
ECE560
Computer and Information Security

Fall 2020

Computer Security Overview

Tyler Bletsch

Duke University



2

Is this circle secure?

PROBLEM: The question is under-defined.

What does it mean to for a circle to be “secure”?

LESSON: Precision of thought!



3

If I flood-fill outside the circle, 
will the color penetrate it?



4

If I flood-fill outside the circle, 
will the color penetrate it?

Yes. 

☹



5

Why?

PROBLEM: The defender needs 3000 perfect pixels, 
but the attacker just needs one flaw.

LESSON: Perfect security is 
usually impossible to prove.

Zoom!
Enhance!

In computers, you need way more 
than just 3000 things to be right.



6

Why that exercise?

• Why did we do this exercise? To put you in the right mindset.
 We’re about to define security and present the fundamental model for 

reasoning about it.

 It will seem simple. You will be tempted to ignore it.

• If you take that mental shortcut, you are inviting ruin.

 If you want a perfect circle, 
you have to make it SYSTEMATICALLY AND PRECISELY

 Security models help us flawed humans avoid missing something!

We’re like 99% this dude. We’re not securing anything
with our stupid monkey instincts. We need systematic
thinking or we’re going to make mistakes based on intuition.



7

What is information security?

From “An Introduction to Information Security” (NIST Special Publication 800-12):

• Information Security:
The protection of information and information systems from unauthorized 
access, use, disclosure, disruption, modification, or destruction in order to 
ensure confidentiality, integrity, and availability.

The CIA Triad

There are like 900 pictures of the CIA triad on google, but this was the ugliest one.



8

The CIA triad

• Confidentiality: Preserving authorized restrictions on information 
access and disclosure, including means for protecting personal 
privacy and proprietary information.

• Integrity: Guarding against improper information modification or 
destruction and ensuring information non-repudiation1 and 
authenticity.
 Data Integrity – The property that data has not been altered in an 

unauthorized manner. Data integrity covers data in storage, during 
processing, and while in transit.

 System Integrity – The quality that a system has when it performs its intended 
function in an unimpaired manner, free from unauthorized manipulation of 
the system, whether intentional or accidental. 

• Availability: Ensuring timely and reliable access to and use of 
information.

1 Can positively confirm the source or author of the data.



9

Computer Security Model



10

Components of the Computer Security Model

• Assets: The valued hardware, software, data, and communications.

• Threats: Specific attacks against an asset.

• Countermeasures: General defenses for an asset.

• Risk: We don’t know the threats, so we summarize our perception 
of exposure to threats as risk. 



11

How do threats work?

• Threats exploit one or more vulnerabilities of the asset.
 Vulnerability may be a design flaw (e.g. a bug or misconfiguration) or a 

resource constraint (e.g. amount of server resources).

• An attack is a threat that is carried out leading to a violation of CIA 
triad:
 Information leakage (failure of confidentiality)

 Doing the wrong thing or giving wrong answer (failure of integrity)

 Becoming unusable or inaccessible (failure of availability)

• Countermeasure deals with a particular class of attack
 Ideally prevent attack; failing that, at least detect attack and recover.



12

Thinking about reducing risk

• Security of a system is boolean: vulnerable or not vulnerable

• As it is not possible to prove the security of a system, 
we do not know this boolean’s value

• As such, we apply countermeasures to reduce the probability of 
attacks succeeding, given our incomplete knowledge

• This is what we mean by “reducing risk”

• This thought process is so common, security professionals may use 
the verbal shorthand “this makes the system more secure”.

• Danger of this shorthand: implies that if you do it enough, you reach 
“secure”. You don’t. 1.0

“Security”

Effort
0.0



13

“More secure” vs “secure”

“More secure”
(a real concept)

“Has countermeasures which, all things being 
equal, reduce the probability of an exploitable 
vulnerability being available to attackers, but 

this probability never reaches zero.”

I’m racking up Security Points and if 
I get enough I win security!

If I deploy this one thing, 
I am entirely secure.

It’s so simple we don’t have to think 
about it!

