ECE 458
Engineering Software for Maintainability

Introduction and Course Overview
Tyler Bletsch

Spring 2022

(Adapted from work by Drew Hilton)
Welcome to ECE 458: Engineering Software for Maintainability

Your Senior Design Course!
MEET YOUR TAS!

Anshu Dwibhashi

&

TODO: fill in TAS
Evolution!

• You four years ago:

Fig. 1: Freshman year

• You now:

Fig. 2: You now have freaky robot hands I guess??
What this class is about

• Real software has a long lifespan
 • In industry, you might work the same code base for years or decades
• Contrast with code you write in school:
 • Turn it in, forget about it.
• Real world software’s requirements evolve
 • New features
 • Changing requirements
 • ...

Fig. 3: Software is like pokeymans

• How do we design software to ease later changes?
 • Goal of this class: learn this by doing and reflection
What this class is not

• This class is not about learning to program, you know that (well, you better know that...)

• This is not a lecture class
 • These are the first, last, and only slides I’ve prepared
 • You’ve been taught some software engineering skills, but...

• You learn by doing!
Reflection: To take time to think on what you’ve done, critically evaluate how it went, and extract lessons (both positive and negative) from it.

Other courses:
I vomit green swirlies at you.

This course:
You produce your *own* green swirlies.
What are we doing?

- One semester long project:
 - Requirements staged into 4 evolutions.
 - Changes will usually be substantive restructuring of core ideas:
 Not “add this form”, but “change what this concept means”

- After each evolution, submit a report. Major parts:
 - Retrospective (analysis of past design choices):
 - Forward looking evaluation (analysis of current design):
Where’s all the stuff??????

It’s here:

https://people.duke.edu/~tkb13/courses/ece458/
Project groups

- You will do your project in groups of 4
 - Pick carefully: fixed for the semester

- Considerations:
 - Language/framework choices
 - Note: subject of next discussion
 - Other tool choices
 - Revision control, ...
 - Skills and expertise
 - Ideal: strong skills, complimentary expertise

- End of class: find groups, start planning ev1

Fig. 5: All the best groups have four members
Project reports

• No specific page limit/requirement
 • Say what you need to say. Don’t say more, don’t say less.
• Expect document to be
 • Well-written: Organized, clear, precise. Include figures if they help
 • Analytical:
 • Delve into why your design is/was good/bad
 • Tell me what was bad, and how it could have been better (Hindsight is 20/20)
 • Include discussion of testing plan (part of design)
• Include:
 • Retrospective (analysis of past design choices):
 • How did your past designs set you up to win or struggle?
 • How did these outcomes align with your prior analyses?
 • Forward looking evaluation (analysis of current design):
 • What are its key features? Why did you design it this way?
 • What do you see as its strengths?
 • How about its weaknesses?

See course site for full details and rubric!
A report R_n for evolution E_n gives an evaluation of the design in evolution E_n \textit{and} a retrospective on evolution E_{n-1}.

Evolution 4’s report is special: it has a retrospective that covers the whole project in addition to just evolution 3.
Oral Presentations

• Day that evolutions are due: oral presentations
 • Each group members presents once
• 10 minutes per group
 • The *seemingly least prepared* group goes first!
 • Have your AV and laptop crap sorted out!
• Rough outline (2—3 min each)
 • Quick demo of working project
 • Retrospective from previous evolution
 • Overview of current design
 • Analysis of current design (include: why, strengths, weaknesses)

See course site for full details and rubric!

Fig. 6: WikiHow illustrations will never stop being hilarious.
1. **Class discussions**
 - Topics posted on class webpage (all posted now)
 - Some topics have readings – you need to read it before you come
 - Prepare ~1-2 pages of outline/notes on discussion, turn in at end
 - The notes are NOT a summary of the reading, but your thinking on the whole of the topic (reactions, opinions, questions, etc.).

2. **Workdays**
 - Work with your group on your project
 - I’ll circulate around, answer questions, offer advice, etc.
 - Includes **standup meeting**: teams go over status, blockers, and open questions publicly.

3. **Presentation day**
 - If presenting: present. Else: support your group!

4. **Reflection day**
 - Session after a due date
 - Reflect on work so far, discuss newly released requirements
Ask questions, please!

• Discussions are a great place to ask questions!
• In the past, students reported that they felt intimidated to ask about concepts that were introduced in discussion
 • But it turns out it was MOST students who felt this way!

• **Imposter Syndrome**: The phenomenon wherein “high-achieving individuals are marked by an inability to internalize their accomplishments and a persistent fear of being exposed as a ‘fraud’.”

