships crossing the Pacific. I was actually thinking a rowing boat in a

swimming pool, with possibly one oar.

 The development team starts to think that the metaphor is more important than the actual

business problem. You start to justify odd decisions because of a fondness for the

metaphor.

Example: We said it's like a filing cabinet so of course we have to show it to the user

alphabetically. I know it's a filing cabinet with six dimensions and of infinite length and clock

built in to it, but we've done the icon now - so it has to be a filing cabinet...

 The delivered system contains relics of names from old broken metaphors long gone;

archaeological testimonials to concepts long refactored and dug over.

Example: Why does the Billing Factory object create a Port channel for the Rowing boat system?

Surely it it should return a Pomegranate view for the Hub Bus? What do you mean you're new

here?

So remember, don't fall in love with your system metaphor - only use it for exploratory

communication purposes and don't let it turn on you.

by David Ing

http://97-things.near-time.net/wiki/david-ing

57. Focus on Application Support and

Maintenance

The support and maintenance of an application should never ever be an after-thought. Since over 80% of

an application's life-cycle is spent in maintenance, you should pay a lot of attention to the problems of

support and maintenance when you're designing. Fail to heed this and you'll watch with horror as your

application stops being the architect's dream and becomes a vile beast that dies a horrible death and is

forever remembered as a failure.

When most architects design applications they think mainly of developers, who have IDEs and debuggers

in place. If something goes wrong, highly skilled software engineers debug away and the bug is

discovered. It's easy to think this way because most architects have spent most of their lives as developers

rather than administrators. Unfortunately, the developer and the support guy have different skill sets, just

as the development/testing environment and the production environment has different purposes.

Here are a few of the disadvantages that an administrator faces:

 * An administrator can't resubmit a request message to reproduce the problem. When you're in

production, you can't re-issue a financial transaction against the "live" database to see what when wrong

 * Once the application is in production, the pressure to fix bugs comes from customers and executives,

not from the project manager and the testing team. And an angry CEO can be a lot more threatening.

 * Once you're in production, there is no debugger.

 * Once you're in production, deployment needs to be scheduled and co-ordinated. You can't take a

production application down for a few minutes to test a bug fix.

 * The logging level is much higher in the development environment than in production

A few symptoms of this failure to plan for support are:

 * most problems require a developer's involvement

 * the relationship between the development team and the support team is sour; the developers think the

support team is a bunch of idiots

 * the support team hates the new application

 * the architect and development teams are spending a lot of time in production

 * the application is restarted often as a way to resolve problems

 * the administrators never have time to tune the system properly because they're always fighting fires

To ensure that your application succeeds once it's out of the developers' hands, you should:

 * understand that development and support require a different skill set

 * get a support lead as early in on the project as possible

 * make the support lead a core part of the team

 * get a support lead to be involved with the planning for the application support

Design such that the learning curve for the support personnel is minimal. Traceability, auditing and

logging are crucial. When the administrators are happy, everybody is happy (espescially your boss)

by Mncedisi Mawabo Kasper

58. Prepare to pick two

Sometimes accepting a constraint or giving up on a property can lead to a better architecture, one

that is easier and less expensive to build and run. Like buses, desirable properties tend to come in

threes and trying to define and build a system that supports all three can result in system that

does nothing especially well.

A famous example is Brewer's conjecture, also know as Consistency, Availability, and

Partitioning (CAP), which states that there are three properties that are commonly desired in a

distributed system - consistency, availability, and partition tolerance, and that it is impossible to

achieve all three. Trying to have all three is going drastically increase the engineering costs and

typically increase complexity without actually achieving the desired effect or business goal. If

you data must be available and distributed, achieving consistency becomes increasingly

expensive and eventually impossible Likewise if the system must be distributed and consistent,

ensuring consistency will lead at first to latency and performance problems and eventually to

unavailability as the system cannot be exposed as it tries to reaches agreement.

It's often the case that one or more properties are considered inviolate - data cannot be

duplicated, all writes must be transactional, the system must be 100% available, calls must be

asynchronous, there must be no single point of failure, everything must be extensible, and so on.

Apart from being naive, treating properties as religious artifacts will stop you thinking about the

problem at hand. We start to talk about architectural deviation instead of principled design and

we confuse dogmatism with good governance. Instead we should ask, why must these properties

hold? What benefit is to had by doing so? When are these properties desirable? How can we

break the sustem up to achieve a better result? Be ever the skeptic, because architectural dogma

typically tends to undermine delivery. The inevitability of such tradeoffs is one of the most

difficult things to accept in software development, not just as architect, but also as developers

and stakeholders. But we should cherish them as it's far better than having limitless choice and

accepting tradeoffs often induces a creative and inventive result.

Bill de hÓra

http://97-things.near-time.net/user/dehora

59. Prefer principles, axioms and

analogies to opinion and taste

When creating your architecture you should explicitly use principles, axioms and analogies to

guide the creation. This gives the architecture a number of benefits that are not present if you

simply create by implicitly leveraging your experience, opinions and tastes.

Documenting your architecture will be easier. You can start by describing the principles that

were followed. This is much easier than trying to communicate your opinions and experience.

The principles will then provide a convenient handle for those tasked with understanding and

implementing the architecture. It will also be invaluable for subsequent or inexperienced

architects who need to work with the architecture.

An architecture with clear principles is an architecture that frees its architect from reviewing

everything and being everywhere. It gives architects greater leverage and influence. You will

not need to be an omniscient workaholic to ensure that others can consistently:

 implement and adapt the architecture;

 extend the architecture into related domains;

 re-implement the architecture using newer technologies;

 work out the detailed edge cases.

Disagreements about opinion and taste invariably turn into political arguments in which authority

is used to win. However, disagreements where the foundation principles are clear provide a way

for more reasoned discussion to occur without issues being personalised. It also allows the

disagreements to be resolved without reference to the architect at all.

Principles and axioms also give an architecture consistency throughout its implementation and

across time. Consistency is often a problem, especially in large systems that span multiple

technologies and will exist for many years. Clear architectural principles allow those unfamiliar

with a particular technology or component to reason about and more readily understand the

unfamiliar technology.

By Michael Harmer

60. Start with a Walking Skeleton

One very useful strategy for implementing, verifying, and evolving an application architecture is

to start with what Alistair Cockburn calls a Walking Skeleton . A Walking Skeleton is a

minimal, end-to-end implementation of the system that links together all the main architectural

components. Starting small, with a working system exercising all the communication paths,

gives you confidence that you are heading in the right direction.

Once the skeleton is in place, it's time to put it on a workout program. Bulk it up with full body

workouts. This means implement incrementally, adding end-to-end functionality. The goal is to

keep the system running, all the while growing the skeleton.

Making changes to an architecture is harder and more expensive the longer it has been around

and the bigger it gets. We want to find mistakes early. This approach gives us a short feedback

cycle, from which we can more quickly adapt and work iteratively as necessary to meet the

business' prioritized list of runtime-discernable quality attributes. Assumptions about the

architecture are validated earlier. The architecture is more easily evolved because problems are

found at an earlier stage when less has been invested in its implementation.

The bigger the system, the more important it is to use this strategy. In a small application, one

developer can implement a feature from top to bottom relatively quickly, but this becomes

impractical with larger systems. It is quite common to have multiple developers on a single team

or even on multiple, possibly distributed teams involved in implementing end-to-end.

Consequently, more coordination is necessary. And naturally, developers implement at a

different pace. Some developers can accomplish a lot and in little time while others can spend a

lot of time implementing very little. More difficult and time consuming efforts should be done

earlier in the project.

Start with a Walking Skeleton, keep it running, and grow it incrementally.

By Clint Shank

http://alistair.cockburn.us/index.php/Walking_skeleton

61. Share your knowledge and

experiences

From all of our experiences, including both success and failure, we learn a great deal. In a young

industry like software development, disseminating this experience and knowledge is vital in

helping sustain progress. What each team learns in its own tiny little corner of the world is

possibly influential across the globe.

Realistically our fundamental knowledge base for software development, that is, the knowledge

that is absolute and theoretically correct, is small compared to what is necessary to successfully

develop a project. To compensate,we guess, rely on intuitive judgments or even pick randomly.

In that, any major development project generates empirical evidence into what works and what

fails. We're gradually working through the permutations, which we want to apply back to

industry as a whole.

At an individual level, we are all trying to grow and come to understand how to build larger and

larger systems. The course of our careers will take us toward ever-increasing challenges, for

which we want our past experiences to help guide us. Being there is one thing, but to get the

most from the experience we often have to rationalize it. The best and easiest way of working

through it is to attempt to explain it to another person.

The act of discussing something always helps to show its weaknesses.You don't really

understand something, until you can explain it easily. It's only by putting forth our explanations

and discussing them that we solidify the experience into knowledge.

Another point is that while we may have had specific experiences, the inferences we draw from

them may not be entirely correct in the overall context. We may not have been as successful as

we thought, or as smart as we wanted. Of course testing your knowledge against the real world is

scary, particularly when you find out that something dear is myth, incorrect or was never true;

it's hard to be wrong.

Ultimately, we are human beings so not everything in our minds is correct; not every thought we

have is reasonable. It's only when we accept our flaws that we open up the possibility of

improving. The old adage about learning more from failure always holds. If our ideas and beliefs

do not stand the test of a debate, then it is better we find out now, than build on it later.