“Fully secure”
(a fool’s delusion)

=



14

Classes of threats (1)

RFC4949 defines four broad classes of attack (with sub-types):

1. Unauthorized disclosure
 Exposure of sensitive information intentionally (e.g. from insider)

 Interception of info in transit (e.g. network sniffing)

 Inference of info given public data (e.g. an exercise app shows popular 
exercise locations; this reveals base locations in warzones)

 Intrusion into the system (traditional “hacking” into a server)

2. Deception
 Masquerade as someone else (e.g. forging the sender on an email asking for 

something)

 Falsification of data (e.g. changing your homework grade in Sakai)

 Repudiation: denying you send/received particular data (e.g. “I didn’t tweet 
that, I was ~*hacked*~!”)



15

Classes of threats (2)

RFC4949 defines four broad classes of attack (with sub-types):

3. Disruption
 Incapacitation of a system (e.g. denial-of-service attack)

 Corruption of data (e.g. “my username is ";DROP ALL TABLES;--”)

 Obstructing communications (e.g. wifi jamming)

4. Usurpation
 Misappropriation of service (e.g. Captain Crunch’s use of telephone services)

 Misuse of service (e.g. misconfiguring a mail system so it floods someone with 
email)



16

Matching assets against the CIA triad

Availability Confidentiality Integrity

Hardware Equipment 
stolen/disabled

Physical media stolen Hardware modified to 
include tracking or 
control (e.g. keylogger
or keyboard emulator)

Software OS or program files 
corrupted, causing loss 
of service

Proprietary software is 
stolen

Software is modified to 
include tracking or 
malicious control (e.g. 
malware)

Data Database or files 
deleted or corrupted, 
causing loss of service

Unauthorized reading 
of user data

Files are modified by 
malicious actor

Communications Messages blocked or 
communication line
damaged or shut 
down

Messages intercepted 
and read or traffic 
pattern is analyzed

Messages are modified, 
duplicated, fabricated, 
or otherwise molested 
in transit.



17

FIPS 200 requirements (1)

FIPS 200 (government document) defines high level security 
requirements

• Access control: Limit who gets in and what they can do

• Awareness and training: Prevent uninformed users aiding attack

• Auditing and accountability: Track who’s doing what

• Certification and assessment: Periodically review security posture

• Config management: Track how things are configured, note changes

• Contingency management: Have plans for emergencies

• Identification/authorization: Check user identities

• Incident response: Plan how to respond during/after a breach

• Maintenance: Actively maintain systems (no deploy & forget!)

Note: This is hyper-summarized, of course



18

FIPS 200 requirements (2)

FIPS 200 (government document) defines high level security 
requirements

• Media protection: Keep storage safe (even when trashing it)

• Physical/environmental protection: Doors, walls, cameras, etc.

• Planning: Every action is planned then executed, no ‘cowboy IT’

• Personnel security: Vet the people working there

• Risk assessment: Analyze risk and invest proportionally

• System and services acquisition: Source goods/services wisely

• System and communication protection: Good software engineering

• System and information integrity: Malware countermeasures

Q: Are these technical factors or human factors?



19

Human and technology factors are interwoven

• Good model of security: “a thread through everything”

• Bad model of security: “a separate silo”

Group 1

Group 2

Group n

Se
cu

ri
ty

 c
o

n
si

d
er

at
io

n
s

...

Group 1

Group 2

Group n

...
Security group

Hey! Listen!
zzz

zzz

zzz



20

Design principles for security in software (1)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Economy of mechanism: Each feature is as small and simple as 
possible. This makes it easy to reason about and test, and is likely to 
have fewer exploitable flaws.

• Fail-safe defaults: In the absence of a explicit user choice, the 
configuration should default secure. For example, a daemon that 
listens to local connections only unless explicitly set to remote 
access.

• Complete mediation: Every access is checked by system; access 
cannot be “cached” or left up to the client. In other words, take the 
concept of time out of the equation when thinking about security –
all accesses are assessed on the most current configuration.

• Open design: Don’t keep your design secret – an inspected design is 
more secure than one you hope is secure. Goes against human 
instinct (“don’t let them see our stuff, they might find a problem!”).



21

Design principles for security in software (2)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Separation of privilege: Define fine-grained privileges in your 
system (as opposed to one big admin privilege) and separate 
software so that common functions are done with a lesser privilege 
level than more sensitive functions. 

• Least privilege: Give only the specific access a user/component 
needs to do its job. 

• Least common mechanism: Minimize sharing of capabilities among 
users, analogous to “separation of powers” in government.

