ECE 458
Engineering Software for Maintainability

Project Overview
Tyler Bletsch

Spring 2024
Meet your customer

- Large, industrial-scale food manufacturer
- Shelf stability group runs many hundreds of long-term food safety tests in parallel, currently managed via spreadsheet
- They want a system to organize everything
- Each team is a contractor vying for their business
Example shelf life test scenario

- If you’re making a cereal-based product, you might follow Cereal and Grain Association test methodology 35-01.01 “Guidelines for Shelf-Life Testing of Food and Ingredients for Key Quality Attributes”
 - **Source** (but you don’t have access); our private copy
- Figure 1 of this paper describes a sample experiment:

<table>
<thead>
<tr>
<th>Condition</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>16</th>
<th>24</th>
<th>36</th>
<th>52</th>
<th>Extra</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>70°F 38%</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>73°F 50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>80°F 65%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>100°F 20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 1. Summary of a test protocol for a ready-to-eat (RTE) whole grain breakfast cereal.
Experiment design (1)

- An **experiment** involves a particular food
- Many samples of the food are procured and subjected to different **conditions** (temperature, humidity). Examples:
 - 0 F (frozen, the control group)
 - 70 F, 38% humidity (common storage environment)
 - 73 F, 50% humidity (summer storage environment)
 - 80 F, 65% humidity (tropical shipping conditions)
 - 100 F, 20% humidity (arid shipping conditions)
 - 70 F / 90 F cycling, 65% humidity (day/night effects, tropical)
Experiment design (2)

- At various **time points**, samples are pulled and subjected to one or more **assays** (tests). These may be:
 - **Sensory**
 - Trained human taste testing, usually comparing a test condition against the 0 F frozen control condition
 - Result is rating on a 1-5 scale of difference: 1=same as frozen (good), 5=extremely different (bad)
 - **Chemical**
 - Laboratory test looking for a particular attribute
 - Examples: hexanal presence (measure of rancidity), moisture penetration, more
 - Result is a number with some kind of physics units (e.g. ppm)
Experiment design (3)

- Experiment designs call for different assays of the different conditions at different timepoints. For example:

Standard Storage Study Protocol

RTE Cereal

Time of Sample Pull (Weeks)

<table>
<thead>
<tr>
<th>Condition</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>16</th>
<th>24</th>
<th>36</th>
<th>52</th>
<th>Extra</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>70°F 38%</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>73°F 50%</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>80°F 65%</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>100°F 20%</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Number of Samples Required per Variant is 52

Specific assays

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pull Date ——></th>
<th>Sensory reference</th>
<th>Sensory Hexanal Moisture</th>
<th>Sensory Hexanal Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°F</td>
<td>3 6 9 12 16 24 36 52</td>
<td>Sensory reference</td>
<td>Sensory Hexanal Moisture</td>
<td>Sensory Hexanal Moisture</td>
</tr>
<tr>
<td>70°F 38%</td>
<td>3 6 9 12 16 24 36 52</td>
<td>Sensory Hexanal Moisture</td>
</tr>
<tr>
<td>73°F 50%</td>
<td>3 6 9 12 16 24 36 52</td>
<td>Sensory Hexanal Moisture</td>
</tr>
<tr>
<td>80°F 65%</td>
<td>3 6 9 12 16 24 36 52</td>
<td>Sensory Hexanal Moisture</td>
</tr>
<tr>
<td>100°F 20%</td>
<td>3 6 9 12 16 24 36 52</td>
<td>Sensory Hexanal Moisture</td>
</tr>
</tbody>
</table>

Fig. 1. Summary of a test protocol for a ready-to-eat (RTE) whole grain breakfast cereal.
The software problem

• Experiments take many months to complete, and *many* are going on simultaneously.

• The customer is currently using a bunch of spreadsheets, but is having trouble keeping track of all the experiments

• Key goals for the software we’ll be building:
 • **Starting experiments**: how many samples in what conditions?
 • **Managing experiments**: What experiments are going on, when samples need to be pulled, what assays they need, etc.?
 • **Getting data**: Recording the results of these assays
 • **Generating conclusions**:
 • Generating spreadsheets of the results for analysis by food scientists
 • Generating written reports that identify trends, shelf life projections, etc.