We really want to share our knowledge and experience to help the industry progress; we also

realize it helps ourselves to understand and correct it. Given the state of so much of our software,

it is clearly important for us to take every opportunity to share the things we know, what we

think we know, and what we've seen. If we help those around us to improve, they'll help us to

reach our full potential. - by Paul W. Homer

http://97-things.near-time.net/show/paul-w-homer

62. Make sure the simple stuff is simple

Software architects solve a lot of very difficult problems but we also solve some relatively easy

ones. What we don‘t want to do is apply a complicated solution to an easy problem. As obvious

as that advice sounds it can be hard follow. People who design software are smart, really smart.

The simple problem-complex solution trap can be an easy one to fall into because we like to

demonstrate our knowledge. If you find yourself designing a solution so clever that it may

become self-aware, stop and think. Does the solution fit the problem? If the answer is no,

reconsider your design options. Keep the simple stuff simple. You‘ll get plenty of chances to

showcase your talent when the difficult problems arise, and they will.

This doesn‘t mean that we shouldn‘t implement elegant solutions. It means that if we‘re tasked

with designing a system that only needs to support selling one type of SKU based widget it‘s

probably a bad idea to design for hierarchies of dynamically configurable products.

The cost incurred by a complicated solution may seem small but chances are it‘s larger than

you‘re giving it credit for. Over-engineering at the architectural level causes many of the same

issues as it does at the development level but the negative effects tend to be multiplied. Poor

decisions made at the design level are more difficult to implement, maintain and worst of all

reverse. Before moving forward with an architectural decision that exceeds system

requirements, ask yourself how difficult it would be to remove after it‘s in place.

The costs don‘t stop with the implementation and maintenance of the solution in question.

Spending more time than necessary on an easy problem leaves less time for when the

complicated issues show up. Suddenly your architecture decisions are creating scope creep and

adding unnecessary risk to the project. Your time could be spent much more efficiently making

sure no one else is doing that.

There‘s often a strong desire to justify solutions with a perceived benefit or implied

requirements. Remember this: when you try to guess at future requirements, 50% of the time

you‘re wrong and 49% of the time you‘re very, very wrong. Solve today‘s problem today. Get

the application out the door on time and wait for feedback to generate real requirements. The

simple design you create will make it much easier to integrate those new requirements when they

arrive. If you beat the odds and your implied requirement becomes a real one on the next release

you‘ll already have a solution in mind. The difference is now you‘ll be able to allocate

appropriate time for it in the estimate because it‘s truly required. Before you know it you‘ve got

the reputation of a team that makes good estimates and gets work done on time.

by

Chad LaVigne

http://97-things.near-time.net/show/chad-lavigne

63. If you design it, you should be able to

code it.

As an architect, it's tempting to create elaborate designs and abstractions that elegantly

address the problem at hand. It is even more tempting to sprinkle new technologies into the

project. At the end of the day, someone has to implement your design, and the architectural

acrobatics that you have the developers perform impact the project.

When designing the architecture for your project, you need to have a feel for the amount of effort

necessary to implement each element of your design - if you developed an element before it will

much easer to estimate the effort required.

Don‘t use a pattern in your design that you haven‘t personally implemented before. Don‘t rely on

a framework that you haven‘t coded against before. Don‘t use a server that you haven‘t

configured before. If your architecture depends on design elements that you haven‘t personally

used, there are a number of negative side effects:

1. You will not have experienced the learning curve that your developers will have to face.

If you don't know how long it takes to learn a new technology, you won't be able to give

a good estimate on time to implement.

2. You will not know the pitfalls to avoid when using the elements. Inevitably, things will

not go as well as the demo that the trained expert in the technology provided. If you

haven't worked with the technology before, you will be blindsided when this happens.

3. You will lose the confidence of your developers. When the developers ask questions

about the design and you aren't able to give solid answers, they will quickly lose

confidence in you and your design.

4. You will introduce unnecessary risk. Not knowing these things can put a big question

mark on key elements of the solution. No one wants to start a project with big,

unnecessary risks hanging around.

So how does one go about learning new frameworks, patterns, and server platforms? Well that‘s

another axiom in and of itself: Before anything, an architect is a developer.

By Mike Brown

64. The ROI variable

Every decision we make for our projects, be it technology, process or people related, can be a

viewed as a form of investment. Investments come associated with a cost, which may or may not

be monetary, and carry trust that they will eventually pay off. Our employers choose to offer us

salaries in the hope that this investment will positively affect the outcome of their venture. We

decide to follow a specific development methodology in the hope that it will make the team more

productive. We choose to spend a month redesigning the physical architecture of an application

in the belief that it will be beneficial in the long run.

One of the ways of measuring the success of investments is by rate of return, also known as

return on investment (ROI). For example, "we anticipate that by spending more time writing

tests we will have less bugs in our next production release". The cost of the investment in this

case is derived from the time spent writing tests. What we gain is the time saved from fixing

bugs in the future, plus the satisfied customers experiencing better behaved software. Let's

assume that currently 10 out of 40 working hours in a week are spent fixing bugs. We estimate

that by devoting 4 hours a week to testing we will reduce the amount of time spent on fixing

bugs to 2 a week, effectively saving 8 hours to invest in something else. The anticipated ROI is

200%, equal to the 8 hours we save from bug fixing divided by the 4 hours we invest in testing.

Not everything need directly translate in monetary gains, but our investments should result in

added value. If for our current project, time to market is essential to the stakeholders, maybe a

bulletproof architecture which requires a lengthy up front design phase will not offer ROI as

interesting as a swift alpha release. By quickly going live, we gain the ability to adapt to

audience reactions that can form the deciding element to the future direction and success of the

project, whereas not thoroughly planning can incur the cost of not being able to scale the

application easily enough when the need arises. The ROI of each option can be determined by

examining its costs and projected profits and can be used as a base for selection between what is

available.

Consider thinking of architectural decisions as investments and take into account the associated

rate of return, it is a useful approach for finding out how pragmatic or fit for purpose every

option on the table is.

By George Malamidis

http://97-things.near-time.net/wiki/george-malamidis

65. Your system is legacy, design for it.

Even if your system is bleeding edge and developed in the latest technology, it will be legacy to

the next guy. Deal with it! The nature of software today means things go out of date fast. If you

expect your system to go into production and survive, even for a few months, then you need to

accept that maintenance developers will need to fix things up. This means several things:

Clarity - it should be obvious what role components and classes perform.

Testability - is your system easy to verify?

Correctness - do things work as designed or as they should? Eliminate quick and nasty fixes.

Traceability - can Ernie the Emergency bug fixer who has never seen the code before jump into

production, diagnose a fault and put in a fix? Or does he need an 8 week handover?

Try to think of a different team opening up the codebase and working out what's happening. This

is fundamental for great architecture. It doesn't have to be over-simplified or documented to the

hilt, a good design will document itself in many ways. Also the way a system behaves in

production can also expose the design. For example, a sprawling architecture with ugly

dependencies will often behave like a caged animal in production. Spare a thought for (usually

more junior) developers who may have to debug defects.

Legacy tends to be a bad word in software circles, but in reality, all software systems should

endure the tag. It is not a bad thing as it may indicate that your system is durable, meets

expectations and has business value. Any software system that has never been called legacy has

probably been canned before launch - which is not the sign of a successful architecture.

by Dave Anderson.

66. If there is only one solution, get a

second opinion

You've probably heard this said before. If you're an experienced architect, you know it's true: if

you can only think of one solution to a problem, you're in trouble.

Software architecture is about finding the best possible solution for a problem given any number

of constraints. It is rarely possible to satisfy all requirements and constraints with the first

solution that comes to mind. Generally, trade offs must be made by choosing the solution that

best satisfies the requirements according to the most critical priorities.

If you only have one solution to the problem at hand, it means that you will have no room to

negotiate these trade offs. It's very possible this one solution will be insatisfactory to the

stakeholders of your system. It also means that if priorities are shifted due to a changing business

environment, your system may have no room to adapt for new requirements.

Rarely, if ever, is this situation caused by a real lack of options. It is much more likely due to the

inexperience of the architect in this particular problem domain. If you know this is the case, do

yourself a favor and ask someone more experienced to give you a hand.

A more insidious manifestation of this problem is when an architecture is designed from habit.

An architect can be experienced with a single style of architecture (e.g. a 3-tier, layered client-

server system), but not know enough to recognize when that style doesn't fit. If you find yourself

in the situation where you automatically KNOW the solution, without having done any

comparison to other approaches, stop, take a step back, and ask yourself if you can think of

another way to do it. If you can't, you may be in need of some help.

A friend of mine was once the technical person in charge of a small, but growing internet start-

up. As their user base started growing, so did the load requirements on their system. Performance

was going down the tubes, and they were starting to lose some of their hard-won user base.

So, the boss asked him, "What can we do to improve the performance?"

My friend had the answer: "Buy a bigger machine!"

"What else can we do?"

"Umm... as far as I know, that's it."

My friend was fired on the spot. Of course, the boss was right.

by Timothy High

http://97-things.near-time.net/wiki/show/timothy-high

67. Understand the impact of change

A good architect reduces complexity to a minimum and can design a solution whose abstractions

provide solid foundations to build upon, but are pragmatic enough to weather change.

The great architect understands the impact of change - not just in isolated software modules, but

also between people and between systems.

Change can manifest in a variety of forms:

 Functional requirements change

 Scalability needs evolve

 System interfaces are modified

 People in the team come and go

 and the list goes on...

The breadth and complexity of change in a software project is impossible to fathom up-front, and

it's a fruitless task trying to accommodate every potential bump before it happens. But the

architect can play a crucial role in determining whether the bumps in the road make or break a

project.

The architect's role is not necessarily to manage change, but rather to ensure change is

manageable.