• Psychological acceptability: Don’t interfere with human’s workflow 
to such an extent that they break security to get their jobs done. For 
example, changing a 20-character password every week just makes 
everyone choose simple incrementing passwords or use post-it 
notes.



22

Design principles for security in software (3)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Isolation of systems: Make low-security public systems separate 
from high-security ones.

• Isolation of users: Users should have separate files, processes, etc. 
Enforced by modern operating systems.

• Isolation of security functions: Security tools and facilities should be 
separated from production functions where possible.

• Encapsulation: Provide software interfaces that allow access to data 
only through prescribed routes; disallow direct access to underlying 
data access or objects.

• Modularity: Use common software modules for security functions 
(e.g. cryptography); reduces odds of a “one-off” module’s flaw. 
Apply modularity generally also so that updates can be done with 
low risk.



23

Design principles for security in software (4)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Layering: Apply multiple overlapping security techniques. Avoid a 
condition where a single breach compromises everything (such as 
the flawed concept of the “trusted internal network”).

• Least astonishment: Programs should not surprise the user. For 
example, many UNIX programs use the ‘-h’ flag to mean “help”. You 
should not write a program where ‘-h’ means “hurry up and delete 
everything”.



24

Attack surface

• For a system already deployed, you may want to assess risk

• One thing to ask: how many ways could an attacker interact with it?

• This is the attack surface.
 Includes the software itself, the network, and humans.

 Examples of attack surfaces in desktop operating systems:

• Big attack surface: Windows 95, when it comes online, listens for 
connections on several port numbers with various large and complex 
services.

• Smaller attack surface: Windows 10, when it comes online, listens on a 
few ports, and has a firewall that blocks most connections (but the 
firewall has exceptions by default that still allow some fairly complex 
services to listen).

• Even smaller attack surface: Ubuntu Linux 18.04, when it comes online, 
listens on no ports whatsoever. 

• Good practice: find ways to reduce attack surface!



25

Security strategy

1. Specification/policy: What is your goal? Consider tradeoffs against 
ease of use and cost. 

2. Implementation: Identify mechanisms of prevention, detection, 
response, and recovery.

3. Evaluation: Don’t assume it worked; prove it. 

• The above seems simple, but I have seen one of these steps skipped 
SO MANY TIMES.
 I’ve seen people forget #1 (deploy and evaluate tools without regard for their needs)

 I’ve seen people forget #2 (decide on goals, not fund the implementation, then get 
mad when they’re not met)

 I’ve seen people forget #3 (set up fire-and-forget security solutions that quietly die 
soon after)

Spec Impl Eval



26

Threat modeling

• When designing a defense, you have to know the goal

• Define:
 Asset(s) at risk

 Type of vulnerability you assume exists and are protecting against

 Attacker’s capabilities/knowledge

• Only then can you say how your defense prevents the attack from 
succeeding despite the vulnerability (or detects it, response to it, or 
recovers from it).



27

Threat modeling example: HTTPS

HTTPS: Encrypted form of HTTP for secure web traffic

Threat model:

• Asset(s): Private user communications, including credentials

• Vulnerability: Packets may be intercepted in transit 
(e.g. on open wifi)

• Attacker’s capabilities/knowledge: Knows when/how to intercept 
packets for a specific user or for the site as a whole

The defense:

• Our solution: we negotiate a key in open communication known 
only to user and server; all content is encrypted with this key. 

• How it solves it: Even with the full traffic, attacker cannot deduce 
key and therefore cannot decrypt communications. However, they 
do know that communication happened and roughly how much...



28

Why threat model?

• Threat models help us move from nebulous world of “more secure” 
to a specific guarantee

• MOST IMPORTANT: Promotes systematic thinking about when a 
defense can and cannot do

• Lets us compare techniques in terms of cost/benefit tradeoffs

• Understand what attacks are still on the table



29

Conclusion

• Perfect security is impossible

• Constant struggle to ensure everything is correct; 
attacker just has to find a single flaw

• We do our best using systematic thinking guided by models, e.g.:
 The CIA triad

 The information security model (asset/vulnerability/threat/attack)

 Security strategy model (specify/implement/evaluate)

 Attack surface modeling

 Threat modeling (asset/vulnerability/attacker)

• Reduce likelihood of missing something with design principles, e.g.:
 FIPS 200 security requirements (human and technical factors alike!)

 Design principles for security in software design