• Affects 90% of Duke I think... (including myself)
Grading (1)

- **45% software deliverables:**
 - How well did your system meet requirements?
 - Based on a **eval session** and **instructor functional testing**
 - We want to be as objective as possible, but in assessing “quality” without the benefit of a giant spec doc, there will be some subjectivity.
 - The system must actually be *good* from a customer perspective, not merely tick all the boxes.
 - Especially true for problems reported to you that you do not fix!
 - In other words, don’t try to “Air Bud” us.
 - https://www.youtube.com/watch?v=Jvf0WWxrYRM

- **25% written deliverables:**
 - Technical/analytical content: how well did you describe/analyze?
 - Writing: how well written are your documents?
 - Rubric is on course site
Grading (2)

• 10% oral presentation:
 • Each group member does one evolution’s presentation
 • Rubric is on course site posted

• 20% class attendance/participation:
 • Come to class regularly (2 free absences).
 • For discussion:
 • Have your discussion notes prepared (grading: 0, 70, or 100)
 • Actively participate in the discussions
 • For workdays/presentations/reflections:
 • Attend and participate as appropriate

• No exams!
NOW IS THE PART OF THE PRESENTATION WHERE I GIVE YOU ALL THE ANSWERS ABOUT HOW TO DO WELL
Advice from past students: 2018

- In your first evolution: get automated testing done for one thing on your backend. Then in your second evolution: Extend that automated testing to everything else. "I don't automate because I don't have time. I don't have time because I don't automate!" My group fell into this loop, and it would have been really nice if we hadn't.

- Don't procrastinate, communicate with your team effectively, don't be afraid to ask for help from your teammates if you don't know what's happening. Meet your code freezes and spend a lot of time testing, test extensively. Start the evolutions early, just because it seems like you have a lot of time, doesn't mean you actually have a lot of time. Don't be afraid to re-write or re-factor if you think it'll be worth it; saying we already started that way so let's keep going is a bad excuse. Meet with your team frequently, even if it is a quick meeting. Break down the evolutions and assign tasks to specific member instead of letting members pick up tasks as they go, and have a schedule. Finish the blockers first, or else it's a waste of time.

- Logistics is a really big part of this course, so spend at least a day each evolution planning. Good planning will lead to success in the evolution.

- For each evolution, set a code freeze date. But make sure this code freeze date does not include testing and then allow a few days for testing because you will find unexpected bugs right before the deadline. Setting a code freeze date too close to the deadline does not allow enough debugging time.

- Plan out your design well. Although it may feel like you're not making a lot of progress by planning it will pay back over the course of the evolution.

Read all 2018 advice here
Advice from past students: 2019 (1)

- Figure out **team dynamics** early on and be **upfront with your team if you're struggling** to compete something on time. They'd rather know a week in advance and by able to help than find out the night before an evolution is due.

- When choosing your project, do some **research into the features** of your framework before implementing things, and do some research into SQL and NoSQL databases before choosing to use Mongo because it seems easy and popular.

- Good use of your **framework's prebuilt components** and a **well chosen backend database** will make your project better and easier.

- Try to **use warroom coding** whenever you can because it makes integration easier and faster.

- I think **code integration should not be a second step** in the development process after initial creation of features but rather something that's a constant part of all components as you build them.

- You **can't view a feature as working but not integrated** with the backend/frontend, because if it isn't integrated it just doesn't work yet.

- 1. **Know your framework**...
 2. **Communicate with your team.** ...
 3. **Start things early and leave several days for testing and debugging.** ...

Read all 2019-2020 advice [here](#)
This class isn't solely about how well you can code, how cool your features are, how comprehensively you know your stack, or even how good your final product is. This class is about **communication and organization with your group**. There's **no chance you get through this project even without one member of your group**.

You'll notice in later evolutions that decisions you made at the beginning that seemed isolated become very important (and often screw you over), so **take the big picture decisions seriously** and make those decisions as a group.

Don't slow down after evolutions. Those 3 weeks go by much faster than you'd think.

Work hard on evolution 1 so that you won’t have to play catch up on other evolutions.

Test to break, not to validate!

1) **DO NOT MISS YOUR CODE FREEZE**
2) **DO NOT FINISH THINGS 95% OF THE WAY AND LEAVE THE LAST 5% FOR THE CODE FREEZE**
3) **DO NOT PROCRASTINATE CORE ASPECTS OF PROJECT** (things that are blocking ...)
4) **USE A TESTING PLAN/AUTOMATED TESTING DURING CODE FREEZE**...
5) **... DO NOT CODE WHILE DRUNK**
6) **Be nice and respectful to your team ...**

[Read all 2019-2020 advice here]
Advice from past students: 2020 (1)

• As soon as something unexpected happens, *immediately* reach out to your group because you will most likely need to re-plan or shuffle some things around. The later this happens, the more screwed you get.

• **JUST GET STARTED.** Some of the requirements can be so intimidating, but the sooner you start, the more questions you can ask yourself, your team, the internet, etc., and you'll get stuff done faster. I was so afraid to not know what I was doing, this really held me back in the first two evolutions.

 Don't let imposter syndrome get the best of you, especially if you aren't in the group you anticipated to be in. Honestly, for me, I learned so much more than I would have if I were in said group, and retrospectively, I'm glad I had the chance to be in this uncomfortable-at-first experience in order to grow as a human and as a developer.