Take, for example, a highly distributed solution that spans many applications and relies on a

variety of middleware to glue the pieces together. A change in a business process can cause

havoc if the set of dependencies are not correctly tracked or accurately represented in some

visual model. The impact downstream is particularly significant if the change affects the data

model, breaks existing interfaces, and the existing long-running, stateful transactions must

successfully complete under the old version of the process.

This example may appear extreme, but highly integrated solutions are now mainstream. This is

evident in the choice of integration standards, frameworks and patterns available. Understanding

the implications of change in these outlying systems is critical in ensuring a sustainable level of

support to your customers.

Fortunately, there are many tools and techniques to mitigate the impact of change:

 Make small, incremental changes

 Build repeatable test cases - run them often

 Make building test cases easier

 Track dependencies

 Act and react systematically

 Automate repetitive tasks

The architect must estimate the risk of change on various aspects of the project's scope, time and

budget, and be prepared to spend more time on those areas whose impact would be the greatest

as the result of "a bump in the road". Measuring risk is a useful tool for knowing where your

valuable time should be spent.

Reducing complexity is important, but reduced complexity it does not equate to simplicity. The

pay-off for understanding the type and impact of change on your solutions is immeasurable in

the medium- to long-term.

by Doug Crawford

68. You have to understand Hardware too

For many software architects, hardware capacity planning is a topic that lies beyond their

comfort zone, yet it remains an important part of the architect‘s job. There are a number of

reasons software architects often fail to properly consider hardware but they mostly have to do

with a lack of understanding and unclear requirements.

The primary reason we neglect hardware considerations is that we are focused on software and

tend to ignore hardware demands. In addition, we are naturally isolated from hardware by high-

level languages and software frameworks.

Unclear requirements are also a factor as they may change or may be poorly understood. As the

architecture evolves hardware considerations will also change. In addition, our clients may not

understand or be able to predict the size of their own user base or system usage dynamics.

Finally, hardware is constantly evolving. What we knew about hardware in the past does not

apply today.

Without hardware expertise predicting hardware configurations for systems to be developed is

highly error prone. To compensate some software architects use large safety factors. Such safety

factors are generally not based on objective assessments or founded in any methodology. In most

of the cases, this leads to excessive infrastructure capacities that will not be utilized even in

periods of peak demand. As a result, clients' money is wasted on more hardware than a system

will ever need.

The best defense against poor hardware planning is to work closely with an infrastructure

architect. Infrastructure architects, unlike software architects, are specialists in hardware

capacity planning and they should be a part of your team. However, not every software architect

has the luxury of working with an infrastructure architect. In such cases there are some things a

software architect can do to mitigate errors when planning for hardware.

Drawing on your own past experience can help. You've implemented systems in the past and so

you have some knowledge of hardware capacity planning – even if it was an after thought at the

time. You can also discuss the topic with your client and convince them to set aside funds for

hardware capacity planning. Budgeting for capacity planning can be much more cost effective

than buying more hardware than you need. In this case, horizontal scalability is the key – adding

hardware as needed rather than over-buying in the beginning. To make a horizontal strategy

work software architects need to constantly measure capacity and isolate software components to

execute in performance predictable environments.

Hardware capacity planning is as important as software architecture and it needs to be given a

first order priority whether you have an infrastructure architect on hand or not. Just like an

architect is responsible to establish the links between business demands and a software solution,

she is responsible to envision the links between hardware and software.

By Kamal Wickramanayake

69. Shortcuts now are paid back with

interest later

It‘s important to remember when architecting a system that maintenance will, in the long run,

consume more resources than initial development of the project. Short cuts taken during the

initial development phase of a project can result in significant maintenance costs later.

For example, you may have been informed that unit tests don't deliver direct value and so you

tell your developers to skip the rigorous application of them. This makes the delivered system

much more difficult to change in the future, and decreases confidence when making those

changes. The system will require far more manual testing for a smaller set of changes, leading to

brittleness and increased maintenance expenses as well as a design that's not as appropriate as a

fully-tested design (let alone a test-first design).

A serious architectural mistake that is sometimes made is to adapt an existing system for a

purpose that it is not fit for, on the basis that using an existing system somehow reduces costs.

For example, you might find yourself utilizing BPEL architectural components coupled with

database triggers to deliver an asynchronous messaging system. This might be done or insisted

upon for reasons of convenience or because that is the architecture is known to you or the client.

But a messaging architecture should have been selected in the first instance after requirements

made it clear it was a necessary component. Poor decisions made at the inception of a project

make it much more expensive to re-architect the system to meet new requirements.

In addition to avoiding short cuts during the initial development phase, it‘s also important to

correct poor design decisions as quickly as they are discovered. Poorly designed features can

become the foundation for future features making corrective action later even more costly.

For example, if you discover that inappropriate libraries were selected for some underlying

functionality they should be replaced as soon as possible. Otherwise the effort to make them fit

evolving requirements will result in additional layers of abstractions, each designed to hide the

poor fit of the previous layer. You are building yourself a ball of tangled twine, tack, and sticky

tape and with every layer you add, it is harder to unravel. This easily results in a system that is

resistant to change.

As an architect, when you encounter an architectural problem or design flaw insist that it be

rectified now, when it cheapest to fix it. The longer you leave it to drag out, the higher the

interest payment is.

by Scot Mcphee

70. "Perfect" is the Enemy of "Good

Enough"

Software designers, and architects in particular, tend to evaluate solutions by how elegant and

optimum they are for a given problem. Like judges at a beauty contest, we look at a design or

implementation and immediately see minor flaws or warts that could be eliminated with just a

few more changes or re-factoring iterations. Domain models simply beg for one more pass to

see if there are any common attributes or functions that can be moved into base classes. Services

duplicated in multiple implementations cry out their need to become web services. Queries

complain about "buffer gets" and non-unique indexes and demand attention.

My advice: Don't give in to the temptation to make your design, or your implementation, perfect!

Aim for "good enough" and stop when you've achieved it.

What exactly is "good enough," you might ask? Good enough means that the remaining

imperfections do not impact system functionality, maintainability, or performance in any

meaningful way. The architecture and design hangs together. The implementation works and

meets the performance requirements. Code is clear, concise, and well-documented. Could it be

better? Sure, but it is good enough, so stop. Declare victory and move on to the next task.

The search for perfection in design and implementation leads, in my opinion, to over-designed

and obfuscated solutions that are, in the end, harder to maintain.

A number of the axioms in this book caution designers to avoid unnecessary abstraction or

complexity. Why do we have problems keeping things simple? Because we are seeking the

perfect solution! Why else would an architect introduce complexity in a workable solution

except to address a perceived imperfection in the simpler design.

Remember that application development is not a beauty contest, so stop looking for flaws and

wasting time chasing perfection.

9/4/2008 by Greg Nyberg.

http://97-things.near-time.net/user/gnyberg

71. Avoid "Good Ideas"

Good ideas kill projects. Sometimes it's a quick death, but often it's a slow, lingering death

caused by missed milestones and a spiraling bug count.

You know the kinds of good ideas I'm talking about: Tempting, no-brainer, innocent-looking,

couldn't-possibly-hurt-to-try sorts of ideas. They usually occur to someone on the team about

halfway through a project when everything seems to be going fine. Stories and tasks are getting

knocked off at a good pace, initial testing is going well, and the rollout date looks solid. Life is

good.

Someone has a "good idea," you acquiesce, and suddenly you are re-fitting a new version of

Hibernate into your project to take advantage of the latest features, or implementing AJAX in

some of your web pages because the developer showed the user how cool it is, or even re-visiting

the database design to utilize XML features of the RDBMS. You tell the project manager you

need a few weeks to implement this "good idea," but it ends up impacting more code than

originally anticipated, and your schedule starts to slip. Plus, by letting in the first "good idea,"

you've allowed the proverbial camel's nose in the tent, and soon the good ideas are coming out of

the woodwork and it becomes harder to say no (and the camel is soon sleeping in your bed).

The really insidious thing about "good ideas" is that they are "good." Everyone can recognize

and reject "bad" ideas out of hand - It's the good ones that slip through and cause trouble with

scope, complexity, and sheer wasted effort incorporating something into the application that isn't

necessary to meet the business need.

Here are some key phrases to look for:

 "Wouldn't it be cool if …" Really, any sentence with the word "cool" in it is a danger

signal.

 "Hey, they just released version XXX of the YYY framework. We ought to upgrade!"

 "You know, we really should re-factor XXX as long as we are working on ZZZ …"

 "That XXX technology is really powerful! Maybe we could use it on …"

 "Hey, <yournamehere>, I've been thinking about the design and I have an idea!"

Okay, okay, maybe I'm being a bit too cynical with that last one. But keep watching out for

"good ideas" that can kill your project.

9/4/2008 by Greg Nyberg

http://97-things.near-time.net/user/gnyberg

72. Great content creates great systems

I have seen my fair share of initiatives focus endlessly on requirements, design, development,

security & maintenance but not on the actual point of the system – the data. This is especially

true in content-based systems in which the data is information delivered as unstructured or semi-

structured content. Great content means the difference between a system that is hollow and one

that is relevant.

Content is king. Content is the network. Content is theinterface. In an increasingly

interconnected world, content quality is rapidly becoming the difference between success and

failure. FaceBook vs. Orkut /Google vs. Cuil / NetFlix vs. BlockbusterOnline.... the list is

endless where battles have been won and lost on the content battlefield. One could argue that

content-related aspects are not the software architect's problem - but I think the next decade will

certainly disprove that.

Part of the design process for a new system should be devoted assessing content inventory.

Designing an effective domain/object/data model is not enough.

Analyze all available content and assess its value on the following criteria:

- Is there enough content available? If not, how do we attain critical mass?

- Is the content fresh enough? If not, how do we improve delivery rates?

- Have all possible content channels been explored? RSS feeds, Email, Paper Forms are all

channels.

- Are there effective input streams built to facilitate the continual delivery of this content into the

system? It's one thing to identify valuable content, but another thing altogether to harvest it

regularly.

Make no mistake, the success of a system depends on its content. Spend a healthy part of the

design process to assess the value of your content. If your findings are less than satisfactory then

that's a red flag and the stakeholders must be advised about. I have seen many systems that fulfill

all contractual obligations, meet every requirement and still fail because this fairly obvious

aspect was ignored. Great content creates great systems.

By Zubin R. Wadia

73. The Business Vs. The Angry Architect

There comes a time in our career as an architect when we realize many of the issues we

encounter are recurring. Though the project and industry may change, many of the problems are

similar. At this point we can draw on our experience to provide many solutions quickly, leaving

more time to enjoy the challenging issues. We‘re confident in our solutions and we deliver as

advertised. We have reached homeostasis. This is the perfect time to make a colossal mistake -

like deciding you know so much that it‘s time for you to start talking more than you listen. This

poor decision usually comes with a side of cynicism, impatience and general anger towards

inferior minds who dare contradict your superior understanding of all things technical and

otherwise.

In it‘s worst form this overconfidence bleeds into the business realm. This is an excellent way to

land your career on a list somewhere next to the Black Rhino. The business is our reason for

existence. That statement probably hurts a little but we must not lose sight of that fact. We live to

serve them, not vice-versa. Listening to and understanding the business that employs us to solve

problems is the most critical skill we possess. Ever caught yourself impatiently waiting for a

business analyst to finish talking so you could make your point? Chances are you didn‘t get

theirs. Show the business domain experts the respect you expect to receive, this is the last group

of people you want viewing you as unapproachable. If they start avoiding you, you‘re being a

catalyst for communication breakdown and sabotaging your own project. Remember; when

you‘re talking you can only hear something you already know. Don‘t ever start thinking you‘re

so smart that no one else has something valuable to say.

When we are listening we‘ll often disagree with what we hear about how the business operates.

That‘s fine. We can make suggestions for improvement and should definitely do so. However, if

at the end of the day you disagree with how the business is run and it's not going to change,

that‘s just too bad. Don‘t allow yourself to become a disgruntled genius that spends all of your

time trying to impress others by making witty, condescending statements about how poorly the

company is run. They won‘t be impressed. They‘ve met that guy before and they don‘t really like

him. One of the key ingredients to the recipe for a great architect is passion for your work but

you don‘t want too much passion of the angry variety. Learn to accept disagreements and move

on. If the differences are too great and you find yourself continually at odds with the business,

find a company that‘s easier for you to get behind and design solutions for them. Regardless of

how, find a way to establish a good relationship with the business and don't let your ego damage

it. It will make you happier and more productive.

by

Chad LaVigne

http://97-things.near-time.net/show/chad-lavigne

74. Stretch key dimensions to see what

breaks

An application's design is outlined initially based on the specified business requirements,

selected or existing technologies, performance envelope, expected data volumes and the financial

resources available to build, deploy and operate it. The solution, whatever it is, will meet or

exceed what is asked of it in the contemporary environment and is expected to run successfully

(or it is not yet a solution).

Now take this solution and stretch the key dimensions to see what breaks.

This examination looks for limits in the design that will occur when, for example, the system

becomes wildly popular and more customers use it, the products being processed increase their

transaction counts per day, or six months of data must now be retained rather than the initially

specified week. Dimensions are stretched individually and then in combination to tease out the

unseen limits that might lie hidden in the initial design.

Stretching key dimensions allows an architect to validate a solution by:

 Understanding whether the planned infrastructure accommodates these increases, and

where the limits are. If the infrastructure will break it identifies where it will break which

can be highlighted to the application's owner, or the planned infrastructure can be

purchased with specific upgrade paths in mind.

 Confirming there are sufficient hours in the day to perform the processing at the expected

throughput, with head room to accommodate 'busy days' or 'catch up' after an outage. A

solution that cannot process a day's processing in a day and relies on the weekend when

things are quieter has no long-term future.

 Validating the data access choices that were made are still valid as the system scales.

What might work for when a week's data is held, may be unusable with six month's data

loaded.

 Confirming how the application's increased workload will be scaled across additional

hardware (if required), and the transition path as the load increases. Working through the

transition before the application is deployed can influence the data stored and its

structure.

 Confirming the application can still be recovered if the data volumes are increased and/or

the data is now split amongst an increased infrastructure.

Based on this examination, elements of the design may be recognised as problems requiring

redesign. The redesign will be cheaper whilst the design is still virtual, technical choices are not

locked-in and the business data has yet to be stored in the repositories.

by Stephen Jones

75. Before anything, an architect is a

developer

Have you heard of a judge who wasn't a lawyer; or a chief of surgery who wasn't a surgeon?

Even after they get to what some would call the pinnacles of their career, the people holding

these occupations are still expected to continue learning the new developments within their

respective fields. As software architects, we should be held to the same standards.

No matter how well designed a solution is, one of the most important factors for determining the

success of an implementation is getting the developers to sign on to the game plan. The quickest

way to get the developers to sign on is to gain their respect and trust. We all know the quickest

way to gain a developers trust: your code is your currency. If you can show your developers

that you‘re not just some pie in the sky day dreamer who can‘t code his way out of a paper bag,

you‘ll hear less grumbling about the hoops you‘re ―making‖ them jump through to get data to

show on the page when ―I can get it done in less time by just binding a dataset to a grid.‖

Even though I‘m not required to as part of my job, I will frequently pick up some of the more

intricate tasks. This serves two purposes: first it‘s fun and helps me to keep my development

skills sharp; second, it helps me demonstrate to my developers that I‘m not just blowing smoke

where the sun doesn‘t shine.

As an architect, your primary goal should be to create a solution that is feasible, maintainable,

and of course addresses the issue at hand. Part of knowing what is feasible in a solution is having

knowledge of the effort involved in developing the elements of the solution. Therefore, I

propose that if you design it, you should be able to code it.

9/26/2008 by Mike Brown

http://97-things.near-time.net/user/brownie

76. A rose by any other name will end up

as a cabbage

I overheard some people deciding that they need more layers in their architecture. They were

right, as it happens; but going about it a little backwards. They were attempting to create a

framework that would contain the business logic. Rather than solving some specific problems

they started with the idea that they want a framework that wraps the database up and produces

objects. And it should use object-relational mapping. And messages. And web services. And it

should do all sorts of cool stuff.

Unfortunately, since they didn't exactly know what cool stuff it would do, they didn‘t know what

to call it. So they held a little competition to suggest a name. And that is the point at which you

must recognise that you have a problem: if you don’t know what a thing should be called, you

cannot know what it is. If you don’t know what it is, you cannot sit down and write the code.

In this particular case, a quick browse throught the source control history revealed the depth of

the problem. Of course, there were lots of empty interface "implementations"! And the really

funny thing is that they had already changed the names three times with no actual code. When

they started they called it ClientAPI -- the ―client‖ refers to the customers of the business, not

client as in ―client-server‖-- and the final version was called ClientBusinessObjects. Great name:

vague, broad and misleading.

Of course, in the end, a name is just a pointer. Once everyone involved knows that the name is

just a name and not a design metaphor then you can all move on. However, if you can't agree on

a name that is specific enough for you to know when it is wrong, then you might have some

difficulty even getting started. Design is all about trying to fulfil intentions -- e.g., fast, cheap,

flexible -- and names convey intentions.

If you can‘t name it, you can‘t write it. If you change the name 3 times, then you should stop

until you know what you are trying to build.

By Sam Gardiner

http://97-things.near-time.net/wiki/Sam%20Gardiner

77. Stable problems get high quality

solutions

Real-world programming is not about solving the problem that someone gives to you. In the

computer science classroom you must solve the binary-sort problem it‘s given to you. In the real

world, the best architects don‘t solve hard problems they work around them. The skill is in

drawing boundaries around diffuse and diverse software problems so that they are stable and

self-contained.

An architect should be able to look at a whole mess of concepts and data and process and

separate them into smaller pieces or ―chunks‖. The important thing about those problem chunks

is that they are stable allowing them to be solved by a system chunk that is finite and stable in

scope. The problem chunks should be:

 * Internally cohesive: the chunk is conceptually unified, so all of the tasks, data, and features

are related

 * Well separated from other chunks: the chunks are conceptually normalized; there is little or

no overlap between them

The person who is excessively good at doing this may not even know that they are doing it, just

as a person with a good sense of direction knows where they are. It just seems to make sense to

them to break up the tasks, data, and features in a way that provides a nice edge or interface to

the system. I‘m not talking about the actual interfaces of an object-oriented language, but system

boundaries.

For instance, a relational database management system has a very nice system boundary. It

manages literally any type of data that can be serialized into a stream of bytes and it can

organize, search and retrieve that data. Simple.

What is interesting is that if the problem is stable then when it is solved, it is solved permanently.

In five/fifty years time you might want to slap a web/telepathic interface over it, but your core

system won‘t need to change. The system is durable because the problem is durable.

Of course, the code needs to be pretty neat, but if the problem is neat the code can be neat as

there are no special cases. And neat code is good because it is easy to test and easy to review,

and that means that the implementation quality can be very high. As you don‘t have messy code

you can concentrate on things that are outside the domain of user-visible features like using

reliable messaging, distributed transactions, or driving up performance by using multithreading

or even low level languages like assembly code; because the problem isn‘t changing you can

concentrate on driving up the quality to the point where quality is a feature.