• **Take pride** in the work you do in this class... Once I forced myself to view the project less as "homework" and more as something that I wanted to be proud of, I found myself able to enjoy it way more.
Advice from past students: 2020 (2)

- (1) Figure out task tracking ASAP.
- (2) Review each other's code!
- (3) Be honest about what skills you want to learn.
- (4) Do your research, but don't over-research.
- (5) If you're not going to do automated testing, then set up a detailed procedure for end to end testing, and stick to it.
- (6) Over-communicate with your team.
- (7) Ask Dr. Bletsch for guidance when you think it might be useful.
- (8) Be ambitious about your code freeze deadline. [ambitious=earlier]

- If there's a global pandemic, make sure to communicate and make efficient use of your time!

- How you start is the best predictor of how you'll finish.

Read all 2019-2020 advice here
Advice from past students: 2021

TODO fill in 2021 advice
so just do all that stuff
and you'll be good
Academic Integrity

• Expect academic integrity from all of you
 • Duke community standard
 • I will not lie, cheat, or steal in my academic endeavors, nor will I accept the actions of those who do
 • I will conduct myself responsibly and honorably in all my activities as a Duke student.

• Concrete rules:
 • Discuss anything you want
 • Give credit where its due if you use other groups’ ideas
 • All code should be produced within your group
 • Don’t share code outside your group
 • Can use libraries for graphics, sound, etc (e.g., SDL) as needed

• Not sure? ASK
Equitable labor rule

- Triggers in the event of a gross imbalance of team member effort (<50% of their share as estimated by the instructor)
 - Instructor may multiply that student's score on group assignments by their estimated contribution.
 - Instructor may distribute points lost in this manner among the other members of the group.

- For cases where a student's contribution is at or near 0%, this may be done without warning, otherwise this action will only be undertaken after significant discussions and a sustained failure to change trajectory over time.

- More details on course site
- I hope to never invoke this rule 😞
Specifics of the Project

- Probably web based, but many specifics are left up to you.
- All 4 evolutions are (almost) already written.
- I will not change them in response to your status. (Some students worried that I'd put in their worst fears)
Requirements

- Requirements will be distributed as PDFs
 - New requirements in blue
 - Changed requirements have old requirements in grey
 - (replacements in blue)

- Unclear on requirements? Ask
 - Happy to clarify anything

- Unspecified requirements/behavior?
 - Do anything reasonable

- Contradiction? Is a requirement stupid?
 - Discuss it in class or on the forum; changes may be possible

- Don’t need to be artistic
 - But it does need to be efficient and usable!
Variance requests

Variance request: A formal process for requesting a change in the requirements for your group.

To submit a variance request, post a Piazza thread with the "variance" tag as well as the appropriate evolution tag. In the body, fill out the following template.

This way we can track variances on a per-group basis easily and get your precise change down in writing. (CAREER TIP: Always get stuff in writing!)

<table>
<thead>
<tr>
<th>Group number: ___</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name: ___</td>
</tr>
<tr>
<td>Requirement number(s) affected: ___</td>
</tr>
<tr>
<td>Requested change: ___</td>
</tr>
<tr>
<td>Rationale: ___</td>
</tr>
</tbody>
</table>
Submission

• Submission of projects by Sakai

• Server:
 • Have at least a dev/test server and a production server
 • **Production server** should only be touched in the week before the evolution is due – otherwise it’s frozen!
 • More details on next slide...
 • Recommend VM from OIT: https://vcm.duke.edu
 • NOT recommended: the various fly-by-night “free” hosting providers
 • Students have been screwed by this before...

• A note on platform:
 • You must document ALL environmental pre-requisites and instructions for setup of your product
 • If you do anything mobile, please include instructions for emulator
Production server freeze policy

• Production server is *frozen* from the moment of an evolution's deadline until 7 days before the next evolution's deadline. *This is true even after your eval session and after an evolution's grades are posted!*

• *Frozen* means:
 • No code changes, no configuration changes, no content changes.
 • Exception: In-class demo, informal use in the presence of instructor

• While frozen, the server must stay up
 • May be accessed by the myself or the TAs at any time.
 • We may revisit past tests or do ad hoc testing.

• If you inadvertently violate the production server rules (e.g. accidentally updating it), just let us know so we can be aware.
QUESTIONS?
Minor logistics

• For next time, need to select:
 • Four to present a programming language + framework
 • *See course site for details*
Meet your customer

- TBD

Logo goes here
A brief primer on <FIELD>

- TBD
Evolution 1: Go!

• Find your groups

• Start trying to get the requirements out of the customer (me)

• Maybe even talk about your design?
 • What are the key objects to model?
 • Decide how to split up the work?
 • What do you think the main challenges will be?
 • How should you design to accommodate whatever changes I throw at you?
 • What programming language do you want to use?
 • Detailed discussion on Monday.
 • What procedures and tools to use?
A realistic beginning

• The formal requirements have been published, but they may not be clear yet...

• To get started, I recommend you interview the customer: (as impersonated by me)