A stable problem allows you to create a system with a stable design; stable design allows you to

concentrate on making an application that has very high quality.

By Sam Gardiner

http://97-things.near-time.net/wiki/sam-gardiner

78. It Takes Diligence

An architect‘s job is often portrayed as an activity focused on ingenuity and problem solving.

Ingenuity is a key trait of successful architects. However an equally important characterization

of the activities of a successful architect is ‗diligence‘. Diligence can manifest itself in many

ways, but ultimately it is an exercise in perseverance and paying the right amount attention to

each task and each architectural goal of the system.

Diligence goes hand in hand with the mundane. Successful architecture practices are in many

ways mundane. Effective architects often follow mundane daily and weekly checklists to remind

them of that which they already know academically, but fail to practice by habit. Without such

mundane checklists and reminders architects can quickly fall into software time, in which no

measurable progress is achieved because a lack of diligence allowed the architecture to meander

and violate known academic principles. It is important to realize in these retrospectives of failed

projects that in most cases it isn‘t incompetence that drove failure, but rather the lack of

diligence and a sense of urgency.

Diligence also requires an architect to succeed at the deceptively simple task of making and

keeping commitments. These commitments are often disparate and can encompass a wide range

of constraints and expectations. Examples include:

 Embracing the budget and time constraints of the customer

 Performing all the work that makes the architect effective, not just the work the architect

enjoys.

 Commitment to the process/methodology

 Accepting responsibility

Atul Gawande, in his terrific book ‗Better: A Surgeon‘s Notes on Performance‘ 1, speaks of

diligence in the medical community:

―True success in medicine is not easy. It requires will, attention to detail, and creativity. But the

lesson I took from India was that it is possible anywhere and by anyone. I can imagine few

places with more difficult conditions. Yet astonishing success could be found ... what I saw was:

Better is possible. It does not take genius. It takes diligence. It takes moral clarity. It takes

ingenuity. And above all, it takes a willingness to try.‖

1
Gawande, Atul. Better: A Surgeon's Notes on Performance. Metropolitan Books, 2007.

By Brian Hart

79. Take responsibility for your decisions

Software architects have to take responsibility for their decisions as they have much more

influential power in software projects than most people in organizations. Studies of software

projects show over two-thirds of them either are outright failures or deliver unsuccessfully

(deadline slip, budget overruns, or low customer satisfaction). Many of the root causes point to

improper decisions software architects made, or failures of follow-through on the right

architectural decisions.

How can you become a responsible software architect who makes effective architectural

decisions?

First, you have to be fully cognizant of your decision process, whether it is agile or ceremonial.

You should NOT claim that an architectural decision has been made until the following two

conditions are met:

 * A decision has been put in writing because architectural decisions are rarely trivial. They

must be substantiated and traceable.

 * A decision has been communicated to the people who execute it, and the people who will be

affected directly or indirectly. Communication is all about creating shared understanding.

Second, review your architectural decisions periodically. Examining the results of your decisions

against expectations. Identify architectural decisions that remain valid and those that do not.

Third, enforce your architectural decisions. Many software projects get software architects

involved only in the design phase, then they move to other projects or the consultation contract

ends. How can they ensure that their deliberate architectural decisions have been implemented

correctly? Their decisions will be at best good intentions unless they follow-through with them.

Finally, delegate some decision making to others who are experts in a problem domain. Many

architects wrongly assume they have to make every architectural decision. Therefore, they

position themselves as a know-it-all expert. In reality, there‘s no such thing as a universal

technical genius. Architects have areas in which they are quite proficient, areas in which they are

knowledgeable, and areas in which they are simply incompetent. Adept architects delegate

decisions about domain problems in which they are not proficient.

by Yi Zhou

80. Don’t Be a Problem Solver

With some exceptions, architects used to be developers. Developers get rewarded for solving

programming problems, which are more local in scope than architectural problems. Many

programming problems are small, tricky, algorithmic problems. Such problems are frequently

presented in programming interviews, books, and university courses as if the problems exist in a

vacuum. The trickiness is alluring and seductive. Over time, we begin to accept such problems

out of hand. We do not ask if this problem is meaningful, or interesting, or useful, or ethical. We

are not rewarded for considering the relation of this problem to a larger landscape. We are

trained to focus only on our solution, which is aggravated by the fact that solving hard problems

is hard. We leap into action in programming interviews, which often begin by presenting us with

some number of jelly beans we are meant to sort according to an arbitrary set of constraints. We

learn not to question the constraints; they are a pedagogical tool, intended to lead us to discover

what the teacher or interviewer or mentor already knows.

 Architects and developers learn to enter problem-solving mode immediately. But sometimes the

best solution is no solution. Many software problems need not be solved at all. They only appear

as problems because we look only at the symptoms.

 Consider managed memory. Developers on managed platforms have not solved memory

problems, nor could many of them do so if required; part of their solution means that they mostly

just don‘t have that problem.

 Consider complex builds that require lots of interconnected scripts requiring the enforcement of

many standards and conventions. You could solve that problem, and it would feel great to get it

all to work, putting your best scripting skills and best practices to work. Our colleagues will be

impressed. No one is impressed by us not solving a problem. But if we can step back, and figure

out that we aren‘t solving a build problem but rather an automation and portability problem, this

might lead you to a tool that abstracts it away.

 Because architects tend to immediately enter problem-solving mode, we forget, or rather have

never learned how, to interrogate the problem itself. We must learn, like a telephoto lens, to

zoom in and zoom out, in order to ensure the question is really framed properly, and that we‘re

not merely accepting what we‘re given. We must not be passive receptacles for requirements,

cheerfully ready at our post, handing out our smartest solutions in the manner of a Pez dispenser.

 Instead of immediately working to solve the problem as presented, see if you can change the

problem. Ask yourself, what would the architecture look like if I just didn't have this problem?

This can lead ultimately to more elegant and sustainable solutions. The business problem still

does need to be solved, but not, perhaps, as immediately suggested.

We have to break our addiction to ―problems‖. We love to get them, seeing ourselves on a

European bridge, as if we are secret agents who‘ve just been handed a self-destructing brown

envelope containing our mission. Before considering your answer to a problem, think what the

world would look like if you just didn‘t have this problem.

By Eben Hewitt

81. Choose your weapons carefully,

relinquish them reluctantly

As a seasoned veteran of software design and implementation, every architect is armed with an

array of weapons they‘ve used with repeated success. For one reason or another, these

technologies have found favor and bubbled to the top of our list of preferred solutions. Most

likely they‘ve earned their rightful place in your arsenal by defeating fierce competition. Despite

this, a barrage of new technologies constantly threatens their position. We are often compelled

to lay down our weapons of choice for these new alternatives but don‘t be too quick to dismiss

your trusty armaments. To cast them aside for alternatives that haven‘t been proven through

similar trials is a risky proposition.

This doesn‘t mean that once established on our list of favorites a technology is granted infinite

tenure and it certainly doesn‘t mean that you can bury your head in the sand and ignore

advancements in software development. For each technology the time will come when it needs

to be replaced. Technology moves quickly and superior solutions are on the way. As architects

we need to stay abreast of industry trends, we just don‘t need to be the first to embrace fledgling

technology. There‘s usually no huge advantage to being the first to adopt new technology but

there can be several drawbacks.

To justify the risk involved with selecting new technology its benefits should be a quantum leap

forward. Many new technologies claim such advancement but few deliver it. It‘s easy to look at

new technology and see technical advantages but those benefits are often difficult to sell to

stakeholders. Before you decide to blaze a trail with new technology, ask yourself how the

business will benefit from this decision. If the best outcome from a business perspective is that

no one will notice, rethink your decision.

Another important thing to acknowledge is cost associated to the shortcomings of new

technology. These costs can be high and are difficult to calculate. When you‘re working with

familiar technology you‘re aware of its idiosyncrasies. It‘s naïve to think that a new technology

won‘t come with its own collection of pitfalls. Adding problems that you haven‘t solved before

will destroy your estimates. You‘re far more aware of the costs involved when implementing

solutions using familiar technology.

One last thing to consider is future relevance. It would be nice if we could simply identify and

select superior technologies but things aren‘t quite that simple. Great technologies don‘t always

win. Trying to predict the winners early is a gamble that doesn‘t yield a large payoff. Wait for

the hype to die down and see if the technology settles into a space of usefulness. You‘ll find

many just go away. Don‘t jeopardize your project for a technology that doesn‘t have a future.

Selecting the technologies we use to attack problems with is a large part of the software

architect‘s job. Choose your weapons carefully and relinquish them reluctantly. Let your past

success help to ensure future success and evolve your technology stack cautiously.

Chad LaVigne

http://97-things.near-time.net/forum/wiki/chad-lavigne

82. Your Customer is Not Your Customer

As you work in requirements meetings to design software, pretend that your customer is not your

customer. It turns out that this is a very easy thing to do, because it is true.

Your customer is not your customer. Your customer‘s customer is your customer. If your

customer's customer wins, your customer wins. Which means you win.

If you're writing an ecommerce application, take care of the things that you know people who

will shop at that site will need. They'll need transport security. They'll need encryption of stored

data. Your customer may not mention these requirements. If you know that your customer is

leaving out things your customer's customer will need, address them, and communicate why.

If your customer willingly and knowingly doesn't care about certain important things that your

customer's customer cares about—as happens from time to time—consider stepping away from

the project. Just because Sally Customer doesn't want to pay for SSL every year and wants to

store credit cards in plain text because it costs less to build, it's not okay to just agree. You're

killing your customer's customer when you agree to work you know is a bad idea.

Requirements gathering meetings are not implementation meetings. Forbid the customer‘s use of

implementation-specific terms unless it's an absolute, or well-understood problem. Allow your

customer to express only the Platonic ideal, his concept and goals, rather than dictating a solution

or even using technical terms.

So how do you maintain such discipline in these meetings, which can be deceptively difficult?

Remember to care for your customer‘s customer. Remember that while your customer is writing

your check, you must be clear that you need to honor best practices, so that you can make what

the customer really needs, not just what they say they need. Of course, this takes lots of

discussion, and clarity as to exactly what you‘re doing and why.

Perhaps, as with so many things in life, this is best clarified by a poem. In 1649, Richard

Lovelace wrote "To Lucasta, on Going to the Wars". It ends with the line: ―I could not love thee,

dear, so much, / Loved I not honor more.‖

We cannot love our customers so much, love we not their customers more.

By Eben Hewitt

83. It will never look like that

It will never look like that. It is all too easy to fall into the trap of investing large amounts of

time in a design and being confident that the implementation will come out the same. A detailed

design can easily fool you into believing you have every angle covered. The greater the detail

and the more in-depth the research the greater your confidence in it. But it is an illusion: it will

never look like that.

The truth is no matter how in-depth, how well researched and how well thought out your design

it will never come out looking the same as in your head. Something will happen, an external

factor may effect the design: incorrect information, a limitation, an odd behaviour in someone

else's code. Or you may have got something wrong: an oversight, an incorrect presumption, a

subtle concept missed. Or something will change; the requirements, the technology, or someone

may just find a better way(TM).

Those minor alterations in the design soon stack up and lots of minor alterations soon require

that one big one has to be made. Before long your original concept is on the floor in pieces and

its back to the drawing board. You decide what you needed was more design, more detail, so

back you go and the next architectural vision is clearer, more radical, more perfect than the last.

But before long the same thing happens, those changes start to appear and shift your design and

developers keep shoving in more and more stuff trying their best to work around the broken

design but just breaking it more and you end up screaming "of course it's got bugs; it was never

designed to do that!".

Design is a discovery process, as we implement we discover new information, often impossible

to know up front. By accepting that design is an ongoing and empirical process in a forever

changing world, we learn that the design process must be flexible and ongoing too. Clinging

onto your original designs and trying to force them through is only going to end up with one

result so you need to learn to understand that it will never look like that.

By Peter Gillard-Moss

84. Choose Frameworks that play well

with others

When choosing software frameworks as a basis of your system,

you must consider not only the individual quality and features of each framework,

but also how well the set of frameworks that make up your system will

work together, and how easy it will be to adapt them to new software you may

need to add as your system evolves. This means you must choose frameworks that do not

overlap and that are humble and simple and specialized.

It will be best if each framework or 3rd party library addresses

a separate logical domain or concern, and does not tread into

the domain or concern of another framework you need to use.

Make sure you understand how the logical

domains and concerns addressed by your candidate frameworks overlap. Draw a Venn diagram if

you need to. Two data models that overlap substantially in domain, or two

implementations that address very similar concerns but in slightly

different ways, will cause unnecessary complexity: the slight differences

in conceptualization or representation must be mapped or patched with kludgy glue code.

Chances are you'll end up not only with complex glue, but also with the

lowest-common-denominator of the functionality or representative power of

the two frameworks.

To minimize the chance that any given framework

will overlap with another framework, choose frameworks that have a

high utility to baggage ratio, in the context of your system requirements.

Utility is the functionality or data representation that your project needs

from the framework. Baggage is the framework's sweeping, all-encompassing,

I'm-in-charge view of the world. Does it insist on mixing data representation and

control? Does its data model or set of packages and classes extend well beyond

what your system needs? Do you have to become a fundamentalist in the framework's

religion, and limit your choices of other frameworks to those of the correct

denomination? Does its excess complexity limit the kinds of things you can mix

with it? If a framework comes with lots of baggage, then that it had also

better be providing 75% of the functionality value in your project.

Your system should be comprised of mutually exclusive frameworks, each

of which may be a master of its domain, but which is also simple, humble,

and flexible.

by Eric Hawthorne

http://97-things.near-time.net/wiki/eric-hawthorne

85. Make a strong business case

As a software architect, have you had a hard time getting your architecture project well funded? The benefits of

software architecture are obvious for architects, but are mythical for many stakeholders. Mass psychology tells us

that ―seeing is believing‖ is the strongest belief for most people. At the early phase of the projects, however, there is

little to demonstrate to convince stakeholders of the value of sound software architecture. It‘s even more challenging

in the non-software industries where most stakeholders have little software-engineering knowledge.

 Mass psychology also shows that most people believe in ―perception is reality.‖ Therefore, if you can control how

people perceive the architectural approach you propose, it‘s virtually guaranteed that you control how they will react

to your proposal. How can you mange stakeholders‘ perceptions? Make a strong business case for your architecture.

People who have the budget authority to sponsor your ideas are almost always business-driven.

 I have employed the following five steps to generate solid business cases to successfully sell my architectural

approach many times in my career:

 Establish the value proposition. The value proposition is your executive summary of why your

organization‘s business warrants a particular software architecture. The key for this is to compare your

architectural approach with existing solutions or other alternatives. The focus should be put on its

capability to increase the productivity and efficiency of the business, rather than how brilliant the

technologies are.
 Build metrics to quantify. The values you promise to deliver need to be quantified to a reasonable extent.

The more you measure, the more you can bolster your case that sound architecture will lead to a substantial

return. The earlier you establish metrics, the better you manage people‘s perceptions that help you sell

responsible architecture.
 Link back to traditional business measures. It would be ideal if you can translate your technical analysis

into dollar figures. After all, the only constant parameter in the traditional business measures is money.

Find business analysts as your partners if you are not comfortable with financial work.
 Know where to stop. Before you know where to stop, you need to prepare a roadmap that captures a vision

with each milestone on it tied directly to business values. Let the stakeholders decide where to stop. If the

business value for each momentum is significant, you‘re most likely to get continued funding.
 Find the right timing. Even if you follow the above four steps to generate a solid business case, you may

still not be able to sell your ideas if you pick the bad timing. I remember one of my proposals did not get

approved for a long time until another project turned out to be a total failure because of poor architectural

design. Be smart on timing.

by Yi Zhou

86. Pattern Pathology

Design patterns are one of the most valuable tools available to the software architect. Using

patterns allows us to create common solutions that are easier to communicate and understand.

They are concepts that are directly associated with good design. This fact can make it very

enticing to demonstrate our architectural prowess by throwing a lot of patterns at a project. If

you find yourself trying to shoehorn your favorite patterns into a problem space where they don‘t

apply, you may be a victim of pattern pathology.

Many projects suffer from this condition. These are the projects where you envision the original

architect looking up from the last page in his patterns book, rubbing his hands together and

saying ―Now, which one will I use first!?‖. This mentality is somewhat akin to that of a

developer who begins writing a class with the thought ―hmmm, what class should I extend?‖.

Design patterns are excellent tools for mitigating necessary complexity but like all tools, they

can be misused. Design patterns become a problem when we make them the proverbial hammer

with which we must strike every nail. Be careful that your appreciation for patterns doesn‘t

become an infatuation that has you introducing solutions that are more complicated than they

need to be.

Stamping patterns all over a project unnecessarily is over-engineering. Design patterns are not

magic and using them doesn‘t automatically qualify a solution as good design. They are reusable

solutions to recurring problems. They have been discovered and documented by others to help

us recognize when we‘re looking at a wheel that‘s already been invented. It‘s our job to identify

problems solved by these solutions when they arise and apply design patterns appropriately.

Don‘t let your desire to exhibit design pattern knowledge cloud your pragmatic vision. Keep

your sights focused on designing systems that provide effective business solutions and use

patterns to solve the problems they address.

by

Chad LaVigne

http://97-things.near-time.net/show/chad-lavigne

87. Learn a new language

To be successful as an architect, you must be able to make yourself understood by people who

don‘t speak your native tongue. No. I‘m not suggesting you learn Esperanto or even Klingon, but

you should at least speak basic Business, and Testing. And, if you aren‘t fluent in Programmer,

you should make that a top priority.

If you don‘t see the value in learning other languages, consider the following scenario. The

business people want a change made to an existing system, so they call a meeting with the

architect and programmers to discuss it. Unfortunately, none of the technical team speaks

Business and none of the business people speak Programmer. The meeting will likely go

something like this:

 A business person talks for a minute about the need for a relatively simple enhancement

to an existing product, and explains how making the change will enable the sales team to

increase both market and mind share.

 While the business person is still speaking, the architect starts sketching some kind of

occult symbols on a notepad and enters into quiet argument with the one of the

programmers in their strange multi-syllabic tongue.

 Eventually the business person finishes and looks expectantly at the architect.

 After the whispered argument completes, the architect walks to the whiteboard and

begins drawing several complex diagrams that are supposed to represent multiple views

of the existing system while explaining (in complex technical terms) why the requested

enhancement is virtually impossible without major changes and may actually require a

complete redesign/rewrite of the entire system.

 The business people (who understood little of the diagram and less of the explanation) are

openly stunned and find it hard to believe that something so simple would require such

massive changes. They begin to wonder if the architect is serious or just making things up

to avoid making the change.

 Meanwhile, the architect and programmers are just as surprised that the business people

don‘t see how the ―minor‖ change will require major modifications to the core system

functionality.

And therein lies the problem. Neither group understands how the other thinks, or what half of the

words they use means. This leads to mistrust and miscommunication. It‘s a basic psychological

principle that people are more comfortable with those who are similar to them as opposed to

those who are different from them.

Imagine how the above scenario might change if the architect were able to explain the issues to

the business folk in terms they understand and relay the business issues to the programmers in

terms they understand. Instead of surprise and mistrust, the result would be agreement and

approval.

I‘m not saying that learning multiple languages will cure all your problems, but it will help

prevent the miscommunications and misunderstandings that lead to problems.

For those of you who decide this makes sense, I wish you success on your journey. Or, as the

Klingons say, Qapla!

by Burk Hufnagel

http://97-things.near-time.net/wiki/burk-hufnagel

88. Don't Be Clever

General intelligence, resourcefulness, thoughtfulness, a breadth and depth of knowledge, and an affinity for

precision are laudable qualities in anyone, particularly prized in architects.

 Cleverness, however, carries a certain additional connotation. It implies an ability to quickly conceive of a solution

that may get you out of a jam, but that ultimately rests on a gimmick, a shell game, or a switcharoo. We remember

clever debaters from high school--always able to play semantics or work the logical fallacies to win the point.

Clever software is expensive, hard to maintain, and brittle. Don't be clever. Be as dumb as you possibly can and still

create the appropriate design. The appropriate design will never be clever. If cleverness appears absolutely required,

the problem is incorrectly framed; reset the problem. Reframe it until you can be dumb again. Work in rough chalk

sketches; stay general. Let go of the flavor of the day. It takes a smart architect to be dumb.

It is our cleverness that allows us to trick software into working. Don't be the attorney who gets your software off on

a technicality. We are not Rube Goldberg. We are not MacGyver, ever-ready to pull some complicated design out of

our hats having been allowed only a paper clip, a firecracker, and a piece of chewing gum. Empty your head and

approach the problem without your extensive knowledge of closures and generics and how to manipulate object

graduation in the heap. Sometimes of course, such stuff is exactly what we need. But less often than we might think.

More developers can implement and maintain dumb solutions. In dumb solutions, each component can only do one

thing. They will take less time to create, and less time to change later. They inherit optimizations from the building

blocks you're using. They emerge from the page as a living process, and you can feel their elegance and simplicity.

Clever designs will stay stubbornly rooted; their details are too embroiled in the overall picture. They crumble if you

touch them.

By Eben Hewitt

89. Build Systems to be Zuhanden

We build tools. The systems that we make have no other reason to exist (nor we to get paid) than

to help someone, usually someone else, do something.

Martin Heidegger, an influential German philosopher of the 20th Century, explored the ways that

people experience tools (and more generally "equipment") in their lives. People use tools to

work towards a goal and the tool is merely a means to an end.

During successful use a tool is zuhanden ("ready-to-hand", having the property of "handiness").

The tool is experienced directly, it is used without consideration, without theorisation. We grasp

the tool and use it to move towards our goal. In use, it vanishes! The tool becomes an extension

of the user's body and is not experienced in its own right. One sign of a tool being zuhanden is

that it becomes invisible, unfelt, insignificant.

Consider what it feels like to hammer a nail or to write with a pen. Think about that immediacy.

Think about the way the tool seems to be a seamless extension of your body.

Alternatively, and usually when something has gone wrong with it, the user may experience a

tool as vorhanden ("present-at-hand"). The tool is isolated from the goal, it lies before us

demanding attention. It becomes a topic of investigation in its own right. The user is no longer

able to proceed towards their goal but must deal first with the tool, without it doing anything to

move them towards their goal. As technologists we tend to experience the systems we build for

users as vorhanden while we build them, and again when we receive defect reports. For us, the

tool is quite properly an object of enquiry, of theorising, of investigation. It is a thing to be

studied.

However, it is crucial to their success that the users experience the tools we build for them as

zuhanden. Are your systems architected to be invisible in use? Does the user interface fall

naturally to hand? Or do your systems keep demanding attention, distracting users from their

goal?

By Keith Braithwaite

http://97-things.near-time.net/wiki/keith-braithwaite

90. Find and retain passionate problem

solvers

Putting together a team of outstanding developers is one of the most important things you can do

to ensure the success of a software project. While the concept of keeping that team together does

not seem to get as much lip service, it is equally important. Therefore, you need carefully select

your development team and diligently protect it once assembled.

Most people probably agree that finding top-notch developers requires thorough technical

interviewing. But what does thorough mean exactly? It doesn‘t mean requiring candidates to

answer difficult questions about obscure technical details. Screening for specific technical

knowledge is definitely part of the process but turning an interview into a certification test will

not guarantee success. You are searching for developers with problem solving skills and

passion. The tools you use are sure to change; you need people who are good at attacking

problems regardless of the technologies involved. Proving someone has the ability to recite

every method in an API tells you very little about their aptitude or passion for solving problems.

However, asking someone to explain their approach to diagnosing a performance problem gives

you great insight into their methods for problem solving. If you want to learn about developer‘s

ability to apply lessons learned, ask what they would change given the chance to start their most

recent project anew. Good developers are passionate about their work. Asking them about past

experience will bring out that passion and tell you what correct answers to technical trivia

questions cannot.

If you have been diligent in staffing a strong team, you want to do whatever is within your power

to keep the team together. Retention factors such as compensation may be out of your hands but

make sure you‘re taking care of the little things that help to foster a healthy work environment.

Good developers are often strongly motivated by recognition. Use this fact to your advantage

and acknowledge stellar performances. Finding great developers is difficult. Letting people

know they are valued is not. Don‘t miss simple chances to build morale and boost productivity.

Be careful with negative re-enforcement. Too much of it may stifle a developer‘s creativity and

reduce productivity. Worse yet, it‘s likely to create dissension among the team. Good

developers are smart; they know they‘re not wrong all of the time. If you‘re picking apart the

minutia of their work, you‘ll lose their respect. Keep criticism constructive and don‘t require

that every solution look like it came from you.

The importance of staffing your development team correctly can‘t be overstated. These are the

people who do the heavy lifting. When it comes to estimates, they‘re all treated as equal

producers. Make sure it‘s tough to crack the starting lineup and once you‘ve got a winning team

go the extra mile to keep it together.

by Chad LaVigne

http://97-things.near-time.net/show/chad-lavigne

91. Software doesn’t really exist

Software engineering is often compared to well-established disciplines such as civil engineering.

There‘s a problem with these analogies; unlike the very tangible products created by these

traditional practices, software doesn‘t really exist. Not in the traditional sense anyway. Those of

us in the world of ones and zeroes aren't constrained by the same physical rules that bind classic

engineering paradigms. While applying engineering principles to the software design phase

works well, assuming you can implement the design in the same manner used by more traditional

engineering approaches is unrealistic.

Both business and software are living, moving entities. Business requirements change rapidly

due to things like newly acquired business partners and marketing strategies. This makes it very

difficult to approach a software project in the same manner as a traditional engineering pursuit

such as bridge construction. It is highly unlikely that you'll be asked to move the location of a

bridge halfway through a construction project. However, it is very likely that the acquisition of a

business partner will require you to add support for organization-based content management to

an application. This comparison should put things into perspective. We often say that software

architecture decisions are difficult to change but not nearly so much as things that are literally

and figuratively set in stone.

Knowing the products we build are pliable and that the requirements surrounding them are likely

to change puts us in a different position than someone building an immovable object.

Engineering endeavors of the physical flavor are much easier to implement in a "plan the work,

work the plan" nature. With software things need to be tackled in more of a "plan the work,

massage the plan" fashion.

These differences aren‘t always bad news, at times they can be advantageous. For example,

you're not necessarily constrained to building the components of a software system in a specific

order so you can tackle high-risk issues first. This is in direct contrast to something like bridge

construction where there are many physical limitations surrounding the order in which tasks are

accomplished.

However, the flexibility of software engineering does present some issues, many of which are

self-imposed. As architects we are very aware of the "soft" nature of our craft and we like to

solve problems. Worse yet, the business owners are vaguely aware of these facts. This makes it

easy for them to push big changes. Don‘t be too eager to accommodate large architectural

changes just because it appeals to your solution-providing nature. Decisions like that can break

an otherwise healthy project.

Remember that a requirements document is not a blueprint and software doesn‘t really exist.

The virtual objects that we create are easier to change than their physical world counterparts,

which is a good thing because many times they‘re required to. It‘s ok to plan as though we‘re

building an immovable object; we just can't be surprised or unprepared when we‘re asked to

move said object.

by Chad LaVigne

http://97-things.near-time.net/show/chad-lavigne

92. Pay down your technical debt

On any project that is in production (i.e. it has customers that are using it), there will come a time

when a change must be made; either a bug needs fixing, or a new feature must be added. At that

point there are two possible choices; you can take the time needed to "do it right", or you can

take one or more "shortcuts" and try to get the change out the door sooner.

Generally,the business people (sales/marketing and customers) will want the change made as

quickly as possible while the developers and testers will be more interested in taking the time to

properly design,implement, and test the change before delivering it to the customers.

As the project's architect you'll have to decide which makes more sense and then convince the

decision makers to take your advice; and as with most architectural issues there is a trade-off

involved. If you believe the system is reasonably stable then it may make sense to go the "quick

and dirty" route and get the change into production quickly. That's fine, but you need to know

that in doing so your project is incurring some "technical debt" which must be repaid later.

Repayment, in this case, means going back and making the change in the way you would have if

you'd had the time and resources to do it right the first time.

So why the concern over making changes properly now versus later? It's because there's a hidden

cost to making these quick and dirty fixes. For financial debts the hidden cost is called "interest"

and most anyone with a credit card knows how expensive just paying the interest on a debt can

be. For technical debt, interest takes the form of instability in the system, and increased

maintenance costs due to the hacked in changes, the lack of proper design, documentation,

and/or tests. And, like financial interest, regular payments must be made until the original debt is

repaid.

Now that you understand a bit more about the true cost of technical debt, you might decide the

price is too high and you can't afford the cost. But when it's a choice between having the

developers get the fix out as quickly as possible or taking a severe financial hit, it generally

makes sense to get the fix out quickly. So take the hit and get the change into production ASAP,

but don't stop there.

Once the fix is in production, have the developers go back and fix it properly so that it can be

included in the next scheduled release. This is the equivalent of charging something on your

credit card and then paying off the balance at the end of the month so you don't get charged

interest. This way you can provide the fast changes the business needs, while keeping your

project out of debtor's prison.

by Burk Hufnagel

93. You can't future-proof solutions

Today's solution is tomorrows problem

No one can predict the future. If you accept this as a universal truth, than the question becomes

how far ahead is the future? One decade? Two years? Twenty minutes? If you can‘t predict the

future than you can‘t predict anything beyond right now. This very moment and the ones that

preceded it are all you are know until the next moment occurs. This is the reason we have car

accidents – if you knew you were going to have an accident on Thursday you would probably

stay home.

Yet we see software architects try to design systems that will be, for lack of a better term, "future

proof" all the time. It‘s simply not possible to future proof an architecture. No matter what

architectural decision you make now, that choice will become obsolete eventually. The cool

programming language you used will eventually become the COBOL of tomorrow. Today‘s

distributed framework will become tomorrows DCOM. In short, today‘s solution will always be

tomorrow‘s problem.

If you accept this fact, that the choices you make today will most certainly be wrong in the

future, than it relieves you of the burden of trying to future proof your architectures. If any

choice you make today will be a bad choice in the future than don‘t worry about what the future

will hold, choose the best solution that meets your needs today.

One of the problems architects have today is analysis paralysis and a big contribution to that

problem is trying to guess the best technology for the future. Choosing a good technology for

right now is hard enough, choosing one that will be relevant in the future is futile. Look at what

your business needs now. Look at what the technology market offers now. Choose the best

solution that meets your needs now because anything else will not only be wrong choice

tomorrow, but the wrong choice today.

By Richard Monson-Haefel

http://97-things.near-time.net/wiki/Richard%20Monson-Haefel

94. The User Acceptance Problem

People aren‘t always happy about new systems or major upgrades. This can pose a threat to the

successful completion of a project.

It‘s not uncommon for people to disagree with the decision to implement a new system -

especially at the beginning. This should be expected and the reasons noted. However, initial

reactions to a new system is less of a concern than a sustained negative reaction.

Your goal as an Architect is to be aware of and measure the threat of acceptance problems and

work towards mitigating those threats. To do this you have to be cognizant of them and consider

the reasons for them. Some of the more common reasons are:

1. People may have concerns about the need for a new system (and subsequent retirement

of an old system). This can also include fear of loosing functionality or loosing influence or

power when roles change.

2. People fear new (unproven) technology.

3. People have cost/budget concerns

4. People simply do not like change.

Each of these reasons requires different possible solutions. Some of which you can address and

others you can't. You have to recognize the difference and deal quickly with those that you can.

Start early, having discussions with your end users about the new system and its real and

perceived benefits and disadvantages. The most effective long term solution is to use the design

of the system itself to address the concerns. Other effective solutions include training, scheduled

system demonstrations (early in the project lifecycle) and sharing knowledge of what users will

get with a new system.

A ―Project Champion‖ can help avoid user acceptance problems. Ideally this should be a person

that represents the user group or stakeholders. They sometimes have to be convinced themselves.

If there is none then push for one from the very beginning. Once you've recruited a Project

Champion, give them your assistance in every way you can.

Norman Carnovale

http://97-things.near-time.net/norman-carnovale

95. The Importance of Consommé

A consommé is an extremely clarified broth, usually made with beef or veal, served as a delicate

soup. A well-made consommé is perfectly clear. It is considered challenging and time-

consuming to make, because there is only one way to remove the fat and other solids that cloud

the broth, and gain the absolute clarity the dish requires: repeated, simple, fine-grained straining.

This straining again and again, this hyper-conscious refining of the mixture, creates an intensely

rich flavor. It‘s as if to taste a consommé is to taste the very essence of a thing. That is, in fact,

the point of the dish.

In culinary schools in America, a simple test is administered to student chefs making consommé:

the teacher drops a dime into your amber broth; if you can read the date on the dime resting at

the bottom of the bowl, you pass. If you can't, you fail.

Software architecture requires a continual refinement of thought, a repeated straining of ideas

until we have determined the essence of each requirement in the system. We ask, like Hamlet

holding Yorick‘s skull, what is this thing? What are its properties? Its relations? We clarify our

concepts, to make the relations within the architecture verifiably true, internally consistent.

Many missed requirements and bugs in software can be traced to ambiguous, general language.

Ask customers, developers, analysts and users the same questions repeatedly, until they are

drowsy with boredom. Now disguise your question to pose it in a different way, like an attorney

looking for a snag in the alibi, to tease out anything new, any differences or contradictions.

Strain and strain again.

Focus on what can be removed from the concepts presented in the architecture, the nouns that

compose them, to determine their essence. Bring surgical precision to the language you find in

your requirements, rejecting ambiguity, generality, unwarranted assumptions, or extraneous

verbiage. This serves to make your concepts richer, more robust. Reduce and reduce again.

Test statements by asking ―Would you make the same statement if I appended ‗always and

forever and in every circumstance‘ to it?" People resist committing to absolutes like this, and

must refine their words. Force representations of concepts through a linguistic sieve to clarify

them. Do this again, until you are left with only the exhaustive list of simple and verifiably true

statements that describe the essential nature the system.

You'll know when the architecture is finished: when you can look through it and read the date on

a dime.

By Eben Hewitt

http://97-things.near-time.net/wiki/eben-hewitt

96. For the end-user, the interface is the

system

There are too many good products hidden behind bad user-interfaces. The end-user will access

the system through its user interface. If the quality of the user's experience while interacting with

your product suffers, then his impression of your product will suffer, no matter how

technologically advanced and path-breaking your product might be.

The user interface is an important component of architecture and an often-neglected one. The

Architect should enlist the services of specialists such as user experience designer and usability

experts. The user interaction experts along with the architect can drive the interface design as

well as its coupling with the internal mechanisms. Involving user-interface experts at an early

stage and throughout the product development phases ensures that the final product is polished

and the integration of the user interface with the product is seamless. The Architect should also

look at doing user-interaction testing while the product is still in beta with actual end-users and

incorporate their feedback into the final product.

Often the usage of a product changes over time as technology changes and features are added.

The Architect should ensure that user-interface changes with the architecture reflecting the

expectations of the users.

User-interactions should be one of the goals of the complete product architecture. In fact user-

interaction should be an integral part of the decision-making process for architecture trade-offs

and internal product documentation as much as robustness and performance. Changes in user-

interaction design should be captured over time, just like code. This is especially true in products

where the user-interface is written in a different programming language than the rest of the

product.

It is the architect's responsibility to make the most common interactions not only easy but also

rewarding for the end-user. Better user-interfaces lead to happier customers , which helps

improve customer productivity. If your product helps people become more productive then it will

contribute to the business' bottom-line.

By Vinayak Hegde

http://97-things.near-time.net/wiki/vinayak-hegde

97. Great software is not built, it is grown

As an architect you are tasked with providing the initial structure and arrangement of software

systems that will grow and change over time, will have be to reworked, will have to talk to other

systems, and almost always in ways you and your stakeholders did not foresee. Even though we

are called architects, and we borrow many metaphors from building and engineering, great

software is not built, it is grown.

The single biggest predictor of software failure is size; on reflection there's almost no benefit to

be had from starting with a large system design. Yet at some point we will all be tempted to do

exactly that. As well as being prone to incidental complexity and inertia, designing large systems

upfront means larger projects, which are more likely to fail, more likely to be un-testable, more

likely to be fragile, more likely to have unneeded and unused parts, more likely to be expensive,

and more likely to have a negative political dimension.

Therefore resist trying to design a large complete system to "meet or exceed" the known

requirements and desired properties, no matter how tempting that might be. Have a grand vision,

but not a grand design. Let you and your system learn to adapt as the situation and requirements

inevitably change.

How to do this? The best way to ensure a software system can evolve and adapt is to evolve and

adapt it from the very outset. Inducing a system to evolve means starting with a small running

system, a working subset of the intended architecture - the simplest thing that could possibly

work. This nascent system will have many desirable properties and can teach us much about the

architecture that a large system, or worse, a collection of architectural documents never can. You

are more likely to have been involved in its implementation. Its lack of surface area will be easier

to test and therefore less prone to coupling. It will require a smaller team, which will reduce the

cost of coordinating the project. Its properties will be easier to observe. It will be easier to

deploy. It will teach you and your team at the earliest possible moment what does and does not

work. It will tell you where the system will not evolve easily, where it is likely to crystallize,

where it is fragile. Where it might break. Perhaps most important, it will be comprehensible and

tangible to its stakeholders from the beginning, allowing them to grow into the overall design as

well.

Design the smallest system you can, help deliver it, and let it evolve towards the grand vision.

Although this might feel like giving up control, or even shirking your responsibilities, ultimately

your stakeholders will thank you for it. Do not confuse an evolutionary approach with throwing

requirements out, the dreaded phasing, or building one to throw away.

by Bill de hÓra

